BASH(1) General Commands Manual BASH(1)

NAME

bash — GNU Bourne-Again SHell

SYNOPSIS

bash [options] [command_string | file]

COPYRIGHT

Bash is Copyright © 1989-2018 by the Free Software Foundation, Inc.

DESCRIPTION

Bash is an sh-compatible command language interpreter that executes commands read from the standard
input or from a file. Bash also incorporates useful features from the Korn and C shells (ksh and csh).

Bash is intended to be a conformant implementation of the Shell and Utilities portion of the IEEE POSIX
specification (IEEE Standard 1003.1). Bash can be configured to be POSIX-conformant by default.

OPTIONS

All of the single-character shell options documented in the description of the set builtin command, includ-
ing —o, can be used as options when the shell is invoked. In addition, bash interprets the following options
when it is invoked:

—-C If the —c option is present, then commands are read from the first non-option argument com-
mand_string. If there are arguments after the command_string, the first argument is assigned
to $0 and any remaining arguments are assigned to the positional parameters. The assignment
to $0 sets the name of the shell, which is used in warning and error messages.

—i If the —i option is present, the shell is interactive.

-1 Make bash act as if it had been invoked as a login shell (see INVOCATION below).

-r If the —r option is present, the shell becomes restricted (see RESTRICTED SHELL below).

-s If the —s option is present, or if no arguments remain after option processing, then commands

are read from the standard input. This option allows the positional parameters to be set when
invoking an interactive shell or when reading input through a pipe.

-D A list of all double-quoted strings preceded by $ is printed on the standard output. These are
the strings that are subject to language translation when the current locale is not C or POSIX.
This implies the —n option; no commands will be executed.

[-+]1O [shopt_option]
shopt_option is one of the shell options accepted by the shopt builtin (see SHELL BUILTIN
COMMANDS below). If shopt_option is present, —O sets the value of that option; +O unsets
it. If shopt_option is not supplied, the names and values of the shell options accepted by shopt
are printed on the standard output. If the invocation option is +O, the output is displayed in a
format that may be reused as input.

- A —- signals the end of options and disables further option processing. Any arguments after
the — are treated as filenames and arguments. An argument of — is equivalent to ——.

Bash also interprets a number of multi-character options. These options must appear on the command line
before the single-character options to be recognized.

——debugger
Arrange for the debugger profile to be executed before the shell starts. Turns on extended debug-
ging mode (see the description of the extdebug option to the shopt builtin below).
——dump—po-strings
Equivalent to —D, but the output is in the GNU gettext po (portable object) file format.
——dump-strings
Equivalent to =D.
——help Display a usage message on standard output and exit successfully.
——init-file file
——rcfile file
Execute commands from file instead of the standard personal initialization file 7.bashrc if the
shell is interactive (see INVOCATION below).

GNU Bash 5.0 2018 October 22 1

BASH(1) General Commands Manual BASH(1)

——login
Equivalent to -1.

——noediting
Do not use the GNU readline library to read command lines when the shell is interactive.

——noprofile
Do not read either the system-wide startup file /etc/profile or any of the personal initialization files
7.bash_profile, 7.bash_login, or 7/.profile. By default, bash reads these files when it is invoked as
a login shell (see INVOCATION below).

——norc Do not read and execute the personal initialization file 7.bashrc if the shell is interactive. This
option is on by default if the shell is invoked as sh.

——posix
Change the behavior of bash where the default operation differs from the POSIX standard to
match the standard (posix mode). See SEE ALSO below for a reference to a document that details
how posix mode affects bash’s behavior.

——restricted
The shell becomes restricted (see RESTRICTED SHELL below).

——verbose
Equivalent to —v.

——version
Show version information for this instance of bash on the standard output and exit successfully.

ARGUMENTS

If arguments remain after option processing, and neither the —c nor the —s option has been supplied, the first
argument is assumed to be the name of a file containing shell commands. If bash is invoked in this fashion,
$0 is set to the name of the file, and the positional parameters are set to the remaining arguments. Bash
reads and executes commands from this file, then exits. Bash’s exit status is the exit status of the last com-
mand executed in the script. If no commands are executed, the exit status is 0. An attempt is first made to
open the file in the current directory, and, if no file is found, then the shell searches the directories in PATH
for the script.

INVOCATION

A login shell is one whose first character of argument zero is a —, or one started with the ——login option.

An interactive shell is one started without non-option arguments (unless —s is specified) and without the —¢
option whose standard input and error are both connected to terminals (as determined by isatty(3)), or one
started with the —i option. PS1 is set and $— includes i if bash is interactive, allowing a shell script or a
startup file to test this state.

The following paragraphs describe how bash executes its startup files. If any of the files exist but cannot be
read, bash reports an error. Tildes are expanded in filenames as described below under Tilde Expansion in
the EXPANSION section.

When bash is invoked as an interactive login shell, or as a non-interactive shell with the ——login option, it
first reads and executes commands from the file /etc/profile, if that file exists. After reading that file, it
looks for 7.bash_profile, 7.bash_login, and 7.profile, in that order, and reads and executes commands from
the first one that exists and is readable. The ——noprofile option may be used when the shell is started to
inhibit this behavior.

When an interactive login shell exits, or a non-interactive login shell executes the exit builtin command,
bash reads and executes commands from the file 7.bash_logout, if it exists.

When an interactive shell that is not a login shell is started, bash reads and executes commands from
7.bashrc, if that file exists. This may be inhibited by using the ——norc option. The —-rcfile file option will
force bash to read and execute commands from file instead of 7.bashrc.

When bash is started non-interactively, to run a shell script, for example, it looks for the variable

GNU Bash 5.0 2018 October 22 2

BASH(1) General Commands Manual BASH(1)

BASH_ENV in the environment, expands its value if it appears there, and uses the expanded value as the
name of a file to read and execute. Bash behaves as if the following command were executed:

if [-n "$BASH_ENV"]1; then . "$BASH_ENV"; fi
but the value of the PATH variable is not used to search for the filename.

If bash is invoked with the name sh, it tries to mimic the startup behavior of historical versions of sh as
closely as possible, while conforming to the POSIX standard as well. When invoked as an interactive login
shell, or a non-interactive shell with the ——login option, it first attempts to read and execute commands
from /etc/profile and 7.profile, in that order. The ——noprofile option may be used to inhibit this behavior.
When invoked as an interactive shell with the name sh, bash looks for the variable ENV, expands its value
if it is defined, and uses the expanded value as the name of a file to read and execute. Since a shell invoked
as sh does not attempt to read and execute commands from any other startup files, the ——rcfile option has
no effect. A non-interactive shell invoked with the name sh does not attempt to read any other startup files.
When invoked as sh, bash enters posix mode after the startup files are read.

When bash is started in posix mode, as with the ——posix command line option, it follows the POSIX stan-
dard for startup files. In this mode, interactive shells expand the ENV variable and commands are read and
executed from the file whose name is the expanded value. No other startup files are read.

Bash attempts to determine when it is being run with its standard input connected to a network connection,
as when executed by the remote shell daemon, usually rshd, or the secure shell daemon sshd. If bash deter-
mines it is being run in this fashion, it reads and executes commands from 7.bashrc, if that file exists and is
readable. It will not do this if invoked as sh. The ——nore option may be used to inhibit this behavior, and
the ——recfile option may be used to force another file to be read, but neither rshd nor sshd generally invoke
the shell with those options or allow them to be specified.

If the shell is started with the effective user (group) id not equal to the real user (group) id, and the —p
option is not supplied, no startup files are read, shell functions are not inherited from the environment, the
SHELLOPTS, BASHOPTS, CDPATH, and GLOBIGNORE variables, if they appear in the environment, are
ignored, and the effective user id is set to the real user id. If the —p option is supplied at invocation, the
startup behavior is the same, but the effective user id is not reset.

DEFINITIONS
The following definitions are used throughout the rest of this document.
blank A space or tab.
word A sequence of characters considered as a single unit by the shell. Also known as a token.
name A word consisting only of alphanumeric characters and underscores, and beginning with an alpha-
betic character or an underscore. Also referred to as an identifier.
metacharacter
A character that, when unquoted, separates words. One of the following:
| & 5 () < > space tab newline
control operator
A token that performs a control function. It is one of the following symbols:
| & && ;5 35 ;& 53& () | |& <newline>

RESERVED WORDS
Reserved words are words that have a special meaning to the shell. The following words are recognized as
reserved when unquoted and either the first word of a simple command (see SHELL GRAMMAR below) or
the third word of a case or for command:

! case coproc do done elif else esac fi for function if in select then
until while { } time [[]]

SHELL GRAMMAR
Simple Commands
A simple command is a sequence of optional variable assignments followed by blank-separated words and
redirections, and terminated by a control operator. The first word specifies the command to be executed,
and is passed as argument zero. The remaining words are passed as arguments to the invoked command.

GNU Bash 5.0 2018 October 22 3

BASH(1) General Commands Manual BASH(1)

The return value of a simple command is its exit status, or 128+4n if the command is terminated by signal n.

Pipelines
A pipeline is a sequence of one or more commands separated by one of the control operators | or |&. The
format for a pipeline is:

[time [-p]] [!] command [[|]&] command? ...]

The standard output of command is connected via a pipe to the standard input of command2. This connec-
tion is performed before any redirections specified by the command (see REDIRECTION below). If |& is
used, command’s standard error, in addition to its standard output, is connected to command2’s standard
input through the pipe; it is shorthand for 2>&1 |. This implicit redirection of the standard error to the stan-
dard output is performed after any redirections specified by the command.

The return status of a pipeline is the exit status of the last command, unless the pipefail option is enabled.
If pipefail is enabled, the pipeline’s return status is the value of the last (rightmost) command to exit with a
non-zero status, or zero if all commands exit successfully. If the reserved word ! precedes a pipeline, the
exit status of that pipeline is the logical negation of the exit status as described above. The shell waits for
all commands in the pipeline to terminate before returning a value.

If the time reserved word precedes a pipeline, the elapsed as well as user and system time consumed by its
execution are reported when the pipeline terminates. The —p option changes the output format to that spec-
ified by POSIX. When the shell is in posix mode, it does not recognize time as a reserved word if the next
token begins with a ‘->. The TIMEFORMAT variable may be set to a format string that specifies how the
timing information should be displayed; see the description of TIMEFORMAT under Shell Variables
below.

When the shell is in posix mode, time may be followed by a newline. In this case, the shell displays the
total user and system time consumed by the shell and its children. The TIMEFORMAT variable may be
used to specify the format of the time information.

Each command in a pipeline is executed as a separate process (i.e., in a subshell). See COMMAND EXE-
CUTION ENVIRONMENT for a description of a subshell environment. If the lastpipe option is enabled
using the shopt builtin (see the description of shopt below), the last element of a pipeline may be run by
the shell process.

Lists
A list is a sequence of one or more pipelines separated by one of the operators ;, &, &&, or ||, and option-
ally terminated by one of ;, &, or <newline>.

Of these list operators, && and || have equal precedence, followed by ; and &, which have equal prece-
dence.

A sequence of one or more newlines may appear in a /ist instead of a semicolon to delimit commands.

If a command is terminated by the control operator &, the shell executes the command in the background in
a subshell. The shell does not wait for the command to finish, and the return status is 0. Commands sepa-
rated by a ; are executed sequentially; the shell waits for each command to terminate in turn. The return
status is the exit status of the last command executed.

AND and OR lists are sequences of one or more pipelines separated by the && and || control operators,
respectively. AND and OR lists are executed with left associativity. An AND list has the form

commandl && command2
command? is executed if, and only if, commandl returns an exit status of zero (success).
An OR list has the form

commandl || command?2

command? is executed if, and only if, command] returns a non-zero exit status. The return status of AND
and OR lists is the exit status of the last command executed in the list.

GNU Bash 5.0 2018 October 22 4

BASH(1)

General Commands Manual BASH(1)

Compound Commands
A compound command is one of the following. In most cases a list in a command’s description may be
separated from the rest of the command by one or more newlines, and may be followed by a newline in
place of a semicolon.

(list)

{ list; }

list is executed in a subshell environment (see COMMAND EXECUTION ENVIRONMENT below).
Variable assignments and builtin commands that affect the shell’s environment do not remain in
effect after the command completes. The return status is the exit status of /isz.

list is simply executed in the current shell environment. /ist must be terminated with a newline or
semicolon. This is known as a group command. The return status is the exit status of list. Note
that unlike the metacharacters (and), { and } are reserved words and must occur where a reserved
word is permitted to be recognized. Since they do not cause a word break, they must be separated
from list by whitespace or another shell metacharacter.

((expression))

The expression is evaluated according to the rules described below under ARITHMETIC EVALUA-
TION. If the value of the expression is non-zero, the return status is 0; otherwise the return status
is 1. This is exactly equivalent to let "expression"'.

[[expression]]

GNU Bash 5.0

Return a status of 0 or 1 depending on the evaluation of the conditional expression expression.
Expressions are composed of the primaries described below under CONDITIONAL EXPRES-
SIONS. Word splitting and pathname expansion are not performed on the words between the [[
and]]; tilde expansion, parameter and variable expansion, arithmetic expansion, command substi-
tution, process substitution, and quote removal are performed. Conditional operators such as —f
must be unquoted to be recognized as primaries.

When used with [[, the < and > operators sort lexicographically using the current locale.

When the == and != operators are used, the string to the right of the operator is considered a pat-
tern and matched according to the rules described below under Pattern Matching, as if the ext-
glob shell option were enabled. The = operator is equivalent to ==. If the nocasematch shell
option is enabled, the match is performed without regard to the case of alphabetic characters. The
return value is O if the string matches (==) or does not match (!=) the pattern, and 1 otherwise.
Any part of the pattern may be quoted to force the quoted portion to be matched as a string.

An additional binary operator, =7, is available, with the same precedence as == and !=. When it is
used, the string to the right of the operator is considered a POSIX extended regular expression and
matched accordingly (as in regex(3)). The return value is O if the string matches the pattern, and 1
otherwise. If the regular expression is syntactically incorrect, the conditional expression’s return
value is 2. If the nocasematch shell option is enabled, the match is performed without regard to
the case of alphabetic characters. Any part of the pattern may be quoted to force the quoted por-
tion to be matched as a string. Bracket expressions in regular expressions must be treated care-
fully, since normal quoting characters lose their meanings between brackets. If the pattern is
stored in a shell variable, quoting the variable expansion forces the entire pattern to be matched as
a string. Substrings matched by parenthesized subexpressions within the regular expression are
saved in the array variable BASH_REMATCH. The element of BASH_REMATCH with index O is
the portion of the string matching the entire regular expression. The element of BASH_REMATCH
with index # is the portion of the string matching the nth parenthesized subexpression.

Expressions may be combined using the following operators, listed in decreasing order of prece-
dence:

(‘expression)
Returns the value of expression. This may be used to override the normal precedence of
operators.

2018 October 22 5

BASH(1)

General Commands Manual BASH(1)

! expression

True if expression is false.
expressionl && expression2

True if both expressionl and expression2 are true.
expressionl || expression2

True if either expressionl or expression2 is true.

The && and || operators do not evaluate expression2 if the value of expressionl is sufficient to
determine the return value of the entire conditional expression.

for name [[in [word ...]];] do list ; done

The list of words following in is expanded, generating a list of items. The variable name is set to
each element of this list in turn, and [ist is executed each time. If the in word is omitted, the for
command executes /ist once for each positional parameter that is set (see PARAMETERS below).
The return status is the exit status of the last command that executes. If the expansion of the items
following in results in an empty list, no commands are executed, and the return status is 0.

for ((exprl ; expr2 ; expr3)) ; do list ; done

First, the arithmetic expression exprl is evaluated according to the rules described below under
ARITHMETIC EVALUATION. The arithmetic expression expr2 is then evaluated repeatedly until
it evaluates to zero. Each time expr2 evaluates to a non-zero value, list is executed and the arith-
metic expression expr3 is evaluated. If any expression is omitted, it behaves as if it evaluates to 1.
The return value is the exit status of the last command in /ist that is executed, or false if any of the
expressions is invalid.

select name [in word] ; do list ; done

The list of words following in is expanded, generating a list of items. The set of expanded words
is printed on the standard error, each preceded by a number. If the in word is omitted, the posi-
tional parameters are printed (see PARAMETERS below). The PS3 prompt is then displayed and a
line read from the standard input. If the line consists of a number corresponding to one of the dis-
played words, then the value of name is set to that word. If the line is empty, the words and
prompt are displayed again. If EOF is read, the command completes. Any other value read causes
name to be set to null. The line read is saved in the variable REPLY. The list is executed after
each selection until a break command is executed. The exit status of select is the exit status of the
last command executed in list, or zero if no commands were executed.

case word in [[(] pattern [| pattern] ...) list ;;] ... esac

A case command first expands word, and tries to match it against each pattern in turn, using the
matching rules described under Pattern Matching below. The word is expanded using tilde
expansion, parameter and variable expansion, arithmetic expansion, command substitution,
process substitution and quote removal. Each pattern examined is expanded using tilde expansion,
parameter and variable expansion, arithmetic expansion, command substitution, and process sub-
stitution. If the nocasematch shell option is enabled, the match is performed without regard to the
case of alphabetic characters. When a match is found, the corresponding list is executed. If the ;3
operator is used, no subsequent matches are attempted after the first pattern match. Using ;& in
place of ;; causes execution to continue with the /ist associated with the next set of patterns. Using
;3& in place of ;; causes the shell to test the next pattern list in the statement, if any, and execute
any associated /ist on a successful match. The exit status is zero if no pattern matches. Otherwise,
it is the exit status of the last command executed in /isz.

if list; then list; [elif list; then list;] ... [else list;] fi

The if list is executed. If its exit status is zero, the then list is executed. Otherwise, each elif list
is executed in turn, and if its exit status is zero, the corresponding then [ist is executed and the
command completes. Otherwise, the else list is executed, if present. The exit status is the exit sta-
tus of the last command executed, or zero if no condition tested true.

while /ist-1; do list-2; done

GNU Bash 5.0

2018 October 22 6

BASH(1) General Commands Manual BASH(1)

until /ist-1; do list-2; done
The while command continuously executes the list /isz-2 as long as the last command in the list
list-1 returns an exit status of zero. The until command is identical to the while command, except
that the test is negated: list-2 is executed as long as the last command in /ist-1 returns a non-zero
exit status. The exit status of the while and until commands is the exit status of the last command
executed in list-2, or zero if none was executed.

Coprocesses
A coprocess is a shell command preceded by the coproc reserved word. A coprocess is executed asyn-
chronously in a subshell, as if the command had been terminated with the & control operator, with a two-
way pipe established between the executing shell and the coprocess.

The format for a coprocess is:
coproc [NAME] command [redirections]

This creates a coprocess named NAME. If NAME is not supplied, the default name is COPROC. NAME
must not be supplied if command is a simple command (see above); otherwise, it is interpreted as the first
word of the simple command. When the coprocess is executed, the shell creates an array variable (see
Arrays below) named NAME in the context of the executing shell. The standard output of command is
connected via a pipe to a file descriptor in the executing shell, and that file descriptor is assigned to
NAMETQ]. The standard input of command is connected via a pipe to a file descriptor in the executing
shell, and that file descriptor is assigned to NAME[1]. This pipe is established before any redirections spec-
ified by the command (see REDIRECTION below). The file descriptors can be utilized as arguments to
shell commands and redirections using standard word expansions. Other than those created to execute
command and process substitutions, the file descriptors are not available in subshells. The process ID of
the shell spawned to execute the coprocess is available as the value of the variable NAME_PID. The wait
builtin command may be used to wait for the coprocess to terminate.

Since the coprocess is created as an asynchronous command, the coproc command always returns success.
The return status of a coprocess is the exit status of command.

Shell Function Definitions
A shell function is an object that is called like a simple command and executes a compound command with
a new set of positional parameters. Shell functions are declared as follows:

name () compound—command [redirection]

function name [()] compound—command [redirection]
This defines a function named name. The reserved word function is optional. If the function
reserved word is supplied, the parentheses are optional. The body of the function is the compound
command compound—command (see Compound Commands above). That command is usually a
list of commands between { and }, but may be any command listed under Compound Commands
above, with one exception: If the function reserved word is used, but the parentheses are not sup-
plied, the braces are required. compound—command is executed whenever name is specified as the
name of a simple command. When in posix mode, name may not be the name of one of the
POSIX special builtins. Any redirections (see REDIRECTION below) specified when a function is
defined are performed when the function is executed. The exit status of a function definition is
zero unless a syntax error occurs or a readonly function with the same name already exists. When
executed, the exit status of a function is the exit status of the last command executed in the body.
(See FUNCTIONS below.)

COMMENTS
In a non-interactive shell, or an interactive shell in which the interactive_comments option to the shopt
builtin is enabled (see SHELL BUILTIN COMMANDS below), a word beginning with # causes that word
and all remaining characters on that line to be ignored. An interactive shell without the interactive_com-
ments option enabled does not allow comments. The interactive_comments option is on by default in
interactive shells.

GNU Bash 5.0 2018 October 22 7

BASH(1) General Commands Manual BASH(1)

QUOTING
Quoting is used to remove the special meaning of certain characters or words to the shell. Quoting can be
used to disable special treatment for special characters, to prevent reserved words from being recognized as
such, and to prevent parameter expansion.

Each of the metacharacters listed above under DEFINITIONS has special meaning to the shell and must be
quoted if it is to represent itself.

When the command history expansion facilities are being used (see HISTORY EXPANSION below), the
history expansion character, usually !, must be quoted to prevent history expansion.

There are three quoting mechanisms: the escape character, single quotes, and double quotes.

A non-quoted backslash (\) is the escape character. It preserves the literal value of the next character that
follows, with the exception of <newline>. If a \<newline> pair appears, and the backslash is not itself
quoted, the \<newline> is treated as a line continuation (that is, it is removed from the input stream and
effectively ignored).

Enclosing characters in single quotes preserves the literal value of each character within the quotes. A sin-
gle quote may not occur between single quotes, even when preceded by a backslash.

Enclosing characters in double quotes preserves the literal value of all characters within the quotes, with the
exception of $, *, \, and, when history expansion is enabled, !. When the shell is in posix mode, the ! has no
special meaning within double quotes, even when history expansion is enabled. The characters $ and *
retain their special meaning within double quotes. The backslash retains its special meaning only when fol-
lowed by one of the following characters: $, *, "', \, or <newline>. A double quote may be quoted within
double quotes by preceding it with a backslash. If enabled, history expansion will be performed unless an !

appearing in double quotes is escaped using a backslash. The backslash preceding the ! is not removed.
The special parameters * and @ have special meaning when in double quotes (see PARAMETERS below).

Words of the form $'string' are treated specially. The word expands to string, with backslash-escaped char-
acters replaced as specified by the ANSI C standard. Backslash escape sequences, if present, are decoded

as follows:
\a alert (bell)
\b backspace
\e
\E an escape character
\f form feed
\n new line
\r carriage return
\t horizontal tab
\v vertical tab
\ backslash
\' single quote
\" double quote
\? question mark

\nnn the eight-bit character whose value is the octal value nnn (one to three octal digits)
\xHH the eight-bit character whose value is the hexadecimal value HH (one or two hex digits)
\wHHHH
the Unicode (ISO/IEC 10646) character whose value is the hexadecimal value HHHH
(one to four hex digits)
\UHHHHHHHH
the Unicode (ISO/IEC 10646) character whose value is the hexadecimal value HHHHH-
HHH (one to eight hex digits)
\cx a control-x character

The expanded result is single-quoted, as if the dollar sign had not been present.

A double-quoted string preceded by a dollar sign ($"string") will cause the string to be translated according

GNU Bash 5.0 2018 October 22 8

BASH(1) General Commands Manual BASH(1)

to the current locale. If the current locale is C or POSIX, the dollar sign is ignored. If the string is trans-
lated and replaced, the replacement is double-quoted.

PARAMETERS
A parameter is an entity that stores values. It can be a name, a number, or one of the special characters
listed below under Special Parameters. A variable is a parameter denoted by a name. A variable has a
value and zero or more attributes. Attributes are assigned using the declare builtin command (see declare
below in SHELL BUILTIN COMMANDS).

A parameter is set if it has been assigned a value. The null string is a valid value. Once a variable is set, it
may be unset only by using the unset builtin command (see SHELL BUILTIN COMMANDS below).

A variable may be assigned to by a statement of the form
name=[value]

If value is not given, the variable is assigned the null string. All values undergo tilde expansion, parameter
and variable expansion, command substitution, arithmetic expansion, and quote removal (see EXPANSION
below). If the variable has its integer attribute set, then value is evaluated as an arithmetic expression even
if the $((...)) expansion is not used (see Arithmetic Expansion below). Word splitting is not performed,
with the exception of "$@" as explained below under Special Parameters. Pathname expansion is not
performed. Assignment statements may also appear as arguments to the alias, declare, typeset, export,
readonly, and local builtin commands (declaration commands). When in posix mode, these builtins may
appear in a command after one or more instances of the command builtin and retain these assignment
statement properties.

In the context where an assignment statement is assigning a value to a shell variable or array index, the +=
operator can be used to append to or add to the variable’s previous value. This includes arguments to
builtin commands such as declare that accept assignment statements (declaration commands). When += is
applied to a variable for which the infeger attribute has been set, value is evaluated as an arithmetic expres-
sion and added to the variable’s current value, which is also evaluated. When += is applied to an array vari-
able using compound assignment (see Arrays below), the variable’s value is not unset (as it is when using
=), and new values are appended to the array beginning at one greater than the array’s maximum index (for
indexed arrays) or added as additional key—value pairs in an associative array. When applied to a string-
valued variable, value is expanded and appended to the variable’s value.

A variable can be assigned the nameref attribute using the —n option to the declare or local builtin com-
mands (see the descriptions of declare and local below) to create a nameref, or a reference to another vari-
able. This allows variables to be manipulated indirectly. Whenever the nameref variable is referenced,
assigned to, unset, or has its attributes modified (other than using or changing the nameref attribute itself),
the operation is actually performed on the variable specified by the nameref variable’s value. A nameref is
commonly used within shell functions to refer to a variable whose name is passed as an argument to the
function. For instance, if a variable name is passed to a shell function as its first argument, running

declare —-n ref=$1

inside the function creates a nameref variable ref whose value is the variable name passed as the first argu-
ment. References and assignments to ref, and changes to its attributes, are treated as references, assign-
ments, and attribute modifications to the variable whose name was passed as $1. If the control variable in a
for loop has the nameref attribute, the list of words can be a list of shell variables, and a name reference
will be established for each word in the list, in turn, when the loop is executed. Array variables cannot be
given the nameref attribute. However, nameref variables can reference array variables and subscripted
array variables. Namerefs can be unset using the —n option to the unset builtin. Otherwise, if unset is exe-
cuted with the name of a nameref variable as an argument, the variable referenced by the nameref variable
will be unset.

Positional Parameters
A positional parameter is a parameter denoted by one or more digits, other than the single digit 0. Posi-
tional parameters are assigned from the shell’s arguments when it is invoked, and may be reassigned using
the set builtin command. Positional parameters may not be assigned to with assignment statements. The

GNU Bash 5.0 2018 October 22 9

BASH(1)

General Commands Manual BASH(1)

positional parameters are temporarily replaced when a shell function is executed (see FUNCTIONS below).

When a positional parameter consisting of more than a single digit is expanded, it must be enclosed in
braces (see EXPANSION below).

Special Parameters
The shell treats several parameters specially. These parameters may only be referenced; assignment to
them is not allowed.

3

Expands to the positional parameters, starting from one. When the expansion is not within double
quotes, each positional parameter expands to a separate word. In contexts where it is performed,
those words are subject to further word splitting and pathname expansion. When the expansion
occurs within double quotes, it expands to a single word with the value of each parameter sepa-
rated by the first character of the IFS special variable. That is, "$*" is equivalent to "$1c$2c...",
where c is the first character of the value of the IFS variable. If IFS is unset, the parameters are
separated by spaces. If IFS is null, the parameters are joined without intervening separators.
Expands to the positional parameters, starting from one. In contexts where word splitting is per-
formed, this expands each positional parameter to a separate word; if not within double quotes,
these words are subject to word splitting. In contexts where word splitting is not performed, this
expands to a single word with each positional parameter separated by a space. When the expan-
sion occurs within double quotes, each parameter expands to a separate word. That is, "$@" is
equivalent to "$1" "$2" ... If the double-quoted expansion occurs within a word, the expansion of
the first parameter is joined with the beginning part of the original word, and the expansion of the
last parameter is joined with the last part of the original word. When there are no positional
parameters, "$@" and $@ expand to nothing (i.e., they are removed).

Expands to the number of positional parameters in decimal.

Expands to the exit status of the most recently executed foreground pipeline.

Expands to the current option flags as specified upon invocation, by the set builtin command, or
those set by the shell itself (such as the —i option).

Expands to the process ID of the shell. In a () subshell, it expands to the process ID of the current
shell, not the subshell.

Expands to the process ID of the job most recently placed into the background, whether executed
as an asynchronous command or using the bg builtin (see JOB CONTROL below).

Expands to the name of the shell or shell script. This is set at shell initialization. If bash is
invoked with a file of commands, $0 is set to the name of that file. If bash is started with the —c
option, then $0 is set to the first argument after the string to be executed, if one is present. Other-
wise, it is set to the filename used to invoke bash, as given by argument zero.

At shell startup, set to the absolute pathname used to invoke the shell or shell script being executed
as passed in the environment or argument list. Subsequently, expands to the last argument to the
previous simple command executed in the foreground, after expansion. Also set to the full path-
name used to invoke each command executed and placed in the environment exported to that com-
mand. When checking mail, this parameter holds the name of the mail file currently being
checked.

Shell Variables
The following variables are set by the shell:

BASH Expands to the full filename used to invoke this instance of bash.
BASHOPTS

A colon-separated list of enabled shell options. Each word in the list is a valid argument for the —s
option to the shopt builtin command (see SHELL BUILTIN COMMANDS below). The options
appearing in BASHOPTS are those reported as on by shopt. If this variable is in the environment
when bash starts up, each shell option in the list will be enabled before reading any startup files.
This variable is read-only.

BASHPID

GNU Bash 5.0

Expands to the process ID of the current bash process. This differs from $$ under certain circum-
stances, such as subshells that do not require bash to be re-initialized. Assignments to BASHPID
have no effect. If BASHPID is unset, it loses its special properties, even if it is subsequently reset.

2018 October 22 10

BASH(1)

General Commands Manual BASH(1)

BASH_ALIASES

An associative array variable whose members correspond to the internal list of aliases as main-
tained by the alias builtin. Elements added to this array appear in the alias list; however, unsetting
array elements currently does not cause aliases to be removed from the alias list. If
BASH_ALIASES is unset, it loses its special properties, even if it is subsequently reset.

BASH_ARGC

An array variable whose values are the number of parameters in each frame of the current bash
execution call stack. The number of parameters to the current subroutine (shell function or script
executed with . or source) is at the top of the stack. When a subroutine is executed, the number of
parameters passed is pushed onto BASH_ARGC. The shell sets BASH_ARGC only when in
extended debugging mode (see the description of the extdebug option to the shopt builtin below).
Setting extdebug after the shell has started to execute a script, or referencing this variable when
extdebug is not set, may result in inconsistent values.

BASH_ARGV

An array variable containing all of the parameters in the current bash execution call stack. The
final parameter of the last subroutine call is at the top of the stack; the first parameter of the initial
call is at the bottom. When a subroutine is executed, the parameters supplied are pushed onto
BASH_ARGYV. The shell sets BASH_ARGYV only when in extended debugging mode (see the
description of the extdebug option to the shopt builtin below). Setting extdebug after the shell
has started to execute a script, or referencing this variable when extdebug is not set, may result in
inconsistent values.

BASH_ARGV0

When referenced, this variable expands to the name of the shell or shell script (identical to $0; see
the description of special parameter 0 above). Assignment to BASH_ARGVO0 causes the value
assigned to also be assigned to $0. If BASH_ARGYVO is unset, it loses its special properties, even
if it is subsequently reset.

BASH_CMDS

An associative array variable whose members correspond to the internal hash table of commands
as maintained by the hash builtin. Elements added to this array appear in the hash table; however,
unsetting array elements currently does not cause command names to be removed from the hash
table. If BASH_CMDS is unset, it loses its special properties, even if it is subsequently reset.

BASH_COMMAND

The command currently being executed or about to be executed, unless the shell is executing a
command as the result of a trap, in which case it is the command executing at the time of the trap.

BASH_EXECUTION_STRING

The command argument to the —c invocation option.

BASH_LINENO

An array variable whose members are the line numbers in source files where each corresponding
member of FUNCNAME was invoked. ${BASH_LINENOI$i]} is the line number in the source
file (${BASH_SOURCE[$i+I]}) where ${FUNCNAMEIS$i]} was called (or
${BASH_LINENO[$i-11} if referenced within another shell function). Use LINENO to obtain the
current line number.

BASH_LOADABLES_PATH

A colon-separated list of directories in which the shell looks for dynamically loadable builtins
specified by the enable command.

BASH_REMATCH

An array variable whose members are assigned by the =" binary operator to the [[conditional com-
mand. The element with index O is the portion of the string matching the entire regular expression.
The element with index n is the portion of the string matching the nth parenthesized subexpres-
sion. This variable is read-only.

BASH_SOURCE

GNU Bash 5.0

An array variable whose members are the source filenames where the corresponding shell function
names in the FUNCNAME array variable are defined. The shell function ${FUNCNAME[$/]} is
defined in the file ${BASH_SOURCE[$i]} and called from ${BASH_SOURCE]|$i+1]}.

2018 October 22 11

BASH(1)

General Commands Manual BASH(1)

BASH_SUBSHELL

Incremented by one within each subshell or subshell environment when the shell begins executing
in that environment. The initial value is O.

BASH_VERSINFO

A readonly array variable whose members hold version information for this instance of bash. The
values assigned to the array members are as follows:

BASH_VERSINFO[0] The major version number (the release).
BASH_VERSINFO[1] The minor version number (the version).
BASH_VERSINFOI[2] The patch level.

BASH_VERSINFOI[3] The build version.
BASH_VERSINFO[4] The release status (e.g., betal).
BASH_VERSINFOI[5] The value of MACHTYPE.

BASH_VERSION

Expands to a string describing the version of this instance of bash.

COMP_CWORD

An index into ${COMP_WORDS} of the word containing the current cursor position. This vari-
able is available only in shell functions invoked by the programmable completion facilities (see
Programmable Completion below).

COMP_KEY

The key (or final key of a key sequence) used to invoke the current completion function.

COMP_LINE

The current command line. This variable is available only in shell functions and external com-
mands invoked by the programmable completion facilities (see Programmable Completion
below).

COMP_POINT

The index of the current cursor position relative to the beginning of the current command. If the
current cursor position is at the end of the current command, the value of this variable is equal to
${#COMP_LINE}. This variable is available only in shell functions and external commands
invoked by the programmable completion facilities (see Programmable Completion below).

COMP_TYPE

Set to an integer value corresponding to the type of completion attempted that caused a completion
function to be called: TAB, for normal completion, ?, for listing completions after successive tabs,
!, for listing alternatives on partial word completion, @, to list completions if the word is not
unmodified, or %, for menu completion. This variable is available only in shell functions and
external commands invoked by the programmable completion facilities (see Programmable
Completion below).

COMP_WORDBREAKS

The set of characters that the readline library treats as word separators when performing word
completion. If COMP_WORDBREAKS is unset, it loses its special properties, even if it is subse-
quently reset.

COMP_WORDS

An array variable (see Arrays below) consisting of the individual words in the current command
line. The line is split into words as readline would split it, using COMP_WORDBREAKS as
described above. This variable is available only in shell functions invoked by the programmable
completion facilities (see Programmable Completion below).

COPROC

An array variable (see Arrays below) created to hold the file descriptors for output from and input
to an unnamed coprocess (see Coprocesses above).

DIRSTACK

GNU Bash 5.0

An array variable (see Arrays below) containing the current contents of the directory stack.
Directories appear in the stack in the order they are displayed by the dirs builtin. Assigning to
members of this array variable may be used to modify directories already in the stack, but the
pushd and popd builtins must be used to add and remove directories. Assignment to this variable
will not change the current directory. If DIRSTACK is unset, it loses its special properties, even if

2018 October 22 12

BASH(1) General Commands Manual BASH(1)

it is subsequently reset.

EPOCHREALTIME
Each time this parameter is referenced, it expands to the number of seconds since the Unix Epoch
(see time(3)) as a floating point value with micro-second granularity. Assignments to EPOCHRE-
ALTIME are ignored. If EPOCHREALTIME is unset, it loses its special properties, even if it is
subsequently reset.

EPOCHSECONDS
Each time this parameter is referenced, it expands to the number of seconds since the Unix Epoch
(see time(3)). Assignments to EPOCHSECONDS are ignored. If EPOCHSECONDS is unset, it
loses its special properties, even if it is subsequently reset.

EUID Expands to the effective user ID of the current user, initialized at shell startup. This variable is
readonly.

FUNCNAME
An array variable containing the names of all shell functions currently in the execution call stack.
The element with index O is the name of any currently-executing shell function. The bottom-most
element (the one with the highest index) is "main". This variable exists only when a shell func-
tion is executing. Assignments to FUNCNAME have no effect. If FUNCNAME is unset, it loses its
special properties, even if it is subsequently reset.

This variable can be used with BASH_LINENO and BASH_SOURCE. Each element of FUNC-
NAME has corresponding elements in BASH_LINENO and BASH_SOURCE to describe the
call stack. For instance, ${FUNCNAME][$i]} was called from the file ${BASH_SOURCE][$i+/]}
at line number ${BASH_LINENOIS$i]}. The caller builtin displays the current call stack using
this information.

GROUPS
An array variable containing the list of groups of which the current user is a member. Assign-
ments to GROUPS have no effect. If GROUPS is unset, it loses its special properties, even if it is
subsequently reset.

HISTCMD
The history number, or index in the history list, of the current command. If HISTCMD is unset, it
loses its special properties, even if it is subsequently reset.

HOSTNAME
Automatically set to the name of the current host.

HOSTTYPE
Automatically set to a string that uniquely describes the type of machine on which bash is execut-
ing. The default is system-dependent.

LINENO
Each time this parameter is referenced, the shell substitutes a decimal number representing the
current sequential line number (starting with 1) within a script or function. When not in a script or
function, the value substituted is not guaranteed to be meaningful. If LINENO is unset, it loses its
special properties, even if it is subsequently reset.

MACHTYPE
Automatically set to a string that fully describes the system type on which bash is executing, in
the standard GNU cpu-company-system format. The default is system-dependent.

MAPFILE
An array variable (see Arrays below) created to hold the text read by the mapfile builtin when no
variable name is supplied.

OLDPWD
The previous working directory as set by the cd command.

OPTARG
The value of the last option argument processed by the getopts builtin command (see SHELL
BUILTIN COMMANDS below).

OPTIND
The index of the next argument to be processed by the getopts builtin command (see SHELL
BUILTIN COMMANDS below).

GNU Bash 5.0 2018 October 22 13

BASH(1) General Commands Manual BASH(1)

OSTYPE
Automatically set to a string that describes the operating system on which bash is executing. The
default is system-dependent.

PIPESTATUS
An array variable (see Arrays below) containing a list of exit status values from the processes in
the most-recently-executed foreground pipeline (which may contain only a single command).

PPID The process ID of the shell’s parent. This variable is readonly.

PWD The current working directory as set by the cd command.

RANDOM
Each time this parameter is referenced, a random integer between 0 and 32767 is generated. The
sequence of random numbers may be initialized by assigning a value to RANDOM. If RANDOM is
unset, it loses its special properties, even if it is subsequently reset.

READLINE_LINE
The contents of the readline line buffer, for use with bind -x (see SHELL BUILTIN COM-
MANDS below).

READLINE_POINT
The position of the insertion point in the readline line buffer, for use with bind -x (see SHELL
BUILTIN COMMANDS below).

REPLY
Set to the line of input read by the read builtin command when no arguments are supplied.

SECONDS
Each time this parameter is referenced, the number of seconds since shell invocation is returned.
If a value is assigned to SECONDS, the value returned upon subsequent references is the number
of seconds since the assignment plus the value assigned. If SECONDS is unset, it loses its special
properties, even if it is subsequently reset.

SHELLOPTS
A colon-separated list of enabled shell options. Each word in the list is a valid argument for the
—o option to the set builtin command (see SHELL BUILTIN COMMANDS below). The options
appearing in SHELLOPTS are those reported as on by set —o. If this variable is in the environment
when bash starts up, each shell option in the list will be enabled before reading any startup files.
This variable is read-only.

SHLVL
Incremented by one each time an instance of bash is started.

UID Expands to the user ID of the current user, initialized at shell startup. This variable is readonly.

The following variables are used by the shell. In some cases, bash assigns a default value to a variable;
these cases are noted below.

BASH_COMPAT
The value is used to set the shell’s compatibility level. See the description of the shopt builtin
below under SHELL BUILTIN COMMANDS for a description of the various compatibility lev-
els and their effects. The value may be a decimal number (e.g., 4.2) or an integer (e.g., 42) corre-
sponding to the desired compatibility level. If BASH_COMPAT is unset or set to the empty
string, the compatibility level is set to the default for the current version. If BASH_COMPAT is
set to a value that is not one of the valid compatibility levels, the shell prints an error message and
sets the compatibility level to the default for the current version. The valid compatibility levels
correspond to the compatibility options accepted by the shopt builtin described below (for exam-
ple, compat42 means that 4.2 and 42 are valid values). The current version is also a valid value.

BASH_ENV
If this parameter is set when bash is executing a shell script, its value is interpreted as a filename
containing commands to initialize the shell, as in 7.bashrc. The value of BASH_ENYV is subjected
to parameter expansion, command substitution, and arithmetic expansion before being interpreted
as a filename. PATH is not used to search for the resultant filename.

BASH_XTRACEFD
If set to an integer corresponding to a valid file descriptor, bash will write the trace output gener-
ated when set -x is enabled to that file descriptor. The file descriptor is closed when

GNU Bash 5.0 2018 October 22 14

BASH(1) General Commands Manual BASH(1)

BASH_XTRACEFD is unset or assigned a new value. Unsetting BASH_XTRACEFD or assigning it
the empty string causes the trace output to be sent to the standard error. Note that setting
BASH_XTRACEFD to 2 (the standard error file descriptor) and then unsetting it will result in the
standard error being closed.

CDPATH
The search path for the ed command. This is a colon-separated list of directories in which the
shell looks for destination directories specified by the e¢d command. A sample value is
".:7:/usr".

CHILD_MAX
Set the number of exited child status values for the shell to remember. Bash will not allow this
value to be decreased below a POSIX-mandated minimum, and there is a maximum value (cur-
rently 8192) that this may not exceed. The minimum value is system-dependent.

COLUMNS
Used by the select compound command to determine the terminal width when printing selection
lists. Automatically set if the checkwinsize option is enabled or in an interactive shell upon
receipt of a SIGWINCH.

COMPREPLY
An array variable from which bash reads the possible completions generated by a shell function
invoked by the programmable completion facility (see Programmable Completion below). Each
array element contains one possible completion.

EMACS
If bash finds this variable in the environment when the shell starts with value t, it assumes that the
shell is running in an Emacs shell buffer and disables line editing.

ENV Similar to BASH_ENYV; used when the shell is invoked in posix mode.

EXECIGNORE
A colon-separated list of shell patterns (see Pattern Matching) defining the list of filenames to be
ignored by command search using PATH. Files whose full pathnames match one of these patterns
are not considered executable files for the purposes of completion and command execution via
PATH lookup. This does not affect the behavior of the [, test, and [[commands. Full pathnames
in the command hash table are not subject to EXECIGNORE. Use this variable to ignore shared
library files that have the executable bit set, but are not executable files. The pattern matching
honors the setting of the extglob shell option.

FCEDIT
The default editor for the fc builtin command.

FIGNORE
A colon-separated list of suffixes to ignore when performing filename completion (see READLINE
below). A filename whose suffix matches one of the entries in FIGNORE is excluded from the list
of matched filenames. A sample valueis ".o:"".

FUNCNEST
If set to a numeric value greater than 0, defines a maximum function nesting level. Function invo-
cations that exceed this nesting level will cause the current command to abort.

GLOBIGNORE
A colon-separated list of patterns defining the set of file names to be ignored by pathname expan-
sion. If a file name matched by a pathname expansion pattern also matches one of the patterns in
GLOBIGNORE, it is removed from the list of matches.

HISTCONTROL
A colon-separated list of values controlling how commands are saved on the history list. If the list
of values includes ignorespace, lines which begin with a space character are not saved in the his-
tory list. A value of ignoredups causes lines matching the previous history entry to not be saved.
A value of ignoreboth is shorthand for ignorespace and ignoredups. A value of erasedups causes
all previous lines matching the current line to be removed from the history list before that line is
saved. Any value not in the above list is ignored. If HISTCONTROL is unset, or does not include
a valid value, all lines read by the shell parser are saved on the history list, subject to the value of
HISTIGNORE. The second and subsequent lines of a multi-line compound command are not

GNU Bash 5.0 2018 October 22 15

BASH(1) General Commands Manual BASH(1)

tested, and are added to the history regardless of the value of HISTCONTROL.

HISTFILE
The name of the file in which command history is saved (see HISTORY below). The default value
is 7.bash_history. If unset, the command history is not saved when a shell exits.

HISTFILESIZE
The maximum number of lines contained in the history file. When this variable is assigned a
value, the history file is truncated, if necessary, to contain no more than that number of lines by
removing the oldest entries. The history file is also truncated to this size after writing it when a
shell exits. If the value is O, the history file is truncated to zero size. Non-numeric values and
numeric values less than zero inhibit truncation. The shell sets the default value to the value of
HISTSIZE after reading any startup files.

HISTIGNORE
A colon-separated list of patterns used to decide which command lines should be saved on the his-
tory list. Each pattern is anchored at the beginning of the line and must match the complete line
(no implicit “*’ is appended). Each pattern is tested against the line after the checks specified by
HISTCONTROL are applied. In addition to the normal shell pattern matching characters, ‘&’
matches the previous history line. ‘&’ may be escaped using a backslash; the backslash is
removed before attempting a match. The second and subsequent lines of a multi-line compound
command are not tested, and are added to the history regardless of the value of HISTIGNORE.
The pattern matching honors the setting of the extglob shell option.

HISTSIZE
The number of commands to remember in the command history (see HISTORY below). If the
value is 0, commands are not saved in the history list. Numeric values less than zero result in
every command being saved on the history list (there is no limit). The shell sets the default value
to 500 after reading any startup files.

HISTTIMEFORMAT
If this variable is set and not null, its value is used as a format string for strftime(3) to print the
time stamp associated with each history entry displayed by the history builtin. If this variable is
set, time stamps are written to the history file so they may be preserved across shell sessions. This
uses the history comment character to distinguish timestamps from other history lines.

HOME
The home directory of the current user; the default argument for the ed builtin command. The
value of this variable is also used when performing tilde expansion.

HOSTFILE
Contains the name of a file in the same format as /etc/hosts that should be read when the shell
needs to complete a hostname. The list of possible hostname completions may be changed while
the shell is running; the next time hostname completion is attempted after the value is changed,
bash adds the contents of the new file to the existing list. If HOSTFILE is set, but has no value, or
does not name a readable file, bash attempts to read /etc/hosts to obtain the list of possible host-
name completions. When HOSTFILE is unset, the hostname list is cleared.

IFS The Internal Field Separator that is used for word splitting after expansion and to split lines into
words with the read builtin command. The default value is ““<space><tab><newline>".
IGNOREEOF

Controls the action of an interactive shell on receipt of an EOF character as the sole input. If set,
the value is the number of consecutive EOF characters which must be typed as the first characters
on an input line before bash exits. If the variable exists but does not have a numeric value, or has
no value, the default value is 10. If it does not exist, EOF signifies the end of input to the shell.
INPUTRC
The filename for the readline startup file, overriding the default of 7.inputrc (see READLINE
below).
INSIDE_EMACS
If this variable appears in the environment when the shell starts, bash assumes that it is running
inside an Emacs shell buffer and may disable line editing, depending on the value of TERM.

GNU Bash 5.0 2018 October 22 16

BASH(1) General Commands Manual BASH(1)

LANG Used to determine the locale category for any category not specifically selected with a variable
starting with LC_.

LC_ALL
This variable overrides the value of LANG and any other LC_ variable specifying a locale cate-
gory.

LC_COLLATE
This variable determines the collation order used when sorting the results of pathname expansion,
and determines the behavior of range expressions, equivalence classes, and collating sequences
within pathname expansion and pattern matching.

LC_CTYPE
This variable determines the interpretation of characters and the behavior of character classes
within pathname expansion and pattern matching.

LC_MESSAGES
This variable determines the locale used to translate double-quoted strings preceded by a $.

LC_NUMERIC
This variable determines the locale category used for number formatting.

LC_TIME
This variable determines the locale category used for data and time formatting.

LINES Used by the select compound command to determine the column length for printing selection lists.
Automatically set if the checkwinsize option is enabled or in an interactive shell upon receipt of a
SIGWINCH.

MAIL If this parameter is set to a file or directory name and the MAILPATH variable is not set, bash
informs the user of the arrival of mail in the specified file or Maildir-format directory.

MAILCHECK
Specifies how often (in seconds) bash checks for mail. The default is 60 seconds. When it is time
to check for mail, the shell does so before displaying the primary prompt. If this variable is unset,
or set to a value that is not a number greater than or equal to zero, the shell disables mail checking.

MAILPATH
A colon-separated list of filenames to be checked for mail. The message to be printed when mail
arrives in a particular file may be specified by separating the filename from the message with a ‘?’.
When used in the text of the message, $_ expands to the name of the current mailfile. Example:
MAILPATH='"/var/mail/bfox?"You have mail":"/shell-mail?"$_ has mail!"

Bash can be configured to supply a default value for this variable (there is no value by default), but
the location of the user mail files that it uses is system dependent (e.g., /var/mail/$USER).

OPTERR
If set to the value 1, bash displays error messages generated by the getopts builtin command (see
SHELL BUILTIN COMMANDS below). OPTERR is initialized to 1 each time the shell is invoked
or a shell script is executed.

PATH The search path for commands. It is a colon-separated list of directories in which the shell looks
for commands (see COMMAND EXECUTION below). A zero-length (null) directory name in the
value of PATH indicates the current directory. A null directory name may appear as two adjacent
colons, or as an initial or trailing colon. The default path is system-dependent, and is set by the
administrator who installs bash. A common value is
/usr/local/bin:/usr/local/sbin:/usr/bin:/usr/sbin:/bin:/sbin.

POSIXLY_CORRECT
If this variable is in the environment when bash starts, the shell enters posix mode before reading
the startup files, as if the ——posix invocation option had been supplied. If it is set while the shell is
running, bash enables posix mode, as if the command set -o posix had been executed.
When the shell enters posix mode, it sets this variable if it was not already set.

PROMPT_COMMAND
If set, the value is executed as a command prior to issuing each primary prompt.

PROMPT_DIRTRIM
If set to a number greater than zero, the value is used as the number of trailing directory compo-
nents to retain when expanding the \w and \W prompt string escapes (see PROMPTING below).

GNU Bash 5.0 2018 October 22 17

BASH(1)

General Commands Manual BASH(1)

Characters removed are replaced with an ellipsis.

PSO The value of this parameter is expanded (see PROMPTING below) and displayed by interactive
shells after reading a command and before the command is executed.

PS1 The value of this parameter is expanded (see PROMPTING below) and used as the primary prompt
string. The default value is “\s—\W\$ ”.

PS2 The value of this parameter is expanded as with PS1 and used as the secondary prompt string. The
default is “> .

PS3 The value of this parameter is used as the prompt for the select command (see SHELL GRAM-
MAR above).

PS4 The value of this parameter is expanded as with PS1 and the value is printed before each command
bash displays during an execution trace. The first character of the expanded value of PS4 is repli-
cated multiple times, as necessary, to indicate multiple levels of indirection. The default is “+ .

SHELL
The full pathname to the shell is kept in this environment variable. If it is not set when the shell
starts, bash assigns to it the full pathname of the current user’s login shell.

TIMEFORMAT
The value of this parameter is used as a format string specifying how the timing information for
pipelines prefixed with the time reserved word should be displayed. The % character introduces
an escape sequence that is expanded to a time value or other information. The escape sequences
and their meanings are as follows; the braces denote optional portions.
Y0 Yo A literal %.
%[pll1]JR The elapsed time in seconds.
%[pl[1JU The number of CPU seconds spent in user mode.
%[pll1]S The number of CPU seconds spent in system mode.
%P The CPU percentage, computed as (%U + %S) / %R.
The optional p is a digit specifying the precision, the number of fractional digits after a decimal
point. A value of 0 causes no decimal point or fraction to be output. At most three places after the
decimal point may be specified; values of p greater than 3 are changed to 3. If p is not specified,
the value 3 is used.
The optional 1 specifies a longer format, including minutes, of the form MMmSS.FFs. The value
of p determines whether or not the fraction is included.
If this variable is not set, bash acts as if it had the value
$"\nreal\t % 3IR\nuser\t % 31U\nsys\t %31S'. If the value is null, no timing information is dis-
played. A trailing newline is added when the format string is displayed.

TMOUT
If set to a value greater than zero, TMOUT is treated as the default timeout for the read builtin.
The select command terminates if input does not arrive after TMOUT seconds when input is com-
ing from a terminal. In an interactive shell, the value is interpreted as the number of seconds to
wait for a line of input after issuing the primary prompt. Bash terminates after waiting for that
number of seconds if a complete line of input does not arrive.

TMPDIR

If set, bash uses its value as the name of a directory in which bash creates temporary files for the
shell’s use.

auto_resume

GNU Bash 5.0

This variable controls how the shell interacts with the user and job control. If this variable is set,
single word simple commands without redirections are treated as candidates for resumption of an
existing stopped job. There is no ambiguity allowed; if there is more than one job beginning with
the string typed, the job most recently accessed is selected. The name of a stopped job, in this
context, is the command line used to start it. If set to the value exact, the string supplied must
match the name of a stopped job exactly; if set to substring, the string supplied needs to match a
substring of the name of a stopped job. The substring value provides functionality analogous to
the %? job identifier (see JOB CONTROL below). If set to any other value, the supplied string
must be a prefix of a stopped job’s name; this provides functionality analogous to the % string job

2018 October 22 18

BASH(1) General Commands Manual BASH(1)

identifier.
histchars

The two or three characters which control history expansion and tokenization (see HISTORY
EXPANSION below). The first character is the history expansion character, the character which
signals the start of a history expansion, normally ‘!’. The second character is the quick substitu-
tion character, which is used as shorthand for re-running the previous command entered, substitut-
ing one string for another in the command. The default is “~. The optional third character is the
character which indicates that the remainder of the line is a comment when found as the first char-
acter of a word, normally ‘#’. The history comment character causes history substitution to be
skipped for the remaining words on the line. It does not necessarily cause the shell parser to treat
the rest of the line as a comment.

Arrays
Bash provides one-dimensional indexed and associative array variables. Any variable may be used as an
indexed array; the declare builtin will explicitly declare an array. There is no maximum limit on the size of
an array, nor any requirement that members be indexed or assigned contiguously. Indexed arrays are refer-
enced using integers (including arithmetic expressions) and are zero-based; associative arrays are refer-
enced using arbitrary strings. Unless otherwise noted, indexed array indices must be non-negative integers.

An indexed array is created automatically if any variable is assigned to using the syntax name[sub-
script]l=value. The subscript is treated as an arithmetic expression that must evaluate to a number. To
explicitly declare an indexed array, use declare —a name (see SHELL BUILTIN COMMANDS below).
declare —a name[subscript] is also accepted; the subscript is ignored.

Associative arrays are created using declare —A name.

Attributes may be specified for an array variable using the declare and readonly builtins. Each attribute
applies to all members of an array.

Arrays are assigned to using compound assignments of the form name=(valuel ... valuen), where each
value is of the form [subscript]=string. Indexed array assignments do not require anything but string.
When assigning to indexed arrays, if the optional brackets and subscript are supplied, that index is assigned
to; otherwise the index of the element assigned is the last index assigned to by the statement plus one.
Indexing starts at zero.

When assigning to an associative array, the subscript is required.

This syntax is also accepted by the declare builtin. Individual array elements may be assigned to using the
name[subscript]=value syntax introduced above. When assigning to an indexed array, if name is sub-
scripted by a negative number, that number is interpreted as relative to one greater than the maximum index
of name, so negative indices count back from the end of the array, and an index of —1 references the last
element.

Any element of an array may be referenced using ${name[subscript]}. The braces are required to avoid
conflicts with pathname expansion. If subscript is @ or *, the word expands to all members of name.
These subscripts differ only when the word appears within double quotes. If the word is double-quoted,
${name[*]} expands to a single word with the value of each array member separated by the first character
of the IFS special variable, and ${name[@]} expands each element of name to a separate word. When
there are no array members, ${name[@]} expands to nothing. If the double-quoted expansion occurs
within a word, the expansion of the first parameter is joined with the beginning part of the original word,
and the expansion of the last parameter is joined with the last part of the original word. This is analogous
to the expansion of the special parameters * and @ (see Special Parameters above). ${#name[subscript]}
expands to the length of ${name[subscript]}. If subscript is * or @, the expansion is the number of ele-
ments in the array. If the subscript used to reference an element of an indexed array evaluates to a number
less than zero, it is interpreted as relative to one greater than the maximum index of the array, so negative
indices count back from the end of the array, and an index of —1 references the last element.

Referencing an array variable without a subscript is equivalent to referencing the array with a subscript of
0. Any reference to a variable using a valid subscript is legal, and bash will create an array if necessary.

GNU Bash 5.0 2018 October 22 19

BASH(1) General Commands Manual BASH(1)

An array variable is considered set if a subscript has been assigned a value. The null string is a valid value.

It is possible to obtain the keys (indices) of an array as well as the values. ${!name[@]} and ${!name[*]}
expand to the indices assigned in array variable name. The treatment when in double quotes is similar to
the expansion of the special parameters @ and * within double quotes.

The unset builtin is used to destroy arrays. unset name[subscript] destroys the array element at index sub-
script, for both indexed and associative arrays. Negative subscripts to indexed arrays are interpreted as
described above. Unsetting the last element of an array variable does not unset the variable. unset name,
where name is an array, or unset name[subscript], where subscript is * or @, removes the entire array.

When using a variable name with a subscript as an argument to a command, such as with unset, without
using the word expansion syntax described above, the argument is subject to pathname expansion. If path-
name expansion is not desired, the argument should be quoted.

The declare, local, and readonly builtins each accept a —a option to specify an indexed array and a —A
option to specify an associative array. If both options are supplied, —A takes precedence. The read builtin
accepts a —a option to assign a list of words read from the standard input to an array. The set and declare
builtins display array values in a way that allows them to be reused as assignments.

EXPANSION
Expansion is performed on the command line after it has been split into words. There are seven kinds of
expansion performed: brace expansion, tilde expansion, parameter and variable expansion, command sub-
stitution, arithmetic expansion, word splitting, and pathname expansion.

The order of expansions is: brace expansion; tilde expansion, parameter and variable expansion, arithmetic
expansion, and command substitution (done in a left-to-right fashion); word splitting; and pathname expan-
sion.

On systems that can support it, there is an additional expansion available: process substitution. This is per-
formed at the same time as tilde, parameter, variable, and arithmetic expansion and command substitution.

After these expansions are performed, quote characters present in the original word are removed unless they
have been quoted themselves (quote removal).

Only brace expansion, word splitting, and pathname expansion can increase the number of words of the
expansion; other expansions expand a single word to a single word. The only exceptions to this are the
expansions of "$@" and "${name[@]}", and, in most cases, $* and ${name[*]} as explained above (see
PARAMETERS).

Brace Expansion
Brace expansion is a mechanism by which arbitrary strings may be generated. This mechanism is similar
to pathname expansion, but the filenames generated need not exist. Patterns to be brace expanded take the
form of an optional preamble, followed by either a series of comma-separated strings or a sequence expres-
sion between a pair of braces, followed by an optional postscript. The preamble is prefixed to each string
contained within the braces, and the postscript is then appended to each resulting string, expanding left to
right.

Brace expansions may be nested. The re