
The Parma Polyhedra Library
User’s Manual∗

(version 0.11)

Roberto Bagnara†

Patricia M. Hill‡

Enea Zaffanella§

based on previous work also by

Elisa Ricci

and

Sara Bonini
Andrea Pescetti
Angela Stazzone

Tatiana Zolo

August 2, 2010

∗This work has been partly supported by: University of Parma’s FIL scientific research project (ex 60%) “Pure and Applied Math-
ematics”; MURST project “Automatic Program Certification by Abstract Interpretation”; MURST project “Abstract Interpretation,
Type Systems and Control-Flow Analysis”; MURST project “Automatic Aggregate- and Number-Reasoning for Computing: from
Decision Algorithms to Constraint Programming with Multisets, Sets, and Maps”; MURST project “Constraint Based Verification
of Reactive Systems”; MURST project “Abstract Interpretation: Design and Applications”; EPSRC project “Numerical Domains for
Software Analysis”; EPSRC project “Geometric Abstractions for Scalable Program Analyzers”.
†bagnara@cs.unipr.it, Department of Mathematics, University of Parma, Italy.
‡hill@comp.leeds.ac.uk, School of Computing, University of Leeds, U.K.
§zaffanella@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

CONTENTS i

Copyright © 2001–2010 Roberto Bagnara (bagnara@cs.unipr.it).

This document describes the Parma Polyhedra Library (PPL).

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) any later version. A copy of the license is included in the section entitled “GNU GENERAL
PUBLIC LICENSE”.

The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

For the most up-to-date information see the Parma Polyhedra Library site:

http://www.cs.unipr.it/ppl/

Contents

1 General Information on the PPL 1

1.1 The Main Features . 1

1.2 Upward Approximation . 6

1.3 Approximating Integers . 6

1.4 Convex Polyhedra . 8

1.5 Representations of Convex Polyhedra . 9

1.6 Operations on Convex Polyhedra . 12

1.7 Intervals and Boxes . 19

1.8 Weakly-Relational Shapes . 20

1.9 Rational Grids . 21

1.10 Operations on Rational Grids . 24

1.11 The Powerset Construction . 27

1.12 Operations on the Powerset Construction . 27

1.13 The Pointset Powerset Domain . 28

1.14 Using the Library . 30

1.15 Bibliography . 31

2 GNU General Public License 39

3 GNU Free Documentation License 48

4 Module Index 53

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.fsf.org
http://www.fsf.org
http://www.cs.unipr.it/ppl/
http://www.cs.unipr.it/ppl/

CONTENTS ii

4.1 Modules . 53

5 Namespace Index 54

5.1 Namespace List . 54

6 Class Index 54

6.1 Class Hierarchy . 54

7 Class Index 56

7.1 Class List . 56

8 Module Documentation 59

8.1 C++ Language Interface . 59

9 Namespace Documentation 69

9.1 Parma_Polyhedra_Library Namespace Reference . 69

9.2 Parma_Polyhedra_Library::IO_Operators Namespace Reference 86

9.3 std Namespace Reference . 87

10 Class Documentation 87

10.1 Parma_Polyhedra_Library::PIP_Tree_Node::Artificial_Parameter Class Reference 87

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 89

10.3 Parma_Polyhedra_Library::BHRZ03_Certificate Class Reference 125

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 126

10.5 Parma_Polyhedra_Library::C_Polyhedron Class Reference 161

10.6 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference . . 167

10.7 Parma_Polyhedra_Library::Variable::Compare Struct Reference 184

10.8 Parma_Polyhedra_Library::BHRZ03_Certificate::Compare Struct Reference 184

10.9 Parma_Polyhedra_Library::H79_Certificate::Compare Struct Reference 185

10.10Parma_Polyhedra_Library::Grid_Certificate::Compare Struct Reference 185

10.11Parma_Polyhedra_Library::Congruence Class Reference 186

10.12Parma_Polyhedra_Library::Congruence_System Class Reference 193

10.13Parma_Polyhedra_Library::Congruences_Reduction< D1, D2 > Class Template Reference 198

10.14Parma_Polyhedra_Library::Constraint_System::const_iterator Class Reference 200

10.15Parma_Polyhedra_Library::Generator_System::const_iterator Class Reference 201

10.16Parma_Polyhedra_Library::Congruence_System::const_iterator Class Reference 202

10.17Parma_Polyhedra_Library::Grid_Generator_System::const_iterator Class Reference . . . 203

10.18Parma_Polyhedra_Library::Constraint Class Reference 204

10.19Parma_Polyhedra_Library::Constraint_System Class Reference 214

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

CONTENTS iii

10.20Parma_Polyhedra_Library::Constraints_Reduction< D1, D2 > Class Template Reference 218

10.21Parma_Polyhedra_Library::Determinate< PSET > Class Template Reference 219

10.22Parma_Polyhedra_Library::Domain_Product< D1, D2 > Class Template Reference 222

10.23Parma_Polyhedra_Library::Generator Class Reference 222

10.24Parma_Polyhedra_Library::Generator_System Class Reference 234

10.25Parma_Polyhedra_Library::GMP_Integer Class Reference 238

10.26Parma_Polyhedra_Library::Grid Class Reference . 242

10.27Parma_Polyhedra_Library::Grid_Certificate Class Reference 278

10.28Parma_Polyhedra_Library::Grid_Generator Class Reference 279

10.29Parma_Polyhedra_Library::Grid_Generator_System Class Reference 286

10.30Parma_Polyhedra_Library::H79_Certificate Class Reference 292

10.31Parma_Polyhedra_Library::Interval< Boundary, Info > Class Template Reference 293

10.32Parma_Polyhedra_Library::Is_Checked< T > Struct Template Reference 297

10.33Parma_Polyhedra_Library::Is_Checked< Checked_Number< T, P > > Struct Template
Reference . 297

10.34Parma_Polyhedra_Library::Is_Native_Or_Checked< T > Struct Template Reference . . . 298

10.35Parma_Polyhedra_Library::Linear_Expression Class Reference 298

10.36Parma_Polyhedra_Library::MIP_Problem Class Reference 307

10.37Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 316

10.38Parma_Polyhedra_Library::PIP_Solution_Node::No_Constraints Struct Reference 322

10.39Parma_Polyhedra_Library::No_Reduction< D1, D2 > Class Template Reference 322

10.40Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 323

10.41Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference . 357

10.42Parma_Polyhedra_Library::PIP_Decision_Node Class Reference 387

10.43Parma_Polyhedra_Library::PIP_Problem Class Reference 389

10.44Parma_Polyhedra_Library::PIP_Solution_Node Class Reference 402

10.45Parma_Polyhedra_Library::PIP_Tree_Node Class Reference 405

10.46Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 411

10.47Parma_Polyhedra_Library::Poly_Con_Relation Class Reference 439

10.48Parma_Polyhedra_Library::Poly_Gen_Relation Class Reference 441

10.49Parma_Polyhedra_Library::Polyhedron Class Reference 443

10.50Parma_Polyhedra_Library::Powerset< D > Class Template Reference 477

10.51Parma_Polyhedra_Library::Recycle_Input Struct Reference 484

10.52Parma_Polyhedra_Library::Shape_Preserving_Reduction<D1, D2> Class Template Ref-
erence . 485

10.53Parma_Polyhedra_Library::Smash_Reduction< D1, D2 > Class Template Reference . . . 486

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1 General Information on the PPL 1

10.54Parma_Polyhedra_Library::Throwable Class Reference 487

10.55Parma_Polyhedra_Library::Variable Class Reference . 487

10.56Parma_Polyhedra_Library::Variables_Set Class Reference 490

1 General Information on the PPL

1.1 The Main Features

The Parma Polyhedra Library (PPL) is a modern C++ library for the manipulation of numerical information
that can be represented by points in some n-dimensional vector space. For instance, one of the key domains
the PPL supports is that of rational convex polyhedra (Section Convex Polyhedra). Such domains are
employed in several systems for the analysis and verification of hardware and software components, with
applications spanning imperative, functional and logic programming languages, synchronous languages
and synchronization protocols, real-time and hybrid systems. Even though the PPL library is not meant
to target a particular problem, the design of its interface has been largely influenced by the needs of the
above class of applications. That is the reason why the library implements a few operators that are more or
less specific to static analysis applications, while lacking some other operators that might be useful when
working, e.g., in the field of computational geometry.

The main features of the library are the following:

• it is user friendly: you write x + 2∗y + 5∗z <= 7 when you mean it;

• it is fully dynamic: available virtual memory is the only limitation to the dimension of anything;

• it provides full support for the manipulation of convex polyhedra that are not topologically closed;

• it is written in standard C++: meant to be portable;

• it is exception-safe: never leaks resources or leaves invalid object fragments around;

• it is rather efficient: and we hope to make it even more so;

• it is thoroughly documented: perhaps not literate programming but close enough;

• it has interfaces to other programming languages: including C, Java, OCaml and a number of Prolog
systems;

• it is free software: distributed under the terms of the GNU General Public License.

In the following section we describe all the domains available to the PPL user. More detailed descriptions
of these domains and the operations provided will be found in subsequent sections.

In the final section of this chapter (Section Using the Library), we provide some additional advice on the
use of the library.

1.1.1 Semantic Geometric Descriptors

A semantic geometric descriptor is a subset of Rn. The PPL provides several classes of semantic GDs.
These are identified by their C++ class name, together with the class template parameters, if any. These
classes include the simple classes:

• C_Polyhedron ,

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.1 The Main Features 2

• NNC_Polyhedron ,

• BD_Shape<T> ,

• Octagonal_Shape<T> ,

• Box<ITV> , and

• Grid ,

where:

• T is a numeric type chosen among mpz_class, mpq_class, signed char, short, int,
long, long long (or any of the C99 exact width integer equivalents int8_t, int16_t, and so
forth); and

• ITV is an instance of the Interval template class.

Other semantic GDs, the compound classes, can be constructed (also recursively) from all the GDs classes.
These include:

• Pointset_Powerset<PS> ,

• Partially_Reduced_Product<D1, D2, R> ,

where PS, D1 and D2 can be any semantic GD classes and R is the reduction operation to be applied to the
component domains of the product class.

A uniform set of operations is provided for creating, testing and maintaining each of the semantic GDs.
However, as many of these depend on one or more syntactic GDs, we first describe the syntactic GDs.

1.1.2 Syntactic Geometric Descriptors

A syntactic geometric descriptor is for defining, modifying and inspecting a semantic GD. There are three
kinds of syntactic GDs: basic GDs, constraint GDs and generator GDs. Some of these are generic and
some specific. A generic syntactic GD can be used (in the appropriate context) with any semantic GD;
clearly, different semantic GDs will usually provide different levels of support for the different subclasses
of generic GDs. In contrast, the use of a specific GD may be restricted to apply to a given subset of the
semantic GDs (i.e., some semantic GDs provide no support at all for them).

1.1.2.1 Basic Geometric Descriptors

The following basic GDs currently supported by the PPL are:

• space dimension;

• variable and variable set;

• coefficient;

• linear expression;

• relation symbol;

• vector point.

These classes, which are all generic syntactic GDs, are used to build the constraint and generator GDs as
well as support many generic operations on the semantic GDs.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.1 The Main Features 3

1.1.2.2 Constraint Geometric Descriptors

The PPL currently supports the following classes of generic constraint GDs:

• linear constraint;

• linear congruence.

Each linear constraint can be further classified to belong to one or more of the following syntactic sub-
classes:

• inconsistent constraints (e.g., 0 ≥ 2);

• tautological constraints (e.g., 0 ≤ 2);

• interval constraints (e.g., x ≤ 2);

• bounded-difference constraints (e.g., x− y ≤ 2);

• octagonal constraints (e.g., x+ y ≤ 2);

• linear equality constraints (e.g., x = 2);

• non-strict linear inequality constraints (e.g., x− 3y ≤ 2);

• strict linear inequality constraints (e.g., x− 3y < 2).

Note that the subclasses are not disjoint.

Similarly, each linear congruence can be classified to belong to one or more of the following syntactic
subclasses:

• inconsistent congruences (e.g., 0 ≡2 1);

• tautological congruences (e.g., 0 ≡2 2);

• linear equality, i.e., non-proper congruences (e.g., x+ 3y ≡0 0);

• proper congruences (e.g., x+ 3y ≡5 0).

The library also supports systems, i.e., finite collections, of either linear constraints or linear congruences
(but see the note below).

Each semantic GD provides optimal support for some of the subclasses of generic syntactic GDs listed
above: here, the word "optimal" means that the considered semantic GD computes the best upward ap-
proximation of the exact meaning of the linear constraint or congruence. When a semantic GD operation
is applied to a syntactic GD that is not optimally supported, it will either indicate its unsuitability (e.g., by
throwing an exception) or it will apply an upward approximation semantics (possibly not the best one).

For instance, the semantic GD of topologically closed convex polyhedra provides optimal support for
non-strict linear inequality and equality constraints, but it does not provide optimal support for strict in-
equalities. Some of its operations (e.g., add_constraint and add_congruence) will throw an
exception if supplied with a non-trivial strict inequality constraint or a proper congruence; some other
operations (e.g., refine_with_constraint or refine_with_congruence) will compute an
over-approximation.

Similarly, the semantic GD of rational boxes (i.e., multi-dimensional intervals) having integral values as
interval boundaries provides optimal support for all interval constraints: even though the interval constraint
2x ≤ 5 cannot be represented exactly, it will be optimally approximated by the constraint x ≤ 3.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.1 The Main Features 4

Note

When providing an upward approximation for a constraint or congruence, we consider it in isolation:
in particular, the approximation of each element of a system of GDs is independent from the other
elements; also, the approximation is independent from the current value of the semantic GD.

1.1.2.3 Generator Geometric Descriptors

The PPL currently supports two classes of generator GDs:

• polyhedra generator: these are polyhedra points, rays and lines;

• grid generator: these are grid points, parameters and lines.

Rays, lines and parameters are specific of the mentioned semantic GDs and, therefore, they cannot be used
by other semantic GDs. In contrast, as already mentioned above, points are basic geometric descriptors
since they are also used in generic PPL operations.

1.1.3 Generic Operations on Semantic Geometric Descriptors

1. Constructors of a universe or empty semantic GD with the given space dimension.

2. Operations on a semantic GD that do not depend on the syntactic GDs.

• is_empty(), is_universe(), is_topologically_closed(), is_-
discrete(), is_bounded(), contains_integer_point()
test for the named properties of the semantic GD.

• total_memory_in_bytes(), external_memory_in_bytes()
return the total and external memory size in bytes.

• OK()

checks that the semantic GD has a valid internal representation. (Some GDs provide this
method with an optional Boolean argument that, when true, requires to also check for non-
emptiness.)

• space_dimension(), affine_dimension()
return, respectively, the space and affine dimensions of the GD.

• add_space_dimensions_and_embed(), add_space_dimensions_and_-
project(), expand_space_dimension(), remove_space_dimensions(),
fold_space_dimensions(), map_space_dimensions()
modify the space dimensions of the semantic GD; where, depending on the operation, the
arguments can include the number of space dimensions to be added or removed a variable or
set of variables denoting the actual dimensions to be used and a partial function defining a
mapping between the dimensions.

• contains(), strictly_contains(), is_disjoint_from()
compare the semantic GD with an argument semantic GD of the same class.

• topological_closure_assign(), intersection_assign(), upper_-
bound_assign(), difference_assign(), time_elapse_assign(),
widening_assign(), concatenate_assign(), swap()
modify the semantic GD, possibly with an argument semantic GD of the same class.

• constrains(), bounds_from_above(), bounds_from_below(), maximize(),
minimize().
These find information about the bounds of the semantic GD where the argument variable or
linear expression define the direction of the bound.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.1 The Main Features 5

• affine_image(), affine_preimage(), generalized_affine_image(),
generalized_affine_preimage(), bounded_affine_image(), bounded_-
affine_preimage().
These perform several variations of the affine image and preimage operations where, depending
on the operation, the arguments can include a variable representing the space dimension to
which the transformation will be applied and linear expressions with possibly a relation symbol
and denominator value that define the exact form of the transformation.

• ascii_load(), ascii_dump()
are the ascii input and output operations.

3. Constructors of a semantic GD of one class from a semantic GD of any other class. These con-
structors obey an upward approximation semantics, meaning that the constructed semantic GD is
guaranteed to contain all the points of the source semantic GD, but possibly more. Some of these
constructors provide a complexity parameter with which the application can control the complex-
ity/precision trade-off for the construction operation: by using the complexity parameter, it is pos-
sible to keep the construction operation in the polynomial or the simplex worst-case complexity
class, possibly incurring into a further upward approximation if the precise constructor is based on
an algorithm having exponential complexity.

4. Constructors of a semantic GD from a constraint GD; either a linear constraint system or a linear
congruence system. These constructors assume that the given semantic GD provides optimal support
for the argument syntactic GD: if that is not the case, an invalid argument exception is thrown.

5. Other interaction between the semantic GDs and constraint GDs.

• add_constraint(), add_constraints(), add_recycled_constraints(),
add_congruence(), add_congruences(), add_recycled_congruences().
These methods assume that the given semantic GD provides optimal support for the argument
syntactic GD: if that is not the case, an invalid argument exception is thrown.
For add_recycled_constraints() and add_recycled_congruences(), the
only assumption that can be made on the constraint GD after return (successful or exceptional)
is that it can be safely destroyed.

• refine_with_constraint(), refine_with_constraints(), refine_-
with_congruence(), refine_with_congruences().
If the argument constraint GD is optimally supported by the semantic GD, the methods behave
the same as the corresponding add_∗ methods listed above. Otherwise the constraint GD is
used only to a limited extent to refine the semantic GD; possibly not at all. Notice that, while
repeating an add operation is pointless, this is not true for the refine operations. For example,
in those cases where

Semantic_GD.add_constraint(c)

raises an exception, a fragment of the form

Semantic_GD.refine_with_constraint(c)
// Other add_constraint(s) or refine_with_constraint(s) operations
// on Semantic_GD.
Semantic_GD.refine_with_constraint(c)

may give more precise results than a single

Semantic_GD.refine_with_constraint(c).
// Other add_constraint(s) or refine_with_constraint(s) operations
// on Semantic_GD.

• constraints(), minimized_constraints(), congruences(), minimized_-
congruences().
Returns the indicated system of constraint GDs satisfied by the semantic GD.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.2 Upward Approximation 6

• can_recycle_constraint_systems(), can_recycle_congruence_-
systems().
Return true if and only if the semantic GD can recycle the indicated constraint GD.

• relation_with().
This takes a constraint GD as an argument and returns the relations holding between the seman-
tic GD and the constraint GD. The possible relations are: IS_INCLUDED(), SATURATES(),
STRICTLY_INTERSECTS(), IS_DISJOINT() and NOTHING(). This operator also can
take a polyhedron generator GD as an argument and returns the relation SUBSUMES() or
NOTHING() that holds between the generator GD and the semantic GD.

1.2 Upward Approximation

The Parma Polyhedra Library, for those cases where an exact result cannot be computed within the specified
complexity limits, computes an upward approximation of the exact result. For semantic GDs this means
that the computed result is a possibly strict superset of the set of points of Rn that constitutes the exact
result. Notice that the PPL does not provide direct support to compute downward approximations (i.e.,
possibly strict subsets of the exact results). While downward approximations can often be computed from
upward ones, the required algorithms and the conditions upon which they are correct are outside the current
scope of the PPL. Beware, in particular, of the following possible pitfall: the library provides methods
to compute upward approximations of set-theoretic difference, which is antitone in its second argument.
Applying a difference method to a second argument that is not an exact representation or a downward
approximation of reality, would yield a result that, of course, is not an upward approximation of reality. It
is the responsibility of the library user to provide the PPL’s method with approximations of reality that are
consistent with respect to the desired results.

1.3 Approximating Integers

The Parma Polyhedra Library provides support for approximating integer computations using the geometric
descriptors it provides. In this section we briefly explain these facilities.

1.3.1 Dropping Non-Integer Points

When a geometric descriptor is used to approximate integer quantities, all the points with non-integral
coordinates represent an imprecision of the description. Of course, removing all these points may be
impossible (because of convexity) or too expensive. The PPL provides the operator drop_some_non_-
integer_points to possibly tighten a descriptor by dropping some points with non-integer coordinates,
using algorithms whose complexity is bounded by a parameter. The set of dimensions that represent integer
quantities can be optionally specified. It is worth to stress the role of some in the operator name: in general
no optimality guarantee is provided.

1.3.2 Approximating Bounded Integers

The Parma Polyhedra Library provides services that allow to compute correct approximations of bounded
arithmetic as available in widespread programming languages. Supported bit-widths are 8, 16, 32 and
64 bits, with some limited support for 128 bits. Supported representations are binary unsigned and two’s
complement signed. Supported overflow behaviors are:

Wrapping: this means that, for a w-bit bounded integer, the computation happens modulo 2w. In turn,
this signifies that the computation happens as if the unbounded arithmetic result was computed and

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Approximating Integers 7

then wrapped. For unsigned integers, the wrapping function is simply x mod 2w, most conveniently
defined as

wrapu
w(x) def= x− 2wbx/2wc.

For signed integers the wrapping function is, instead,

wraps
w(x) def=

{
wrapu

w(x), if wrapu
w(x) < 2w−1;

wrapu
w(x)− 2w, otherwise.

Undefined: this means that the result of the operation resulting in an overflow can take any value. This
is useful to partially model systems where overflow has unspecified effects on the computed result.
Even though something more serious can happen in the system being analyzed ---due to, e.g., C’s
undefined behavior---, here we are only concerned with the results of arithmetic operations. It is the
responsibility of the analyzer to ensure that other manifestations of undefined behavior are conser-
vatively approximated.

Impossible: this is for the analysis of languages where overflow is trapped before it affects the state, for
which, thus, any indication that an overflow may have affected the state is necessarily due to the
imprecision of the analysis.

1.3.2.1 Wrapping Operator

One possibility for precisely approximating the semantics of programs that operate on bounded integer
variables is to follow the approach described in [SK07]. The idea is to associate space dimensions to the
unwrapped values of bounded variables. Suppose j is a w-bit, unsigned program variable associated to
a space dimension labeled by the variable x. If x is constrained by some numerical abstraction to take
values in a set S ⊆ R, then the program variable j can only take values in

{
wrapu

w(z)
∣∣ z ∈ S }. There

are two reasons why this is interesting: firstly, this allows for the retention of relational information by
using a single numerical abstraction tracking multiple program variables. Secondly, the integers modulo
2w form a ring of equivalence classes on which addition and multiplication are well defined. This means,
e.g., that assignments with affine right-hand sides and involving only variables with the same bit-width and
representation can be safely modeled by affine images. While upper bounds and widening can be used
without any precaution, anything that can be reconducted to intersection requires a preliminary wrapping
phase, where the dimensions corresponding to bounded integer types are brought back to their natural
domain. This necessity arises naturally for the analysis of conditionals and conversion operators, as well
as in the realization of domain combinations.

The PPL provides a general wrapping operator that is parametric with respect to the set of space dimensions
(variables) to be wrapped, the width, representation and overflow behavior of all these variables. An op-
tional constraint system can, when given, improve the precision. This constraint system, which must only
depend on variables with respect to which wrapping is performed, is assumed to represent the conditional
or looping construct guard with respect to which wrapping is performed. Since wrapping requires the com-
putation of upper bounds and due to non-distributivity of constraint refinement over upper bounds, passing
a constraint system in this way can be more precise than refining the result of the wrapping operation after-
wards. The general wrapping operator offered by the PPL also allows control of the complexity/precision
ratio by means of two additional parameters: an unsigned integer encoding a complexity threshold, with
higher values resulting in possibly improved precision; and a Boolean controlling whether space dimen-
sions should be wrapped individually, something that results in much greater efficiency to the detriment of
precision, or collectively.

Note that the PPL assumes that any space dimension subject to wrapping is being used to capture the
value of bounded integer values. As a consequence the library is free to drop, from the involved numerical
abstraction, any point having a non-integer coordinate that corresponds to a space dimension subject to
wrapping. It must be stressed that freedom to drop such points does not constitute an obligation to remove

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Convex Polyhedra 8

all of them (especially because this would be extraordinarily expensive on some numerical abstractions).
The PPL provides operators for the more systematic removal of points with non-integral coordinates.

The wrapping operator will only remove some of these points as a by-product of its main task and only
when this comes at a negligible extra cost.

1.4 Convex Polyhedra

In this section we introduce convex polyhedra, as considered by the library, in more detail. For more
information about the definitions and results stated here see [BRZH02b], [Fuk98], [NW88], and [Wil93].

1.4.1 Vectors, Matrices and Scalar Products

We denote by Rn the n-dimensional vector space on the field of real numbers R, endowed with the standard
topology. The set of all non-negative reals is denoted by R+. For each i ∈ {0, . . . , n − 1}, vi denotes the
i-th component of the (column) vector v = (v0, . . . , vn−1)T ∈ Rn. We denote by 0 the vector of Rn,
called the origin, having all components equal to zero. A vector v ∈ Rn can be also interpreted as a matrix
in Rn×1 and manipulated accordingly using the usual definitions for addition, multiplication (both by a
scalar and by another matrix), and transposition, denoted by vT.

The scalar product of v,w ∈ Rn, denoted 〈v,w〉, is the real number

vTw =
n−1∑
i=0

viwi.

For any S1, S2 ⊆ Rn, the Minkowski’s sum of S1 and S2 is: S1 + S2 = {v1 + v2 | v1 ∈ S1,v2 ∈ S2 }.

1.4.2 Affine Hyperplanes and Half-spaces

For each vector a ∈ Rn and scalar b ∈ R, where a 6= 0, and for each relation symbol ./ ∈ {=,≥, >}, the
linear constraint 〈a,x〉 ./ b defines:

• an affine hyperplane if it is an equality constraint, i.e., if ./ ∈ {=};

• a topologically closed affine half-space if it is a non-strict inequality constraint, i.e., if ./ ∈ {≥};

• a topologically open affine half-space if it is a strict inequality constraint, i.e., if ./ ∈ {>}.

Note that each hyperplane 〈a,x〉 = b can be defined as the intersection of the two closed affine half-spaces
〈a,x〉 ≥ b and 〈−a,x〉 ≥ −b. Also note that, when a = 0, the constraint 〈0,x〉 ./ b is either a tautology
(i.e., always true) or inconsistent (i.e., always false), so that it defines either the whole vector space Rn or
the empty set ∅.

1.4.3 Convex Polyhedra

The set P ⊆ Rn is a not necessarily closed convex polyhedron (NNC polyhedron, for short) if and only if
either P can be expressed as the intersection of a finite number of (open or closed) affine half-spaces of Rn
or n = 0 and P = ∅. The set of all NNC polyhedra on the vector space Rn is denoted Pn.

The set P ∈ Pn is a closed convex polyhedron (closed polyhedron, for short) if and only if either P can be
expressed as the intersection of a finite number of closed affine half-spaces of Rn or n = 0 and P = ∅.
The set of all closed polyhedra on the vector space Rn is denoted CPn.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.5 Representations of Convex Polyhedra 9

When ordering NNC polyhedra by the set inclusion relation, the empty set ∅ and the vector space Rn are,
respectively, the smallest and the biggest elements of both Pn and CPn. The vector space Rn is also called
the universe polyhedron.

In theoretical terms, Pn is a lattice under set inclusion and CPn is a sub-lattice of Pn.

Note

In the following, we will usually specify operators on the domain Pn of NNC polyhedra. Unless an
explicit distinction is made, these operators are provided with the same specification when applied to
the domain CPn of topologically closed polyhedra. The implementation maintains a clearer separation
between the two domains of polyhedra (see Topologies and Topological-compatibility): while com-
puting polyhedra in Pn may provide more precise results, polyhedra in CPn can be represented and
manipulated more efficiently. As a rule of thumb, if your application will only manipulate polyhedra
that are topologically closed, then it should use the simpler domain CPn. Using NNC polyhedra is
only recommended if you are going to actually benefit from the increased accuracy.

1.4.4 Bounded Polyhedra

An NNC polyhedron P ∈ Pn is bounded if there exists a λ ∈ R+ such that:

P ⊆
{

x ∈ Rn
∣∣ −λ ≤ xj ≤ λ for j = 0, . . . , n− 1

}
.

A bounded polyhedron is also called a polytope.

1.5 Representations of Convex Polyhedra

NNC polyhedra can be specified by using two possible representations, the constraints (or implicit) repre-
sentation and the generators (or parametric) representation.

1.5.1 Constraints Representation

In the sequel, we will simply write “equality” and “inequality” to mean “linear equality” and “linear in-
equality”, respectively; also, we will refer to either an equality or an inequality as a constraint.

By definition, each polyhedron P ∈ Pn is the set of solutions to a constraint system, i.e., a finite number
of constraints. By using matrix notation, we have

P def= {x ∈ Rn | A1x = b1, A2x ≥ b2, A3x > b3 },

where, for all i ∈ {1, 2, 3}, Ai ∈ Rmi × Rn and bi ∈ Rmi , and m1,m2,m3 ∈ N are the number of
equalities, the number of non-strict inequalities, and the number of strict inequalities, respectively.

1.5.2 Combinations and Hulls

Let S = {x1, . . . ,xk} ⊆ Rn be a finite set of vectors. For all scalars λ1, . . . , λk ∈ R, the vector
v =

∑k
j=1 λjxj is said to be a linear combination of the vectors in S. Such a combination is said to be

• a positive (or conic) combination, if ∀j ∈ {1, . . . , k} : λj ∈ R+;

• an affine combination, if
∑k
j=1 λj = 1;

• a convex combination, if it is both positive and affine.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.5 Representations of Convex Polyhedra 10

We denote by linear.hull(S) (resp., conic.hull(S), affine.hull(S), convex.hull(S)) the set of all the linear
(resp., positive, affine, convex) combinations of the vectors in S.

Let P,C ⊆ Rn, where P ∪ C = S. We denote by nnc.hull(P,C) the set of all convex combinations of
the vectors in S such that λj > 0 for some xj ∈ P (informally, we say that there exists a vector of P that
plays an active role in the convex combination). Note that nnc.hull(P,C) = nnc.hull(P, P ∪ C) so that,
if C ⊆ P ,

convex.hull(P) = nnc.hull(P,∅) = nnc.hull(P, P) = nnc.hull(P,C).

It can be observed that linear.hull(S) is an affine space, conic.hull(S) is a topologically closed convex
cone, convex.hull(S) is a topologically closed polytope, and nnc.hull(P,C) is an NNC polytope.

1.5.3 Points, Closure Points, Rays and Lines

Let P ∈ Pn be an NNC polyhedron. Then

• a vector p ∈ P is called a point of P;

• a vector c ∈ Rn is called a closure point of P if it is a point of the topological closure of P;

• a vector r ∈ Rn, where r 6= 0, is called a ray (or direction of infinity) ofP ifP 6= ∅ and p+λr ∈ P ,
for all points p ∈ P and all λ ∈ R+;

• a vector l ∈ Rn is called a line of P if both l and −l are rays of P .

A point of an NNC polyhedron P ∈ Pn is a vertex if and only if it cannot be expressed as a convex
combination of any other pair of distinct points in P . A ray r of a polyhedron P is an extreme ray if and
only if it cannot be expressed as a positive combination of any other pair r1 and r2 of rays of P , where
r 6= λr1, r 6= λr2 and r1 6= λr2 for all λ ∈ R+ (i.e., rays differing by a positive scalar factor are
considered to be the same ray).

1.5.4 Generators Representation

Each NNC polyhedron P ∈ Pn can be represented by finite sets of lines L, rays R, points P and closure
points C of P . The 4-tuple G = (L,R, P,C) is said to be a generator system for P , in the sense that

P = linear.hull(L) + conic.hull(R) + nnc.hull(P,C),

where the symbol ’ +’ denotes the Minkowski’s sum.

When P ∈ CPn is a closed polyhedron, then it can be represented by finite sets of lines L, rays R and
points P of P . In this case, the 3-tuple G = (L,R, P) is said to be a generator system for P since we have

P = linear.hull(L) + conic.hull(R) + convex.hull(P).

Thus, in this case, every closure point of P is a point of P .

For any P ∈ Pn and generator system G = (L,R, P,C) for P , we have P = ∅ if and only if P = ∅. Also
P must contain all the vertices of P although P can be non-empty and have no vertices. In this case, as P is
necessarily non-empty, it must contain points of P that are not vertices. For instance, the half-space of R2

corresponding to the single constraint y ≥ 0 can be represented by the generator system G = (L,R, P,C)
such that L =

{
(1, 0)T

}
, R =

{
(0, 1)T

}
, P =

{
(0, 0)T

}
, and C = ∅. It is also worth noting that the

only ray in R is not an extreme ray of P .

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.5 Representations of Convex Polyhedra 11

1.5.5 Minimized Representations

A constraints system C for an NNC polyhedron P ∈ Pn is said to be minimized if no proper subset of C is
a constraint system for P .

Similarly, a generator system G = (L,R, P,C) for an NNC polyhedron P ∈ Pn is said to be minimized
if there does not exist a generator system G′ = (L′, R′, P ′, C ′) 6= G for P such that L′ ⊆ L, R′ ⊆ R,
P ′ ⊆ P and C ′ ⊆ C.

1.5.6 Double Description

Any NNC polyhedron P can be described by using a constraint system C, a generator system G, or both
by means of the double description pair (DD pair) (C,G). The double description method is a collection
of well-known as well as novel theoretical results showing that, given one kind of representation, there are
algorithms for computing a representation of the other kind and for minimizing both representations by
removing redundant constraints/generators.

Such changes of representation form a key step in the implementation of many operators on NNC polyhe-
dra: this is because some operators, such as intersections and poly-hulls, are provided with a natural and
efficient implementation when using one of the representations in a DD pair, while being rather cumber-
some when using the other.

1.5.7 Topologies and Topological-compatibility

As indicated above, when an NNC polyhedron P is necessarily closed, we can ignore the closure points
contained in its generator system G = (L,R, P,C) (as every closure point is also a point) and represent P
by the triple (L,R, P). Similarly, P can be represented by a constraint system that has no strict inequali-
ties. Thus a necessarily closed polyhedron can have a smaller representation than one that is not necessarily
closed. Moreover, operators restricted to work on closed polyhedra only can be implemented more effi-
ciently. For this reason the library provides two alternative “topological kinds” for a polyhedron, NNC and
C. We shall abuse terminology by referring to the topological kind of a polyhedron as its topology.

In the library, the topology of each polyhedron object is fixed once for all at the time of its creation and
must be respected when performing operations on the polyhedron.

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the following topological-compatibility rules:

• polyhedra are topologically-compatible if and only if they have the same topology;

• all constraints except for strict inequality constraints and all generators except for closure points are
topologically-compatible with both C and NNC polyhedra;

• strict inequality constraints and closure points are topologically-compatible with a polyhedron if and
only if it is NNC.

Wherever possible, the library provides methods that, starting from a polyhedron of a given topology, build
the corresponding polyhedron having the other topology.

1.5.8 Space Dimensions and Dimension Compatibility

The space dimension of an NNC polyhedron P ∈ Pn (resp., a C polyhedron P ∈ CPn) is the dimension
n ∈ N of the corresponding vector space Rn. The space dimension of constraints, generators and other
objects of the library is defined similarly.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.6 Operations on Convex Polyhedra 12

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the following (space) dimension-compatibility rules:

• polyhedra are dimension-compatible if and only if they have the same space dimension;

• the constraint 〈a,x〉 ./ b where ./ ∈ {=,≥, >} and a,x ∈ Rm, is dimension-compatible with a
polyhedron having space dimension n if and only if m ≤ n;

• the generator x ∈ Rm is dimension-compatible with a polyhedron having space dimension n if and
only if m ≤ n;

• a system of constraints (resp., generators) is dimension-compatible with a polyhedron if and only if
all the constraints (resp., generators) in the system are dimension-compatible with the polyhedron.

While the space dimension of a constraint, a generator or a system thereof is automatically adjusted when
needed, the space dimension of a polyhedron can only be changed by explicit calls to operators provided
for that purpose.

1.5.9 Affine Independence and Affine Dimension

A finite set of points {x1, . . . ,xk} ⊆ Rn is affinely independent if, for all λ1, . . . , λk ∈ R, the system of
equations

k∑
i=1

λixi = 0,
k∑
i=1

λi = 0

implies that, for each i = 1, . . . , k, λi = 0.

The maximum number of affinely independent points in Rn is n+ 1.

A non-empty NNC polyhedron P ∈ Pn has affine dimension k ∈ N, denoted by dim(P) = k, if the
maximum number of affinely independent points in P is k + 1.

We remark that the above definition only applies to polyhedra that are not empty, so that 0 ≤ dim(P) ≤ n.
By convention, the affine dimension of an empty polyhedron is 0 (even though the “natural” generalization
of the definition above would imply that the affine dimension of an empty polyhedron is −1).

Note

The affine dimension k ≤ n of an NNC polyhedron P ∈ Pn must not be confused with the space
dimension n of P , which is the dimension of the enclosing vector space Rn. In particular, we can have
dim(P) 6= dim(Q) even though P andQ are dimension-compatible; and vice versa, P andQ may be
dimension-incompatible polyhedra even though dim(P) = dim(Q).

1.5.10 Rational Polyhedra

An NNC polyhedron is called rational if it can be represented by a constraint system where all the con-
straints have rational coefficients. It has been shown that an NNC polyhedron is rational if and only if it
can be represented by a generator system where all the generators have rational coefficients.

The library only supports rational polyhedra. The restriction to rational numbers applies not only to poly-
hedra, but also to the other numeric arguments that may be required by the operators considered, such as
the coefficients defining (rational) affine transformations.

1.6 Operations on Convex Polyhedra

In this section we briefly describe operations on NNC polyhedra that are provided by the library.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.6 Operations on Convex Polyhedra 13

1.6.1 Intersection and Convex Polyhedral Hull

For any pair of NNC polyhedra P1,P2 ∈ Pn, the intersection of P1 and P2, defined as the set intersection
P1 ∩P2, is the biggest NNC polyhedron included in both P1 and P2; similarly, the convex polyhedral hull
(or poly-hull) of P1 and P2, denoted by P1] P2, is the smallest NNC polyhedron that includes both P1

and P2. The intersection and poly-hull of any pair of closed polyhedra in CPn is also closed.

In theoretical terms, the intersection and poly-hull operators defined above are the binary meet and the
binary join operators on the lattices Pn and CPn.

1.6.2 Convex Polyhedral Difference

For any pair of NNC polyhedra P1,P2 ∈ Pn, the convex polyhedral difference (or poly-difference) of P1

and P2 is defined as the smallest convex polyhedron containing the set-theoretic difference of P1 and P2.

In general, even though P1,P2 ∈ CPn are topologically closed polyhedra, their poly-difference may be a
convex polyhedron that is not topologically closed. For this reason, when computing the poly-difference
of two C polyhedra, the library will enforce the topological closure of the result.

1.6.3 Concatenating Polyhedra

Viewing a polyhedron as a set of tuples (its points), it is sometimes useful to consider the set of tuples
obtained by concatenating an ordered pair of polyhedra. Formally, the concatenation of the polyhedra
P ∈ Pn and Q ∈ Pm (taken in this order) is the polyhedronR ∈ Pn+m such that

R def=
{

(x0, . . . , xn−1, y0, . . . , ym−1)T ∈ Rn+m
∣∣∣ (x0, . . . , xn−1)T ∈ P, (y0, . . . , ym−1)T ∈ Q

}
.

Another way of seeing it is as follows: first embed polyhedron P into a vector space of dimension n + m
and then add a suitably renamed-apart version of the constraints defining Q.

1.6.4 Adding New Dimensions to the Vector Space

The library provides two operators for adding a number i of space dimensions to an NNC polyhedron
P ∈ Pn, therefore transforming it into a new NNC polyhedron Q ∈ Pn+i. In both cases, the added
dimensions of the vector space are those having the highest indices.

The operator add_space_dimensions_and_embed embeds the polyhedron P into the new vector
space of dimension i+ n and returns the polyhedron Q defined by all and only the constraints defining P
(the variables corresponding to the added dimensions are unconstrained). For instance, when starting from
a polyhedron P ⊆ R2 and adding a third space dimension, the result will be the polyhedron

Q =
{

(x0, x1, x2)T ∈ R3
∣∣ (x0, x1)T ∈ P

}
.

In contrast, the operator add_space_dimensions_and_project projects the polyhedron P into
the new vector space of dimension i + n and returns the polyhedron Q whose constraint system, besides
the constraints defining P , will include additional constraints on the added dimensions. Namely, the cor-
responding variables are all constrained to be equal to 0. For instance, when starting from a polyhedron
P ⊆ R2 and adding a third space dimension, the result will be the polyhedron

Q =
{

(x0, x1, 0)T ∈ R3
∣∣ (x0, x1)T ∈ P

}
.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.6 Operations on Convex Polyhedra 14

1.6.5 Removing Dimensions from the Vector Space

The library provides two operators for removing space dimensions from an NNC polyhedron P ∈ Pn,
therefore transforming it into a new NNC polyhedron Q ∈ Pm where m ≤ n.

Given a set of variables, the operator remove_space_dimensions removes all the space dimensions
specified by the variables in the set. For instance, letting P ∈ P4 be the singleton set

{
(3, 1, 0, 2)T

}
⊆ R4,

then after invoking this operator with the set of variables {x1, x2} the resulting polyhedron is

Q =
{

(3, 2)T
}
⊆ R2.

Given a space dimensionm less than or equal to that of the polyhedron, the operator remove_higher_-
space_dimensions removes the space dimensions having indices greater than or equal to m. For
instance, letting P ∈ P4 defined as before, by invoking this operator with m = 2 the resulting polyhedron
will be

Q =
{

(3, 1)T
}
⊆ R2.

1.6.6 Mapping the Dimensions of the Vector Space

The operator map_space_dimensions provided by the library maps the dimensions of the vector
space Rn according to a partial injective function ρ : {0, . . . , n− 1}� N such that ρ

(
{0, . . . , n− 1}

)
=

{0, . . . ,m− 1} with m ≤ n. Dimensions corresponding to indices that are not mapped by ρ are removed.

Ifm = 0, i.e., if the function ρ is undefined everywhere, then the operator projects the argument polyhedron
P ∈ Pn onto the zero-dimension space R0; otherwise the result is Q ∈ Pm given by

Q def=
{(
vρ−1(0), . . . , vρ−1(m−1)

)T ∣∣∣ (v0, . . . , vn−1)T ∈ P
}
.

1.6.7 Expanding One Dimension of the Vector Space to Multiple Dimensions

The operator expand_space_dimension provided by the library adds m new space dimensions to a
polyhedron P ∈ Pn, with n > 0, so that dimensions n, n + 1, . . ., n + m − 1 of the result Q are exact
copies of the i-th space dimension of P . More formally,

Q def=

u ∈ Rn+m

∣∣∣∣∣∣∣
∃v,w ∈ P . ui = vi

∧ ∀j = n, n+ 1, . . . , n+m− 1 : uj = wi

∧ ∀k = 0, . . . , n− 1 : k 6= i =⇒ uk = vk = wk

.
This operation has been proposed in [GDDetal04].

1.6.8 Folding Multiple Dimensions of the Vector Space into One Dimension

The operator fold_space_dimensions provided by the library, given a polyhedron P ∈ Pn, with
n > 0, folds a set of space dimensions J = {j0, . . . , jm−1}, with m < n and j < n for each j ∈ J , into
space dimension i < n, where i /∈ J . The result is given by

Q def=
m⊎
d=0

Qd

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.6 Operations on Convex Polyhedra 15

where

Qm
def=

{
u ∈ Rn−m

∣∣∣∣∣∃v ∈ P . ui′ = vi

∧ ∀k = 0, . . . , n− 1 : k 6= i =⇒ uk′ = vk

}
and, for d = 0, . . ., m− 1,

Qd
def=

{
u ∈ Rn−m

∣∣∣∣∣∃v ∈ P . ui′ = vjd
∧ ∀k = 0, . . . , n− 1 : k 6= i =⇒ uk′ = vk

}
,

and, finally, for k = 0, . . ., n− 1,

k′
def= k −#{ j ∈ J | k > j },

(#S denotes the cardinality of the finite set S).

This operation has been proposed in [GDDetal04].

1.6.9 Images and Preimages of Affine Transfer Relations

For each relation φ ⊆ Rn×Rm, we denote by φ(S) ⊆ Rm the image under φ of the set S ⊆ Rn; formally,

φ(S) def=
{

w ∈ Rm
∣∣ ∃v ∈ S . (v,w) ∈ φ

}
.

Similarly, we denote by φ−1(S′) ⊆ Rn the preimage under φ of S′ ⊆ Rm, that is

φ−1(S′) def=
{

v ∈ Rn
∣∣ ∃w ∈ S′ . (v,w) ∈ φ

}
.

If n = m, then the relation φ is said to be space dimension preserving.

The relation φ ⊆ Rn × Rm is said to be an affine relation if there exists ` ∈ N such that

∀v ∈ Rn,w ∈ Rm : (v,w) ∈ φ ⇐⇒
∧̀
i=1

(
〈ci,w〉 ./i 〈ai,v〉+ bi

)
,

where ai ∈ Rn, ci ∈ Rm, bi ∈ R and ./i ∈ {<,≤,=,≥, >}, for each i = 1, . . . , `.

As a special case, the relation φ ⊆ Rn × Rm is an affine function if and only if there exist a matrix
A ∈ Rm × Rn and a vector b ∈ Rm such that,

∀v ∈ Rn,w ∈ Rm : (v,w) ∈ φ ⇐⇒ w = Av + b.

The set Pn of NNC polyhedra is closed under the application of images and preimages of any space di-
mension preserving affine relation. The same property holds for the set CPn of closed polyhedra, provided
the affine relation makes no use of the strict relation symbols < and >. Images and preimages of affine
relations can be used to model several kinds of transition relations, including deterministic assignments of
affine expressions, (affinely constrained) nondeterministic assignments and affine conditional guards.

A space dimension preserving relation φ ⊆ Rn × Rn can be specified by means of a shorthand notation:

• the vector x = (x0, . . . , xn−1)T of unprimed variables is used to represent the space dimensions of
the domain of φ;

• the vector x′ = (x′0, . . . , x
′
n−1)T of primed variables is used to represent the space dimensions of

the range of φ;

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.6 Operations on Convex Polyhedra 16

• any primed variable that “does not occur” in the shorthand specification is meant to be unaffected
by the relation; namely, for each index i ∈ {0, . . . , n − 1}, if in the syntactic specification of the
relation the primed variable x′i only occurs (if ever) with coefficient 0, then it is assumed that the
specification also contains the constraint x′i = xi.

As an example, assuming φ ⊆ R3 × R3, the notation x′0 − x′2 ≥ 2x0 − x1, where the primed variable x′1
does not occur, is meant to specify the affine relation defined by

∀v ∈ R3,w ∈ R3 : (v,w) ∈ φ ⇐⇒ (w0 − w2 ≥ 2v0 − v1) ∧ (w1 = v1).

The same relation is specified by x′0 + 0 · x′1 − x′2 ≥ 2x0 − x1, since x′1 occurs with coefficient 0.

The library allows for the computation of images and preimages of polyhedra under restricted subclasses
of space dimension preserving affine relations, as described in the following.

1.6.10 Single-Update Affine Functions.

Given a primed variable x′k and an unprimed affine expression 〈a,x〉 + b, the affine function
φ =

(
x′k = 〈a,x〉+ b

)
: Rn → Rn is defined by

∀v ∈ Rn : φ(v) = Av + b,

where

A =

1 0 0 · · · · · · 0
. . .

...
...

0 1 0 · · · · · · 0
a0 · · · ak−1 ak ak+1 · · · an−1

0 · · · · · · 0 1 0
...

...
. . .

0 · · · · · · 0 0 1

, b =

0
...
0
b
0
...
0

and the ai (resp., b) occur in the (k+ 1)st row in A (resp., position in b). Thus function φ maps any vector
(v0, . . . , vn−1)T to (

v0, . . . ,
(∑n−1

i=0 aivi + b
)
, . . . , vn−1

)T

.

The affine image operator computes the affine image of a polyhedron P under x′k = 〈a,x〉 + b. For
instance, suppose the polyhedron P to be transformed is the square in R2 generated by the set of points{

(0, 0)T, (0, 3)T, (3, 0)T, (3, 3)T
}

. Then, if the primed variable is x0 and the affine expression is x0 +
2x1 + 4 (so that k = 0, a0 = 1, a1 = 2, b = 4), the affine image operator will translate P to the
parallelogram P1 generated by the set of points

{
(4, 0)T, (10, 3)T, (7, 0)T, (13, 3)T

}
with height equal to

the side of the square and oblique sides parallel to the line x0 − 2x1. If the primed variable is as before
(i.e., k = 0) but the affine expression is x1 (so that a0 = 0, a1 = 1, b = 0), then the resulting polyhedron
P2 is the positive diagonal of the square.

The affine preimage operator computes the affine preimage of a polyhedron P under x′k = 〈a,x〉+ b. For
instance, suppose now that we apply the affine preimage operator as given in the first example using primed
variable x0 and affine expression x0 + 2x1 + 4 to the parallelogram P1; then we get the original square P
back. If, on the other hand, we apply the affine preimage operator as given in the second example using
primed variable x0 and affine expression x1 to P2, then the resulting polyhedron is the stripe obtained by
adding the line (1, 0)T to polyhedron P2.

Observe that provided the coefficient ak of the considered variable in the affine expression is non-zero, the
affine function is invertible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.6 Operations on Convex Polyhedra 17

1.6.11 Single-Update Bounded Affine Relations.

Given a primed variable x′k and two unprimed affine expressions lb = 〈a,x〉+ b and ub = 〈c,x〉+ d, the
bounded affine relation φ = (lb ≤ x′k ≤ ub) is defined as

∀v ∈ Rn,w ∈ Rn : (v,w) ∈ φ ⇐⇒
(
〈a,v〉+ b ≤ wk ≤ 〈c,v〉+ d

)
∧
(∧

0≤i<n,i 6=k

wi = vi

)
.

1.6.12 Generalized Affine Relations.

Similarly, the generalized affine relation φ = (lhs′ ./ rhs), where lhs = 〈c,x〉 + d and rhs = 〈a,x〉 + b
are affine expressions and ./ ∈ {<,≤,=,≥, >} is a relation symbol, is defined as

∀v ∈ Rn,w ∈ Rn : (v,w) ∈ φ ⇐⇒
(
〈c,w〉+ d ./ 〈a,v〉+ b

)
∧
(∧

0≤i<n,ci=0

wi = vi

)
.

When lhs = xk and ./ ∈ {=}, then the above affine relation becomes equivalent to the single-update affine
function x′k = rhs (hence the name given to this operator). It is worth stressing that the notation is not
symmetric, because the variables occurring in expression lhs are interpreted as primed variables, whereas
those occurring in rhs are unprimed; for instance, the transfer relations lhs′ ≤ rhs and rhs′ ≥ lhs are not
equivalent in general.

1.6.13 Cylindrification Operator

The operator unconstrain computes the cylindrification [HMT71] of a polyhedron with respect to one
of its variables. Formally, the cylindrification Q ∈ Pn of an NNC polyhedron P ∈ Pn with respect to
variable index i ∈ {0, . . . , n− 1} is defined as follows:

Q =
{

w ∈ Rn
∣∣ ∃v ∈ P . ∀j ∈ {0, . . . , n− 1} : j 6= i =⇒ wj = vj

}
.

Cylindrification is an idempotent operation; in particular, note that the computed result has the same space
dimension of the original polyhedron. A variant of the operator above allows for the cylindrification of a
polyhedron with respect to a finite set of variables.

1.6.14 Time-Elapse Operator

The time-elapse operator has been defined in [HPR97]. Actually, the time-elapse operator provided by
the library is a slight generalization of that one, since it also works on NNC polyhedra. For any two NNC
polyhedraP,Q ∈ Pn, the time-elapse betweenP andQ, denotedP ↗ Q, is the smallest NNC polyhedron
containing the set {

p + λq ∈ Rn
∣∣ p ∈ P, q ∈ Q, λ ∈ R+

}
.

Note that, if P,Q ∈ CPn are closed polyhedra, the above set is also a closed polyhedron. In contrast, when
Q is not topologically closed, the above set might not be an NNC polyhedron.

1.6.15 Meet-Preserving Enlargement and Simplification

Let P,Q,R ∈ Pn be NNC polyhedra. Then:

• R is meet-preserving with respect to P using context Q ifR∩Q = P ∩Q;

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.6 Operations on Convex Polyhedra 18

• R is an enlargement of P ifR ⊇ P .

• R is a simplification with respect to P if r ≤ p, where r and p are the cardinalities of minimized
constraint representations forR and P , respectively.

Notice that an enlargement need not be a simplification, and vice versa; moreover, the identity function is
(trivially) a meet-preserving enlargement and simplification.

The library provides a binary operator (simplify_using_context) for the domain of NNC polyhedra
that returns a polyhedron which is a meet-preserving enlargement simplification of its first argument using
the second argument as context.

The concept of meet-preserving enlargement and simplification also applies to the other basic domains
(boxes, grids, BD and octagonal shapes). See below for a definition of the concept of meet-preserving
simplification for powerset domains.

1.6.16 Relation-With Operators

The library provides operators for checking the relation holding between an NNC polyhedron and either a
constraint or a generator.

Suppose P is an NNC polyhedron and C an arbitrary constraint system representing P . Suppose also that
c =

(
〈a,x〉 ./ b

)
is a constraint with ./ ∈ {=,≥, >} and Q the set of points that satisfy c. The possible

relations between P and c are as follows.

• P is disjoint from c if P ∩Q = ∅; that is, adding c to C gives us the empty polyhedron.

• P strictly intersects c if P ∩ Q 6= ∅ and P ∩ Q ⊂ P; that is, adding c to C gives us a non-empty
polyhedron strictly smaller than P .

• P is included in c if P ⊆ Q; that is, adding c to C leaves P unchanged.

• P saturates c if P ⊆ H, where H is the hyperplane induced by constraint c, i.e., the set of points
satisfying the equality constraint 〈a,x〉 = b; that is, adding the constraint 〈a,x〉 = b to C leaves P
unchanged.

The polyhedron P subsumes the generator g if adding g to any generator system representing P does not
change P .

1.6.17 Widening Operators

The library provides two widening operators for the domain of polyhedra. The first one, that we call
H79-widening, mainly follows the specification provided in the PhD thesis of N. Halbwachs [Hal79], also
described in [HPR97]. Note that in the computation of the H79-widening P ∇ Q of two polyhedra
P,Q ∈ CPn it is required as a precondition that P ⊆ Q (the same assumption was implicitly present in
the cited papers).

The second widening operator, that we call BHRZ03-widening, is an instance of the specification provided
in [BHRZ03a]. This operator also requires as a precondition that P ⊆ Q and it is guaranteed to provide a
result which is at least as precise as the H79-widening.

Both widening operators can be applied to NNC polyhedra. The user is warned that, in such a case, the
results may not closely match the geometric intuition which is at the base of the specification of the two
widenings. The reason is that, in the current implementation, the widenings are not directly applied to the
NNC polyhedra, but rather to their internal representations. Implementation work is in progress and future
versions of the library may provide an even better integration of the two widenings with the domain of
NNC polyhedra.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.7 Intervals and Boxes 19

Note

As is the case for the other operators on polyhedra, the implementation overwrites one of the two
polyhedra arguments with the result of the widening application. To avoid trivial misunderstandings, it
is worth stressing that if polyhedra P andQ (where P ⊆ Q) are identified by program variables p and
q, respectively, then the call q.H79_widening_assign(p) will assign the polyhedron P ∇ Q to
variable q. Namely, it is the bigger polyhedron Q which is overwritten by the result of the widening.
The smaller polyhedron is not modified, so as to lead to an easier coding of the usual convergence
test (P ⊇ P ∇ Q can be coded as p.contains(q)). Note that, in the above context, a call such
as p.H79_widening_assign(q) is likely to result in undefined behavior, since the precondition
Q ⊆ P will be missed (unless it happens that P = Q). The same observation holds for all flavors
of widenings and extrapolation operators that are implemented in the library and for all the language
interfaces.

1.6.18 Widening with Tokens

When approximating a fixpoint computation using widening operators, a common tactic to improve the
precision of the final result is to delay the application of widening operators. The usual approach is to fix a
parameter k and only apply widenings starting from the k-th iteration.

The library also supports an improved widening delay strategy, that we call widening with tokens
[BHRZ03a]. A token is a sort of wild card allowing for the replacement of the widening application by
the exact upper bound computation: the token is used (and thus consumed) only when the widening would
have resulted in an actual precision loss (as opposed to the potential precision loss of the classical delay
strategy). Thus, all widening operators can be supplied with an optional argument, recording the number of
available tokens, which is decremented when tokens are used. The approximated fixpoint computation will
start with a fixed number k of tokens, which will be used if and when needed. When there are no tokens
left, the widening is always applied.

1.6.19 Extrapolation Operators

Besides the two widening operators, the library also implements several extrapolation operators, which
differ from widenings in that their use along an upper iteration sequence does not ensure convergence in a
finite number of steps.

In particular, for each of the two widenings there is a corresponding limited extrapolation operator, which
can be used to implement the widening “up to” technique as described in [HPR97]. Each limited extrapola-
tion operator takes a constraint system as an additional parameter and uses it to improve the approximation
yielded by the corresponding widening operator. Note that a convergence guarantee can only be obtained
by suitably restricting the set of constraints that can occur in this additional parameter. For instance, in
[HPR97] this set is fixed once and for all before starting the computation of the upward iteration sequence.

The bounded extrapolation operators further enhance each one of the limited extrapolation operators de-
scribed above by intersecting the result of the limited extrapolation operation with the box obtained as a
result of applying the CC76-widening to the smallest boxes enclosing the two argument polyhedra.

1.7 Intervals and Boxes

The PPL provides support for computations on non-relational domains, called boxes, and also the interval
domains used for their representation.

An interval in R is a pair of bounds, called lower and upper. Each bound can be either (1) closed and
bounded, (2) open and bounded, or (3) open and unbounded. If the bound is bounded, then it has a value
in R. For each vector a ∈ Rn and scalar b ∈ R, and for each relation symbol ./ ∈ {=,≥, >}, the

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.8 Weakly-Relational Shapes 20

constraint 〈a,x〉 ./ b is said to be a interval constraint if there exist an index i ∈ {0, . . . , n− 1} such that,
for all k ∈ {0, . . . , i− 1, i+ 1, . . . , n− 1}, ak = 0. Thus each interval constraint that is not a tautology or
inconsistent has the form x = r, x ≤ r, x ≥ r, x < r or x > r, with r ∈ R.

Letting B be a sequence of n intervals and ei = (0, . . . , 1, . . . , 0)T be the vector in Rn with 1 in the i’th
position and zeroes in every other position; if the lower bound of the i’th interval in B is bounded, the
corresponding interval constraint is defined as 〈ei,x〉 ./ b, where b is the value of the bound and ./ is ≥ if
it is a closed bound and > if it is an open bound. Similarly, if the upper bound of the i’th interval in B is
bounded, the corresponding interval constraint is defined as 〈ei,x〉 ./ b, where b is the value of the bound
and ./ is ≤ if it is a closed bound and < if it is an open bound.

A convex polyhedron P ∈ CPn is said to be a box if and only if either P is the set of solutions to a finite
set of interval constraints or n = 0 and P = ∅. Therefore any n-dimensional box P in Rn where n > 0
can be represented by a sequence of n intervals B in R and P is a closed polyhedron if every bound in the
intervals in B is either closed and bounded or open and unbounded.

1.7.1 Widening and Extrapolation Operators on Boxes

The library provides a widening operator for boxes. Given two sequences of intervals defining two n-
dimensional boxes, the CC76-widening applies, for each corresponding interval and bound, the interval
constraint widening defined in [CC76]. For extra precision, this incorporates the widening with thresholds
as defined in [BCCetal02] with {−2,−1, 0, 1, 2} as the set of default threshold values.

1.8 Weakly-Relational Shapes

The PPL provides support for computations on numerical domains that, in selected contexts, can achieve
a better precision/efficiency ratio with respect to the corresponding computations on a “fully relational”
domain of convex polyhedra. This is achieved by restricting the syntactic form of the constraints that can
be used to describe the domain elements.

1.8.1 Bounded Difference Shapes

For each vector a ∈ Rn and scalar b ∈ R, and for each relation symbol ./ ∈ {=,≥}, the linear constraint
〈a,x〉 ./ b is said to be a bounded difference if there exist two indices i, j ∈ {0, . . . , n− 1} such that:

• ai, aj ∈ {−1, 0, 1} and ai 6= aj ;

• ak = 0, for all k /∈ {i, j}.

A convex polyhedron P ∈ CPn is said to be a bounded difference shape (BDS, for short) if and only if
either P can be expressed as the intersection of a finite number of bounded difference constraints or n = 0
and P = ∅.

1.8.2 Octagonal Shapes

For each vector a ∈ Rn and scalar b ∈ R, and for each relation symbol ./ ∈ {=,≥}, the linear constraint
〈a,x〉 ./ b is said to be an octagonal if there exist two indices i, j ∈ {0, . . . , n− 1} such that:

• ai, aj ∈ {−1, 0, 1};

• ak = 0, for all k /∈ {i, j}.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.9 Rational Grids 21

A convex polyhedron P ∈ CPn is said to be an octagonal shape (OS, for short) if and only if either P can
be expressed as the intersection of a finite number of octagonal constraints or n = 0 and P = ∅.

Note that, since any bounded difference is also an octagonal constraint, any BDS is also an OS. The name
“octagonal” comes from the fact that, in a vector space of dimension 2, a bounded OS can have eight sides
at most.

1.8.3 Weakly-Relational Shapes Interface

By construction, any BDS or OS is always topologically closed. Under the usual set inclusion ordering,
the set of all BDSs (resp., OSs) on the vector space Rn is a lattice having the empty set ∅ and the universe
Rn as the smallest and the biggest elements, respectively. In theoretical terms, it is a meet sub-lattice of
CPn; moreover, the lattice of BDSs is a meet sublattice of the lattice of OSs. The least upper bound of a
finite set of BDSs (resp., OSs) is said to be their bds-hull (resp., oct-hull).

As far as the representation of the rational inhomogeneous term of each bounded difference or octagonal
constraint is concerned, several rounding-aware implementation choices are available, including:

• bounded precision integer types;

• bounded precision floating point types;

• unbounded precision integer and rational types, as provided by GMP.

The user interface for BDSs and OSs is meant to be as similar as possible to the one developed for the
domain of closed polyhedra: in particular, all operators on polyhedra are also available for the domains
of BDSs and OSs, even though they are typically characterized by a lower degree of precision. For in-
stance, the bds-difference and oct-difference operators return (the smallest) over-approximations of the
set-theoretical difference operator on the corresponding domains. In the case of (generalized) images and
preimages of affine relations, suitable (possibly not-optimal) over-approximations are computed when the
considered relations cannot be precisely modeled by only using bounded differences or octagonal con-
straints.

1.8.4 Widening and Extrapolation Operators on Weakly-Relational Shapes

For the domains of BDSs and OSs, the library provides a variant of the widening operator for convex
polyhedra defined in [CH78]. The implementation follows the specification in [BHMZ05a,BHMZ05b],
resulting in an operator which is well-defined on the corresponding domain (i.e., it does not depend on the
internal representation of BDSs or OSs), while still ensuring convergence in a finite number of steps.

The library also implements an extension of the widening operator for intervals as defined in [CC76]. The
reader is warned that such an extension, even though being well-defined on the domain of BDSs and OSs,
is not provided with a convergence guarantee and is therefore an extrapolation operator.

1.9 Rational Grids

In this section we introduce rational grids as provided by the library. See also [BDHetal05] for a detailed
description of this domain.

The library supports two representations for the grids domain; congruence systems and grid generator
systems. We first describe linear congruence relations which form the elements of a congruence system.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.9 Rational Grids 22

1.9.1 Congruences and Congruence Relations

For any a, b, f ∈ R, a ≡f b denotes the congruence ∃µ ∈ Z . a− b = µf .

Let S ∈ {Q,R}. For each vector a ∈ Sn \ {0} and scalars b, f ∈ S, the notation 〈a,x〉 ≡f b stands for
the linear congruence relation in Sn defined by the set of vectors{

v ∈ Rn
∣∣ ∃µ ∈ Z . 〈a,v〉 = b+ µf

}
;

when f 6= 0, the relation is said to be proper; 〈a,x〉 ≡0 b (i.e., when f = 0) denotes the equality
〈a,x〉 = b. f is called the frequency or modulus and b the base value of the relation. Thus, provided
a 6= 0, the relation 〈a,x〉 ≡f b defines the set of affine hyperplanes{ (

〈a,x〉 = b+ µf
) ∣∣ µ ∈ Z

}
;

if b ≡f 0, 〈0,x〉 ≡f b defines the universe Rn and the empty set, otherwise.

1.9.2 Rational Grids

The set L ⊆ Rn is a rational grid if and only if either L is the set of vectors in Rn that satisfy a finite
system C of congruence relations in Qn or n = 0 and L = ∅.

We also say that L is described by C and that C is a congruence system for L.

The grid domain Gn is the set of all rational grids described by finite sets of congruence relations in Qn.

If the congruence system C describes the ∅, the empty grid, then we say that C is inconsistent. For example,
the congruence systems

{
〈0,x〉 ≡0 1

}
meaning that 0 = 1 and

{
〈a,x〉 ≡2 0, 〈a,x〉 ≡2 1

}
, for any

a ∈ Rn, meaning that the value of an expression must be both even and odd are both inconsistent since
both describe the empty grid.

When ordering grids by the set inclusion relation, the empty set ∅ and the vector space Rn (which is
described by the empty set of congruence relations) are, respectively, the smallest and the biggest elements
of Gn. The vector space Rn is also called the universe grid.

In set theoretical terms, Gn is a lattice under set inclusion.

1.9.3 Integer Combinations

Let S = {x1, . . . ,xk} ⊆ Rn be a finite set of vectors. For all scalars µ1, . . . , µk ∈ Z, the vector
v =

∑k
j=1 µjxj is said to be a integer combination of the vectors in S.

We denote by int.hull(S) (resp., int.affine.hull(S)) the set of all the integer (resp., integer and affine)
combinations of the vectors in S.

1.9.4 Points, Parameters and Lines

Let L be a grid. Then

• a vector p ∈ L is called a grid point of L;

• a vector q ∈ Rn, where q 6= 0, is called a parameter of L if L 6= ∅ and p + µq ∈ L, for all points
p ∈ L and all µ ∈ Z;

• a vector l ∈ Rn is called a grid line of L if L 6= ∅ and p + λl ∈ L, for all points p ∈ L and all
λ ∈ R.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.9 Rational Grids 23

1.9.5 The Grid Generator Representation

We can generate any rational grid in Gn from a finite subset of its points, parameters and lines; each point
in a grid is obtained by adding a linear combination of its generating lines to an integral combination of its
parameters and an integral affine combination of its generating points.

If L,Q, P are each finite subsets of Qn and

L = linear.hull(L) + int.hull(Q) + int.affine.hull(P)

where the symbol ’ +’ denotes the Minkowski’s sum, then L ∈ Gn is a rational grid (see Section 4.4
in [Sch99] and also Proposition 8 in [BDHetal05]). The 3-tuple (L,Q, P) is said to be a grid generator
system for L and we write L = ggen(L,Q, P).

Note that the grid L = ggen(L,Q, P) = ∅ if and only if the set of grid points P = ∅. If P 6= ∅, then
L = ggen(L,∅, Qp ∪ P) where, for some p ∈ P , Qp = {p + q | q ∈ Q }.

1.9.6 Minimized Grid Representations

A minimized congruence system C for L is such that, if C′ is another congruence system for L, then
C ≤ # C′. Note that a minimized congruence system for a non-empty grid has at most n congruence
relations.

Similarly, a minimized grid generator system G = (L,Q, P) for L is such that, if G′ = (L′, Q′, P ′) is
another grid generator system for L, then #L ≤ #L′ and #Q + #P ≤ #Q′ + #P ′. Note that a
minimized grid generator system for a grid has no more than a total of n + 1 grid lines, parameters and
points.

1.9.7 Double Description for Grids

As for convex polyhedra, any grid L can be described by using a congruence system C for L, a grid
generator system G for L, or both by means of the double description pair (DD pair) (C,G). The double
description method for grids is a collection of theoretical results very similar to those for convex polyhedra
showing that, given one kind of representation, there are algorithms for computing a representation of the
other kind and for minimizing both representations.

As for convex polyhedra, such changes of representation form a key step in the implementation of many
operators on grids such as, for example, intersection and grid join.

1.9.8 Space Dimensions and Dimension-compatibility for Grids

The space dimension of a grid L ∈ Gn is the dimension n ∈ N of the corresponding vector space Rn.
The space dimension of congruence relations, grid generators and other objects of the library is defined
similarly.

1.9.9 Affine Independence and Affine Dimension for Grids

A non-empty grid L ∈ Gn has affine dimension k ∈ N, denoted by dim(G) = k, if the maximum number
of affinely independent points in G is k+ 1. The affine dimension of an empty grid is defined to be 0. Thus
we have 0 ≤ dim(G) ≤ n.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.10 Operations on Rational Grids 24

1.10 Operations on Rational Grids

In general, the operations on rational grids are the same as those for the other PPL domains and the def-
initions of these can be found in Section Operations on Convex Polyhedra. Below we just describe those
operations that have features or behavior that is in some way special to the grid domain.

1.10.1 Affine Images and Preimages

As for convex polyhedra (see Single-Update Affine Functions), the library provides affine image and preim-
age operators for grids: given a variable xk and linear expression expr = 〈a,x〉 + b, these determine the
affine transformation φ =

(
x′k = 〈a,x〉+ b

)
: Rn → Rn that transforms any point (v0, . . . , vn−1)T in a

grid L to (
v0, . . . ,

(∑n−1
i=0 aivi + b

)
, . . . , vn−1

)T

.

The affine image operator computes the affine image of a grid L under x′k = 〈a,x〉 + b. For instance,
suppose the grid L to be transformed is the non-relational grid in R2 generated by the set of grid points{

(0, 0)T, (0, 3)T, (3, 0)T
}

. Then, if the considered variable is x0 and the linear expression is 3x0 +2x1 +1
(so that k = 0, a0 = 3, a1 = 2, b = 1), the affine image operator will translate L to the grid L1 generated
by the set of grid points

{
(1, 0)T, (7, 3)T, (10, 0)T

}
which is the grid generated by the grid point (1, 0) and

parameters (3,−3), (0, 9); or, alternatively defined by the congruence system {x ≡3 1, x+ y ≡9 1}. If the
considered variable is as before (i.e., k = 0) but the linear expression is x1 (so that a0 = 0, a1 = 1, b = 0),
then the resulting grid L2 is the grid containing all the points whose coordinates are integral multiples of 3
and lie on line x = y.

The affine preimage operator computes the affine preimage of a grid L under φ. For instance, suppose
now that we apply the affine preimage operator as given in the first example using variable x0 and linear
expression 3x0 + 2x1 + 1 to the grid L1; then we get the original grid L back. If, on the other hand, we
apply the affine preimage operator as given in the second example using variable x0 and linear expression
x1 to L2, then the resulting grid will consist of all the points in R2 where the y coordinate is an integral
multiple of 3.

Observe that provided the coefficient ak of the considered variable in the linear expression is non-zero, the
affine transformation is invertible.

1.10.2 Generalized Affine Images

Similarly to convex polyhedra (see Generalized Affine Relations), the library provides two other grid oper-
ators that are generalizations of the single update affine image and preimage operators for grids. The gen-
eralized affine image operator φ = (lhs′, rhs, f) : Rn → Rn, where lhs = 〈c,x〉+ d and rhs = 〈a,x〉+ b
are affine expressions and f ∈ Q, is defined as

∀v ∈ Rn,w ∈ Rn : (v,w) ∈ φ ⇐⇒
(
〈c,w〉+ d ≡f 〈a,v〉+ b

)
∧
(∧

0≤i<n,ci=0

wi = vi

)
.

Note that, when lhs = xk and f = 0, so that the transfer function is an equality, then the above operator is
equivalent to the application of the standard affine image of L with respect to the variable xk and the affine
expression rhs.

1.10.3 Frequency Operator

Let L ∈ Gn be any non-empty grid and expr =
(
〈a,x〉 + b

)
be a linear expression. Then if, for some

c, f ∈ R, all the points in L satisfy the congruence cg = (expr ≡f c), then the maximum f such that this
holds is called the frequency of L with respect to expr.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.10 Operations on Rational Grids 25

The frequency operator provided by the library returns both the frequency f and a value val = 〈a,w〉+ b
where w ∈ L and

|val| = min
{ ∣∣〈a,v〉+ b

∣∣ ∣∣∣ v ∈ L}.
Observe that the above definition is also applied to other simple objects in the library like polyhedra,
octagonal shapes, bd-shapes and boxes and in such cases the definition of frequency can be simplified. For
instance, the frequency for an object P ∈ Pn is defined if and only if there is a unique value c such that P
saturates the equality (expr = c); in this case the frequency is 0 and the value returned is c.

1.10.4 Time-Elapse Operator

For any two grids L1,L2 ∈ Gn, the time-elapse between L1 and L2, denoted L1 ↗ L2, is the grid{
p + µq ∈ Rn

∣∣ p ∈ L1, q ∈ L2, µ ∈ Z
}
.

1.10.5 Relation-with Operators

The library provides operators for checking the relation holding between a grid and a congruence, a grid
generator, a constraint or a (polyhedron) generator.

Suppose L is a grid and C an arbitrary congruence system representing L. Suppose also that cg =(
〈a,x〉 ≡f b

)
is a congruence relation with Lcg = gcon

(
{cg}

)
. The possible relations between L and cg

are as follows.

• L is disjoint from cg if L ∩ Lcg = ∅; that is, adding cg to C gives us the empty grid.

• L strictly intersects cg if L∩Lcg 6= ∅ and L∩Lcg ⊂ L; that is, adding cg to C gives us a non-empty
grid strictly smaller than L.

• L is included in cg if L ⊆ Lcg; that is, adding cg to C leaves L unchanged.

• L saturates cg if L is included in cg and f = 0, i.e., cg is an equality congruence.

For the relation between L and a constraint, suppose that c =
(
〈a,x〉 ./ b

)
is a constraint with ./ ∈ {=,≥

, >} and Q the set of points that satisfy c. The possible relations between L and c are as follows.

• L is disjoint from c if L ∩Q = ∅.

• L strictly intersects c if L ∩Q 6= ∅ and L ∩Q ⊂ L.

• L is included in c if L ⊆ Q.

• L saturates c if L is included in c and ./ is =.

A grid L subsumes a grid generator g if adding g to any grid generator system representing L does not
change L.

A grid L subsumes a (polyhedron) point or closure point g if adding the corresponding grid point to any
grid generator system representing L does not change L. A grid L subsumes a (polyhedron) ray or line g
if adding the corresponding grid line to any grid generator system representing L does not change L.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.10 Operations on Rational Grids 26

1.10.6 Wrapping Operator

The operator wrap_assign provided by the library, allows for the wrapping of a subset of the set of
space dimensions so as to fit the given bounded integer type and have the specified overflow behavior. In
order to maximize the precision of this operator for grids, the exact behavior differs in some respects from
the other simple classes of geometric descriptors.

Suppose L ∈ Gn is a grid and J a subset of the set of space dimensions {0, . . . , n− 1}. Suppose also that
the width of the bounded integer type is w so that the range of values R = {r ∈ R | 0 ≤ r < 2w} if the
type is unsigned and R = {r ∈ R | −2w−1 ≤ r < 2w−1} otherwise. Consider a space dimension j ∈ J
and a variable vj for dimension j.

If the value in L for the variable vj is a constant in the range R, then it is unchanged. Otherwise the result
L′ of the operation on L will depend on the specified overflow behavior.

• Overflow impossible. In this case, it is known that no wrapping can occur. If the grid L has no value
for the variable vj in the range R, then L is set empty. If vj has exactly one value a ∈ R in L, then
vj is set equal to a. Otherwise, L′ = L.

• Overflow undefined. In this case, for each value a for vj in the grid L, the wrapped value can
be any value a + z ∈ R where z ∈ Z. Therefore L′ is obtained by adding the parameter
(0, . . . , 0, vj , 0, . . . , 0), where vj = 1, to the generator system for L.

• Overflow wraps. In this case, if L already satisfies the congruence vj = a mod 2w, for some a ∈ R,
then vj is set equal to a′ where a′ = a mod 2w and a′ ∈ R. Otherwise, L′ is obtained by adding
the parameter (0, . . . , 0, vj , 0, . . . , 0), where vj = 2w, to the generator system for L.

1.10.7 Widening Operators

The library provides grid widening operators for the domain of grids. The congruence widening and
generator widening follow the specifications provided in [BDHetal05]. The third widening uses either the
congruence or the generator widening, the exact rule governing this choice at the time of the call is left
to the implementation. Note that, as for the widenings provided for convex polyhedra, all the operations
provided by the library for computing a widening L1 ∇ L2 of grids L1,L2 ∈ Gn require as a precondition
that L1 ⊆ L2.

Note

As is the case for the other operators on grids, the implementation overwrites one of the two grid
arguments with the result of the widening application. It is worth stressing that, in any widening
operation that computes the widening L1 ∇ L2, the resulting grid will be assigned to overwrite the
store containing the bigger grid L2. The smaller grid L1 is not modified. The same observation holds
for all flavors of widenings and extrapolation operators that are implemented in the library and for all
the language interfaces.

1.10.8 Widening with Tokens

This is as for widening with tokens for convex polyhedra.

1.10.9 Extrapolation Operators

Besides the widening operators, the library also implements several extrapolation operators, which differ
from widenings in that their use along an upper iteration sequence does not ensure convergence in a finite
number of steps.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.11 The Powerset Construction 27

In particular, for each grid widening that is provided, there is a corresponding limited extrapolation op-
erator, which can be used to implement the widening “up to” technique as described in [HPR97]. Each
limited extrapolation operator takes a congruence system as an additional parameter and uses it to improve
the approximation yielded by the corresponding widening operator. Note that, as in the case for convex
polyhedra, a convergence guarantee can only be obtained by suitably restricting the set of congruence
relations that can occur in this additional parameter.

1.11 The Powerset Construction

The PPL provides the finite powerset construction; this takes a pre-existing domain and upgrades it to
one that can represent disjunctive information (by using a finite number of disjuncts). The construction
follows the approach described in [Bag98], also summarized in [BHZ04] where there is an account of
generic widenings for the powerset domain (some of which are supported in the pointset powerset domain
instantiation of this construction described in Section The Pointset Powerset Domain).

1.11.1 The Powerset Domain

The domain is built from a pre-existing base-level domain D which must include an entailment relation ‘
`’, meet operation ‘ ⊗’, a top element ‘ 1’ and bottom element ‘ 0’.

A set S ∈ ℘(D) is called non-redundant with respect to ‘ `’ if and only if 0 /∈ S and ∀d1, d2 ∈ S : d1 `
d2 =⇒ d1 = d2. The set of finite non-redundant subsets ofD (with respect to ‘ `’) is denoted by ℘`fn(D).
The function Ω`D : ℘f(D) → ℘`fn(D), called Omega-reduction, maps a finite set into its non-redundant
counterpart; it is defined, for each S ∈ ℘f(D), by

Ω`D(S) def= S \ { d ∈ S | d = 0 or ∃d′ ∈ S . d d′ }.

where d d′ denotes d ` d′ ∧ d 6= d′.

As the intended semantics of a powerset domain element S ∈ ℘f(D) is that of disjunction of the semantics
of D, the finite set S is semantically equivalent to the non-redundant set Ω`D(S); and elements of S will be
called disjuncts. The restriction to the finite subsets reflects the fact that here disjunctions are implemented
by explicit collections of disjuncts. As a consequence of this restriction, for any S ∈ ℘f(D) such that
S 6= {0}, Ω`D(S) is the (finite) set of the maximal elements of S .

The finite powerset domain over a domain D is the set of all finite non-redundant sets of D and denoted
by DP. The domain includes an approximation ordering ‘ `P’ defined so that, for any S1 and S2 ∈ DP,
S1 `P S2 if and only if

∀d1 ∈ S1 : ∃d2 ∈ S2 . d1 ` d2.

Therefore the top element is {1} and the bottom element is the emptyset.

Note

As far as Omega-reduction is concerned, the library adopts a lazy approach: an element of the powerset
domain is represented by a potentially redundant sequence of disjuncts. Redundancies can be elimi-
nated by explicitly invoking the operator omega_reduce(), e.g., before performing the output of
a powerset element. Note that all the documented operators automatically perform Omega-reductions
on their arguments, when needed or appropriate.

1.12 Operations on the Powerset Construction

In this section we briefly describe the generic operations on Powerset Domains that are provided by the
library for any given base-level domain D.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.13 The Pointset Powerset Domain 28

1.12.1 Meet and Upper Bound

Given the sets S1 and S2 ∈ DP, the meet and upper bound operators provided by the library returns the set
Ω`D
(
{ d1 ⊗ d2 | d1 ∈ S1, d2 ∈ S2 }

)
and Omega-reduced set union Ω`D(S1 ∪ S2) respectively.

1.12.2 Adding a Disjunct

Given the powerset element S ∈ DP and the base-level element d ∈ D, the add disjunct operator provided
by the library returns the powerset element Ω`D

(
S ∪ {d}

)
.

1.12.3 Collapsing a Powerset Element

If the given powerset element is not empty, then the collapse operator returns the singleton powerset con-
sisting of an upper-bound of all the disjuncts.

1.13 The Pointset Powerset Domain

The pointset powerset domain provided by the PPL is the finite powerset domain (defined in Section The
Powerset Construction) whose base-level domain D is one of the classes of semantic geometric descriptors
listed in Section Semantic Geometric Descriptors.

In addition to the operations described for the generic powerset domain in Section Operations on the Pow-
erset Construction, the PPL provides all the generic operations listed in Generic Operations on Semantic
Geometric Descriptors. Here we just describe those operations that are particular to the pointset powerset
domain.

1.13.1 Meet-Preserving Simplification

Let S1 = {d1, . . . , dm}, S2 = {c1, . . . , cn} and S = {s1, . . . , sq} be Omega-reduced elements of a
pointset powerset domain over the same base-level domain. Then:

• S is powerset meet-preserving with respect to S1 using context S2 if the meet of S and S2 is equal
to the meet of S1 and S2;

• S is a powerset simplification with respect to S1 if q ≤ m.

• S is a disjunct meet-preserving simplification with respect to S1 if, for each sk ∈ S, there exists
di ∈ S1 such that, for each cj ∈ S2, sk is a meet-preserving enlargement and simplification of di
using context cj .

The library provides a binary operator (simplify_using_context) for the pointset powerset domain
that returns a powerset which is a powerset meet-preserving, powerset simplification and disjunct meet-
preserving simplification of its first argument using the second argument as context.

Notice that, due to the powerset simplification property, in general a meet-preserving powerset simplifica-
tion is not an enlargement with respect to the ordering defined on the powerset lattice. Because of this, the
operator provided by the library is only well-defined when the base-level domain is not itself a powerset
domain.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.13 The Pointset Powerset Domain 29

1.13.2 Geometric Comparisons

Given the pointset powersets S1,S2 over the same base-level domain and with the same space dimension,
then we say that S1 geometrically covers S2 if every point (in some disjunct) of S2 is also a point in a
disjunct of S1. If S1 geometrically covers S2 and S2 geometrically covers S1, then we say that they are
geometrically equal.

1.13.3 Pairwise Merge

Given the pointset powerset S over a base-level semantic GD domain D, then the pairwise merge operator
takes pairs of distinct elements in S whose upper bound (denoted here by]) in D (using the PPL operator
upper_bound_assign() for D) is the same as their set-theoretical union and replaces them by their
union. This replacement is done recursively so that, for each pair c, d of distinct disjuncts in the result set,
we have c] d 6= c ∪ d.

1.13.4 Powerset Extrapolation Operators

The library implements a generalization of the extrapolation operator for powerset domains proposed in
[BGP99]. The operator BGP99_extrapolation_assign is made parametric by allowing for the
specification of any PPL extrapolation operator for the base-level domain. Note that, even when the
extrapolation operator for the base-level domain D is known to be a widening on D, the BGP99_-
extrapolation_assign operator cannot guarantee the convergence of the iteration sequence in a
finite number of steps (for a counter-example, see [BHZ04]).

1.13.5 Certificate-Based Widenings

The PPL library provides support for the specification of proper widening operators on the pointset pow-
erset domain. In particular, this version of the library implements an instance of the certificate-based
widening framework proposed in [BHZ03b].

A finite convergence certificate for an extrapolation operator is a formal way of ensuring that such an
operator is indeed a widening on the considered domain. Given a widening operator on the base-level
domain D, together with the corresponding convergence certificate, the BHZ03 framework is able to lift
this widening onD to a widening on the pointset powerset domain; ensuring convergence in a finite number
of iterations.

Being highly parametric, the BHZ03 widening framework can be instantiated in many ways. The cur-
rent implementation provides the templatic operator BHZ03_widening_assign<Certificate,
Widening> which only exploits a fraction of this generality, by allowing the user to specify the base-
level widening function and the corresponding certificate. The widening strategy is fixed and uses two
extrapolation heuristics: first, the upper bound operator for the base-level domain is tried; second, the
BGP99 extrapolation operator is tried, possibly applying pairwise merging. If both heuristics fail to con-
verge according to the convergence certificate, then an attempt is made to apply the base-level widening
to the upper bound of the two arguments, possibly improving the result obtained by means of the differ-
ence operator for the base-level domain. For more details and a justification of the overall approach, see
[BHZ03b] and [BHZ04].

The library provides several convergence certificates. Note that, for the domain of Polyhedra, while
Parma_Polyhedra_Library::BHRZ03_Certificate the "BHRZ03_Certificate" is compatible with both the
BHRZ03 and the H79 widenings, H79_Certificate is only compatible with the latter. Note that using dif-
ferent certificates will change the results obtained, even when using the same base-level widening operator.
It is also worth stressing that it is up to the user to see that the widening operator is actually compatible

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.14 Using the Library 30

with a given convergence certificate. If such a requirement is not met, then an extrapolation operator will
be obtained.

1.14 Using the Library

1.14.1 A Note on the Implementation of the Operators

When adopting the double description method for the representation of convex polyhedra, the implemen-
tation of most of the operators may require an explicit conversion from one of the two representations into
the other one, leading to algorithms having a worst-case exponential complexity. However, thanks to the
adoption of lazy and incremental computation techniques, the library turns out to be rather efficient in many
practical cases.

In earlier versions of the library, a number of operators were introduced in two flavors: a lazy version and
an eager version, the latter having the operator name ending with _and_minimize. In principle, only
the lazy versions should be used. The eager versions were added to help a knowledgeable user obtain
better performance in particular cases. Basically, by invoking the eager version of an operator, the user is
trading laziness to better exploit the incrementality of the inner library computations. Starting from version
0.5, the lazy and incremental computation techniques have been refined to achieve a better integration:
as a consequence, the lazy versions of the operators are now almost always more efficient than the eager
versions.

One of the cases when an eager computation might still make sense is when the well-known fail-first
principle comes into play. For instance, if you have to compute the intersection of several polyhedra
and you strongly suspect that the result will become empty after a few of these intersections, then you may
obtain a better performance by calling the eager version of the intersection operator, since the minimization
process also enforces an emptiness check. Note anyway that the same effect can be obtained by interleaving
the calls of the lazy operator with explicit emptiness checks.

Warning

For the reasons mentioned above, starting from version 0.10 of the library, the usage of the eager ver-
sions (i.e., the ones having a name ending with _and_minimize) of these operators is deprecated;
this is in preparation of their complete removal, which will occur starting from version 0.11.

1.14.2 On Pointset_Powerset and Partially_Reduced_Product Domains: A Warning

For future versions of the PPL library all practical instantiations for the disjuncts for a pointset_powerset
and component domains for the partially_reduced_product domains will be fully supported. However, for
version 0.10, these compound domains should not themselves occur as one of their argument domains.
Therefore their use comes with the following warning.

Warning

The Pointset_Powerset<PS> and Partially_Reduced_Product<D1, D2, R>
should only be used with the following instantiations for the disjunct domain template PS and
component domain templates D1 and D2: C_Polyhedron, NNC_Polyhedron, Grid,
Octagonal_Shape<T>, BD_Shape<T>, Box<T>.

1.14.3 On Object-Orientation and Polymorphism: A Disclaimer

The PPL library is mainly a collection of so-called “concrete data types”: while providing the user with a
clean and friendly interface, these types are not meant to --- i.e., they should not --- be used polymorphically

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.15 Bibliography 31

(since, e.g., most of the destructors are not declared virtual). In practice, this restriction means that the
library types should not be used as public base classes to be derived from. A user willing to extend the
library types, adding new functionalities, often can do so by using containment instead of inheritance; even
when there is the need to override a protected method, non-public inheritance should suffice.

1.14.4 On Const-Correctness: A Warning about the Use of References and Iterators

Most operators of the library depend on one or more parameters that are declared “const”, meaning that
they will not be changed by the application of the considered operator. Due to the adoption of lazy com-
putation techniques, in many cases such a const-correctness guarantee only holds at the semantic level,
whereas it does not necessarily hold at the implementation level. For a typical example, consider the ex-
traction from a polyhedron of its constraint system representation. While this operation is not going to
change the polyhedron, it might actually invoke the internal conversion algorithm and modify the genera-
tors representation of the polyhedron object, e.g., by reordering the generators and removing those that are
detected as redundant. Thus, any previously computed reference to the generators of the polyhedron (be
it a direct reference object or an indirect one, such as an iterator) will no longer be valid. For this reason,
code fragments such as the following should be avoided, as they may result in undefined behavior:

// Find a reference to the first point of the non-empty polyhedron ‘ph’.
const Generator_System& gs = ph.generators();
Generator_System::const_iterator i = gs.begin();
for (Generator_System::const_iterator gs_end = gs.end(); i != gs_end; ++i)

if (i->is_point())
break;

const Generator& p = *i;
// Get the constraints of ‘ph’.
const Constraint_System& cs = ph.constraints();
// Both the const iterator ‘i’ and the reference ‘p’
// are no longer valid at this point.
cout << p.divisor() << endl; // Undefined behavior!
++i; // Undefined behavior!

As a rule of thumb, if a polyhedron plays any role in a computation (even as a const parameter), then
any previously computed reference to parts of the polyhedron may have been invalidated. Note that, in
the example above, the computation of the constraint system could have been placed after the uses of the
iterator i and the reference p. Anyway, if really needed, it is always possible to take a copy of, instead of
a reference to, the parts of interest of the polyhedron; in the case above, one may have taken a copy of the
generator system by replacing the second line of code with the following:

Generator_System gs = ph.generators();

The same observations, modulo syntactic sugar, apply to the operators defined in the C interface of the
library.

1.15 Bibliography

[Anc91] C. Ancourt. Génération automatique de codes de transfert pour multiprocesseurs à mémoires
locales. PhD thesis, Université de Paris VI, Paris, France, March 1991.

[BA05] J. M. Bjorndalen and O. Anshus. Lessons learned in benchmarking - Floating point benchmarks:
Can you trust them? In Proceedings of the Norsk informatikkonferanse 2005 (NIK 2005), pages
89-100, Bergen, Norway, 2005. Tapir Akademisk Forlag.

[Bag97] R. Bagnara. Data-Flow Analysis for Constraint Logic-Based Languages. PhD thesis, Diparti-
mento di Informatica, Università di Pisa, Pisa, Italy, March 1997. Printed as Report TD-1/97.

[Bag98] R. Bagnara. A hierarchy of constraint systems for data-flow analysis of constraint logic-based
languages. Science of Computer Programming, 30(1-2):119-155, 1998.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.15 Bibliography 32

[BCC+ 02] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. Design and implementation of a special-purpose static program analyzer for safety-critical
real-time embedded software. In T. Æ. Mogensen, D. A. Schmidt, and I. Hal Sudborough, editors,
The Essence of Computation, Complexity, Analysis, Transformation. Essays Dedicated to Neil D.
Jones [on occasion of his 60th birthday], volume 2566 of Lecture Notes in Computer Science, pages
85-108. Springer-Verlag, Berlin, 2002.

[BDH+ 05] R. Bagnara, K. Dobson, P. M. Hill, M. Mundell, and E. Zaffanella.
A linear domain for analyzing the distribution of numerical values. Report
2005.06, School of Computing, University of Leeds, UK, 2005. Available at
http://www.comp.leeds.ac.uk/research/pubs/reports.shtml.

[BDH+ 06] R. Bagnara, K. Dobson, P. M. Hill, M. Mundell, and E. Zaffanella. A
practical tool for analyzing the distribution of numerical values, 2006. Available at
http://www.comp.leeds.ac.uk/hill/Papers/papers.html.

[BDH+ 07] R. Bagnara, K. Dobson, P. M. Hill, M. Mundell, and E. Zaffanella. Grids: A domain for
analyzing the distribution of numerical values. In G. Puebla, editor, Logic-based Program Synthesis
and Transformation, 16th International Symposium, volume 4407 of Lecture Notes in Computer
Science, pages 219-235, Venice, Italy, 2007. Springer-Verlag, Berlin.

[BFT00] A. Bemporad, K. Fukuda, and F. D. Torrisi. Convexity recognition of the union of polyhedra.
Report AUT00-13, Automatic Control Laboratory, ETHZ, Zurich, Switzerland, 2000.

[BFT01] A. Bemporad, K. Fukuda, and F. D. Torrisi. Convexity recognition of the union of polyhedra.
Computational Geometry: Theory and Applications, 18(3):141-154, 2001.

[BGP99] T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with unbounded integer
variables: Symbolic representations, approximations, and experimental results. ACM Transactions
on Programming Languages and Systems, 21(4):747-789, 1999.

[BHMZ04] R. Bagnara, P. M. Hill, E. Mazzi, and E. Zaffanella. Widening operators for weakly-relational
numeric abstractions. Report arXiv:cs.PL/0412043, 2004. Extended abstract. Contribution to
the International workshop on “Numerical & Symbolic Abstract Domains” (NSAD’05, Paris, Jan-
uary 21, 2005). Available at http://arxiv.org/ and http://www.cs.unipr.it/ppl/.

[BHMZ05a] R. Bagnara, P. M. Hill, E. Mazzi, and E. Zaffanella. Widening operators for weakly-
relational numeric abstractions. Quaderno 399, Dipartimento di Matematica, Università di Parma,
Italy, 2005. Available at http://www.cs.unipr.it/Publications/.

[BHMZ05b] R. Bagnara, P. M. Hill, E. Mazzi, and E. Zaffanella. Widening operators for weakly-
relational numeric abstractions. In C. Hankin and I. Siveroni, editors, Static Analysis: Proceedings
of the 12th International Symposium, volume 3672 of Lecture Notes in Computer Science, pages
3-18, London, UK, 2005. Springer-Verlag, Berlin.

[BHRZ03a] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex
polyhedra. In R. Cousot, editor, Static Analysis: Proceedings of the 10th International Symposium,
volume 2694 of Lecture Notes in Computer Science, pages 337-354, San Diego, California, USA,
2003. Springer-Verlag, Berlin.

[BHRZ03b] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex
polyhedra. Quaderno 312, Dipartimento di Matematica, Università di Parma, Italy, 2003. Available
at http://www.cs.unipr.it/Publications/.

[BHRZ05] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex
polyhedra. Science of Computer Programming, 58(1-2):28-56, 2005.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.comp.leeds.ac.uk/research/pubs/reports.shtml
http://www.comp.leeds.ac.uk/hill/Papers/papers.html
http://arxiv.org/
http://www.cs.unipr.it/ppl/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/ppl/

1.15 Bibliography 33

[BHZ02a] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding and implementation of not neces-
sarily closed convex polyhedra. Quaderno 305, Dipartimento di Matematica, Università di Parma,
Italy, 2002. Available at http://www.cs.unipr.it/Publications/.

[BHZ02b] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding of not necessarily closed con-
vex polyhedra. In M. Carro, C. Vacheret, and K.-K. Lau, editors, Proceedings of the 1st CoLogNet
Workshop on Component-based Software Development and Implementation Technology for Compu-
tational Logic Systems, pages 147-153, Madrid, Spain, 2002. Published as TR Number CLIP4/02.0,
Universidad Politécnica de Madrid, Facultad de Informática.

[BHZ03a] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding and implementation of not neces-
sarily closed convex polyhedra. In M. Leuschel, S. Gruner, and S. Lo Presti, editors, Proceedings of
the 3rd Workshop on Automated Verification of Critical Systems, pages 161-176, Southampton, UK,
2003. Published as TR Number DSSE-TR-2003-2, University of Southampton.

[BHZ03b] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains. In
B. Steffen and G. Levi, editors, Verification, Model Checking and Abstract Interpretation: Proceed-
ings of the 5th International Conference (VMCAI 2004), volume 2937 of Lecture Notes in Computer
Science, pages 135-148, Venice, Italy, 2003. Springer-Verlag, Berlin.

[BHZ04] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains.
Quaderno 349, Dipartimento di Matematica, Università di Parma, Italy, 2004. Available at
http://www.cs.unipr.it/Publications/.

[BHZ05] R. Bagnara, P. M. Hill, and E. Zaffanella. Not necessarily closed convex polyhedra and the
double description method. Formal Aspects of Computing, 17(2):222-257, 2005.

[BHZ06a] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward
a complete set of numerical abstractions for the analysis and verification of hardware and
software systems. Quaderno 457, Dipartimento di Matematica, Università di Parma, Italy,
2006. Available at http://www.cs.unipr.it/Publications/. Also published as
arXiv:cs.MS/0612085, available from http://arxiv.org/.

[BHZ06b] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains. Software
Tools for Technology Transfer, 8(4/5):449-466, 2006. In the printed version of this article, all the
figures have been improperly printed (rendering them useless). See [BHZ07c].

[BHZ07a] R. Bagnara, P. M. Hill, and E. Zaffanella. Applications of polyhedral computations to the anal-
ysis and verification of hardware and software systems. Quaderno 458, Dipartimento di Matematica,
Università di Parma, Italy, 2007. Available at http://www.cs.unipr.it/Publications/.
Also published as arXiv:cs.CG/0701122, available from http://arxiv.org/.

[BHZ07b] R. Bagnara, P. M. Hill, and E. Zaffanella. An improved tight closure algorithm for in-
teger octagonal constraints. Quaderno 467, Dipartimento di Matematica, Università di Parma,
Italy, 2007. Available at http://www.cs.unipr.it/Publications/. Also published as
arXiv:0705.4618v2 [cs.DS], available from http://arxiv.org/.

[BHZ07c] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains. Software
Tools for Technology Transfer, 9(3/4):413-414, 2007. Erratum to [BHZ06b] containing all the figures
properly printed.

[BHZ08a] R. Bagnara, P. M. Hill, and E. Zaffanella. An improved tight closure algorithm for integer oc-
tagonal constraints. In F. Logozzo, D. Peled, and L. Zuck, editors, Verification, Model Checking and
Abstract Interpretation: Proceedings of the 9th International Conference (VMCAI 2008), volume
4905 of Lecture Notes in Computer Science, pages 8-21, San Francisco, USA, 2008. Springer-
Verlag, Berlin.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://arxiv.org/
http://www.cs.unipr.it/Publications/
http://arxiv.org/
http://www.cs.unipr.it/Publications/
http://arxiv.org/
http://www.cs.unipr.it/ppl/

1.15 Bibliography 34

[BHZ08b] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a complete
set of numerical abstractions for the analysis and verification of hardware and software systems.
Science of Computer Programming, 72(1-2):3-21, 2008.

[BHZ09a] R. Bagnara, P. M. Hill, and E. Zaffanella. Applications of polyhedral computations to
the analysis and verification of hardware and software systems. Theoretical Computer Science,
410(46):4672-4691, 2009.

[BHZ09b] R. Bagnara, P. M. Hill, and E. Zaffanella. Exact join detection for convex polyhedra and
other numerical abstractions. Quaderno 492, Dipartimento di Matematica, Università di Parma, Italy,
2009. Available at http://www.cs.unipr.it/Publications/. A corrected and improved
version (corrected an error in the statement of condition (3) of Theorem 3.6, typos corrected in
statement and proof of Theorem 6.8) has been published in [BHZ09c].

[BHZ09c] R. Bagnara, P. M. Hill, and E. Zaffanella. Exact join detection for convex polyhedra
and other numerical abstractions. Report arXiv:cs.CG/0904.1783, 2009. Available at
http://arxiv.org/ and http://www.cs.unipr.it/ppl/.

[BHZ09d] R. Bagnara, P. M. Hill, and E. Zaffanella. Weakly-relational shapes for numeric abstractions:
Improved algorithms and proofs of correctness. Formal Methods in System Design, 35(3):279-323,
2009.

[BHZ10] R. Bagnara, P. M. Hill, and E. Zaffanella. Exact join detection for con-
vex polyhedra and other numerical abstractions. Computational Geometry: The-
ory and Applications, 43(5):453-473, 2010. To appear in print. Available online at
http://dx.doi.org/10.1016/j.comgeo.2009.09.002.

[BJT99] F. Besson, T. P. Jensen, and J.-P. Talpin. Polyhedral analysis for synchronous languages. In
A. Cortesi and G. Filé, editors, Static Analysis: Proceedings of the 6th International Symposium,
volume 1694 of Lecture Notes in Computer Science, pages 51-68, Venice, Italy, 1999. Springer-
Verlag, Berlin.

[BK89] V. Balasundaram and K. Kennedy. A technique for summarizing data access and its use in par-
allelism enhancing transformations. In B. Knobe, editor, Proceedings of the ACM SIGPLAN’89
Conference on Programming Language Design and Implementation (PLDI), volume 24(7) of ACM
SIGPLAN Notices, pages 41-53, Portland, Oregon, USA, 1989. ACM Press.

[BMPZ10] R. Bagnara, F. Mesnard, A. Pescetti, and E. Zaffanella. The automatic synthesis of linear
ranking functions: The complete unabridged version. Quaderno 498, Dipartimento di Matematica,
Università di Parma, Italy, 2010. Available at http://www.cs.unipr.it/Publications/.
Also published as arXiv:cs.PL/1004.0944, available from http://arxiv.org/.

[BRZH02a] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra and
the Parma Polyhedra Library. In M. V. Hermenegildo and G. Puebla, editors, Static Analysis: Pro-
ceedings of the 9th International Symposium, volume 2477 of Lecture Notes in Computer Science,
pages 213-229, Madrid, Spain, 2002. Springer-Verlag, Berlin.

[BRZH02b] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra and
the Parma Polyhedra Library. Quaderno 286, Dipartimento di Matematica, Università di Parma, Italy,
2002. See also [BRZH02c]. Available at http://www.cs.unipr.it/Publications/.

[BRZH02c] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Errata for technical report “Quaderno
286”. Available at http://www.cs.unipr.it/Publications/, 2002. See [BRZH02b].

[CC76] P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In B. Robinet,
editor, Proceedings of the Second International Symposium on Programming, pages 106-130, Paris,
France, 1976. Dunod, Paris, France.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/Publications/
http://arxiv.org/
http://www.cs.unipr.it/ppl/
http://dx.doi.org/10.1016/j.comgeo.2009.09.002
http://www.cs.unipr.it/Publications/
http://arxiv.org/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/ppl/

1.15 Bibliography 35

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Proceedings of
the Sixth Annual ACM Symposium on Principles of Programming Languages, pages 269-282, New
York, 1979. ACM Press.

[CC92] P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing approaches
to abstract interpretation. In M. Bruynooghe and M. Wirsing, editors, Proceedings of the 4th Inter-
national Symposium on Programming Language Implementation and Logic Programming, volume
631 of Lecture Notes in Computer Science, pages 269-295, Leuven, Belgium, 1992. Springer-Verlag,
Berlin.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. In Conference Record of the Fifth Annual ACM Symposium on Principles of Programming
Languages, pages 84-96, Tucson, Arizona, 1978. ACM Press.

[Che64] N. V. Chernikova. Algorithm for finding a general formula for the non-negative solutions of sys-
tem of linear equations. U.S.S.R. Computational Mathematics and Mathematical Physics, 4(4):151-
158, 1964.

[Che65] N. V. Chernikova. Algorithm for finding a general formula for the non-negative solutions of
system of linear inequalities. U.S.S.R. Computational Mathematics and Mathematical Physics,
5(2):228-233, 1965.

[Che68] N. V. Chernikova. Algorithm for discovering the set of all solutions of a linear programming
problem. U.S.S.R. Computational Mathematics and Mathematical Physics, 8(6):282-293, 1968.

[Dan63] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, NJ,
1963.

[FCB07] P. Feautrier, J.-F. Collard, and C. Bastoul. PIP/PipLib: A Solver for Parametric Integer Pro-
gramming Problems, 5.0 edition, July 2007. Distributed with PIP/PipLib 1.4.0.

[Fea88] P. Feautrier. Parametric integer programming. RAIRO Recherche Opérationnelle, 22(3):243-268,
1988.

[FP96] K. Fukuda and A. Prodon. Double description method revisited. In M. Deza, R. Euler, and
Y. Manoussakis, editors, Combinatorics and Computer Science, 8th Franco-Japanese and 4th
Franco-Chinese Conference, Brest, France, July 3-5, 1995, Selected Papers, volume 1120 of Lecture
Notes in Computer Science, pages 91-111. Springer-Verlag, Berlin, 1996.

[Fuk98] K. Fukuda. Polyhedral computation FAQ. Swiss Federal Insti-
tute of Technology, Lausanne and Zurich, Switzerland, available at
http://www.ifor.math.ethz.ch/∼fukuda/polyfaq/polyfaq.html, 1998.

[GDD+ 04] D. Gopan, F. DiMaio, N. Dor, T. W. Reps, and M. Sagiv. Numeric domains with summarized
dimensions. In K. Jensen and A. Podelski, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 10th International Conference, TACAS 2004, volume 2988 of Lecture Notes in
Computer Science, pages 512-529, Barcelona, Spain, 2004. Springer-Verlag, Berlin.

[GJ00] E. Gawrilow and M. Joswig. polymake: A framework for analyzing convex polytopes. In
G. Kalai and G. M. Ziegler, editors, Polytopes - Combinatorics and Computation, pages 43-74.
Birkhäuser, 2000.

[GJ01] E. Gawrilow and M. Joswig. polymake: An approach to modular software design in computa-
tional geometry. In Proceedings of the 17th Annual Symposium on Computational Geometry, pages
222-231, Medford, MA, USA, 2001. ACM.

[GR77] D. Goldfarb and J. K. Reid. A practical steepest-edge simplex algorithm. Mathematical Proram-
ming, 12(1):361-371, 1977.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.ifor.math.ethz.ch/~fukuda/polyfaq/polyfaq.html
http://www.cs.unipr.it/ppl/

1.15 Bibliography 36

[Gra91] P. Granger. Static analysis of linear congruence equalities among variables of a program. In
S. Abramsky and T. S. E. Maibaum, editors, TAPSOFT’91: Proceedings of the International Joint
Conference on Theory and Practice of Software Development, Volume 1: Colloquium on Trees in
Algebra and Programming (CAAP’91), volume 493 of Lecture Notes in Computer Science, pages
169-192, Brighton, UK, 1991. Springer-Verlag, Berlin.

[Gra97] P. Granger. Static analyses of congruence properties on rational numbers (extended abstract). In
P. Van Hentenryck, editor, Static Analysis: Proceedings of the 4th International Symposium, volume
1302 of Lecture Notes in Computer Science, pages 278-292, Paris, France, 1997. Springer-Verlag,
Berlin.

[Hal79] N. Halbwachs. Détermination Automatique de Relations Linéaires Vérifiées par les Variables
d’un Programme. Thèse de 3ème cycle d’informatique, Université scientifique et médicale de Greno-
ble, Grenoble, France, March 1979.

[Hal93] N. Halbwachs. Delay analysis in synchronous programs. In C. Courcoubetis, editor, Computer
Aided Verification: Proceedings of the 5th International Conference (CAV’93), volume 697 of Lec-
ture Notes in Computer Science, pages 333-346, Elounda, Greece, 1993. Springer-Verlag, Berlin.

[HH95] T. A. Henzinger and P.-H. Ho. A note on abstract interpretation strategies for hybrid automata.
In P. J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid Systems II, volume 999 of
Lecture Notes in Computer Science, pages 252-264. Springer-Verlag, Berlin, 1995.

[HHL90] L. Huelsbergen, D. Hahn, and J. Larus. Exact dependence analysis using data access descrip-
tors. Technical Report 945, Department of Computer Science, University of Wisconsin, Madison,
1990.

[HKP95] N. Halbwachs, A. Kerbrat, and Y.-E. Proy. POLyhedra INtegrated Environment. Verimag,
France, version 1.0 of POLINE edition, September 1995. Documentation taken from source code.

[HLW94] V. Van Dongen H. Le Verge and D. K. Wilde. Loop nest synthesis using the polyhedral library.
Publication interne 830, IRISA, Campus de Beaulieu, Rennes, France, 1994.

[HMT71] L. Henkin, J. D. Monk, and A. Tarski. Cylindric Algebras: Part I. North-Holland, Amsterdam,
1971.

[HPR94] N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems by means
of convex approximations. In B. Le Charlier, editor, Static Analysis: Proceedings of the 1st Inter-
national Symposium, volume 864 of Lecture Notes in Computer Science, pages 223-237, Namur,
Belgium, 1994. Springer-Verlag, Berlin.

[HPR97] N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems using linear
relation analysis. Formal Methods in System Design, 11(2):157-185, 1997.

[HPWT01] T. A. Henzinger, J. Preussig, and H. Wong-Toi. Some lessons from the hytech experience.
In Proceedings of the 40th Annual Conference on Decision and Control, pages 2887-2892. IEEE
Computer Society Press, 2001.

[Jea02] B. Jeannet. Convex Polyhedra Library, release 1.1.3c edition,
March 2002. Documentation of the “New Polka” library available at
http://www.irisa.fr/prive/Bertrand.Jeannet/newpolka.html.

[JMSY94] J. Jaffar, M. J. Maher, P. J. Stuckey, and R. H. C. Yap. Beyond finite domains. In A. Borning,
editor, Principles and Practice of Constraint Programming: Proceedings of the Second International
Workshop, volume 874 of Lecture Notes in Computer Science, pages 86-94, Rosario, Orcas Island,
Washington, USA, 1994. Springer-Verlag, Berlin.

[KBB+ 06] L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, and V. Gurvich. Generating all vertices of
a polyhedron is hard. Discrete and Computational Geometry, 2006. Invited contribution. To appear.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.irisa.fr/prive/Bertrand.Jeannet/newpolka.html
http://www.cs.unipr.it/ppl/

1.15 Bibliography 37

[Kuh56] H. W. Kuhn. Solvability and consistency for linear equations and inequalities. American Math-
ematical Monthly, 63:217-232, 1956.

[Le 92] 92 H. Le Verge. A note on Chernikova’s algorithm. Publication interne 635, IRISA, Campus de
Beaulieu, Rennes, France, 1992.

[Loe99] V. Loechner. PolyLib: A library for manipulating parameterized polyhedra. Available at
http://icps.u-strasbg.fr/∼loechner/polylib/, March 1999. Declares itself to be
a continuation of [Wil93].

[LW97] V. Loechner and D. K. Wilde. Parameterized polyhedra and their vertices. International Journal
of Parallel Programming, 25(6):525-549, 1997.

[Mas92] F. Masdupuy. Array operations abstraction using semantic analysis of trapezoid congruences.
In Proceedings of the 6th ACM International Conference on Supercomputing, pages 226-235, Wash-
ington, DC, USA, 1992. ACM Press.

[Mas93] F. Masdupuy. Array Indices Relational Semantic Analysis Using Rational Cosets and Trape-
zoids. Thèse d’informatique, École Polytechnique, Palaiseau, France, December 1993.

[Min01a] A. Miné. A new numerical abstract domain based on difference-bound matrices. In O. Danvy
and A. Filinski, editors, Proceedings of the 2nd Symposium on Programs as Data Objects (PADO
2001), volume 2053 of Lecture Notes in Computer Science, pages 155-172, Aarhus, Denmark, 2001.
Springer-Verlag, Berlin.

[Min01b] A. Miné. The octagon abstract domain. In Proceedings of the Eighth Working Conference
on Reverse Engineering (WCRE’01), pages 310-319, Stuttgart, Germany, 2001. IEEE Computer
Society Press.

[Min02] A. Miné. A few graph-based relational numerical abstract domains. In M. V. Hermenegildo and
G. Puebla, editors, Static Analysis: Proceedings of the 9th International Symposium, volume 2477 of
Lecture Notes in Computer Science, pages 117-132, Madrid, Spain, 2002. Springer-Verlag, Berlin.

[Min04] A. Miné. Relational abstract domains for the detection of floating-point run-time errors. In
D. Schmidt, editor, Programming Languages and Systems: Proceedings of the 13th European
Symposium on Programming, volume 2986 of Lecture Notes in Computer Science, pages 3-17,
Barcelona, Spain, 2004. Springer-Verlag, Berlin.

[Min05] A. Miné. Weakly Relational Numerical Abstract Domains. PhD thesis, École Polytechnique,
Paris, France, March 2005.

[MRTT53] T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double description method.
In H. W. Kuhn and A. W. Tucker, editors, Contributions to the Theory of Games - Volume II, num-
ber 28 in Annals of Mathematics Studies, pages 51-73. Princeton University Press, Princeton, New
Jersey, 1953.

[NF01] T. Nakanishi and A. Fukuda. Modulo interval arithmetic and its application to program analysis.
Transactions of Information Processing Society of Japan, 42(4):829-837, 2001.

[NJPF99] T. Nakanishi, K. Joe, C. D. Polychronopoulos, and A. Fukuda. The modulo interval: A sim-
ple and practical representation for program analysis. In Proceedings of the 1999 International
Conference on Parallel Architectures and Compilation Techniques, pages 91-96, Newport Beach,
California, USA, 1999. IEEE Computer Society.

[NO77] G. Nelson and D. C. Oppen. Fast decision algorithms based on Union and Find. In Proceedings
of the 18th Annual Symposium on Foundations of Computer Science (FOCS’77), pages 114-119,
Providence, RI, USA, 1977. IEEE Computer Society Press. The journal version of this paper is
[NO80].

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://icps.u-strasbg.fr/~loechner/polylib/
http://www.cs.unipr.it/ppl/

1.15 Bibliography 38

[NO80] G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure. Journal of
the ACM, 27(2):356-364, 1980. An earlier version of this paper is [NO77].

[NR00] S. P. K. Nookala and T. Risset. A library for Z-polyhedral operations. Publication interne 1330,
IRISA, Campus de Beaulieu, Rennes, France, 2000.

[NW88] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley Interscience
Series in Discrete Mathematics and Optimization. John Wiley & Sons, 1988.

[Pra77] V. R. Pratt. Two easy theories whose combination is hard. Memo sent to Nelson and Oppen
concerning a preprint of their paper [NO77], September 1977.

[PS98] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity.
Dover Publications, second edition, 1998.

[QRR96] P. Quinton, S. Rajopadhye, and T. Risset. On manipulating Z-polyhedra. Technical Report
1016, IRISA, Campus Universitaire de Bealieu, Rennes, France, July 1996.

[QRR97] P. Quinton, S. Rajopadhye, and T. Risset. On manipulating Z-polyhedra using a canonic repre-
sentation. Parallel Processing Letters, 7(2):181-194, 1997.

[QRW00] F. Quilleré, S. V. Rajopadhye, and D. Wilde. Generation of efficient nested loops from polyhe-
dra. International Journal of Parallel Programming, 28(5):469-498, 2000.

[RBL06] T. W. Reps, G. Balakrishnan, and J. Lim. Intermediate-representation recovery from low-level
code. In J. Hatcliff and F. Tip, editors, Proceedings of the 2006 ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-based Program Manipulation, pages 100-111, Charleston, South Car-
olina, USA, 2006. ACM Press.

[Ric02] E. Ricci. Rappresentazione e manipolazione di poliedri convessi per l’analisi e la verifica di
programmi. Laurea dissertation, University of Parma, Parma, Italy, July 2002. In Italian.

[Sch99] A. Schrijver. Theory of Linear and Integer Programming. Wiley Interscience Series in Discrete
Mathematics and Optimization. John Wiley & Sons, 1999.

[Sho81] R. E. Shostak. Deciding linear inequalities by computing loop residues. Journal of the ACM,
28(4):769-779, 1981.

[SK07] A. Simon and A. King. Taming the wrapping of integer arithmetic. In H. Riis Nielson and G. Filé,
editors, Static Analysis: Proceedings of the 14th International Symposium, volume 4634 of Lecture
Notes in Computer Science, pages 121-136, Kongens Lyngby, Denmark, 2007. Springer-Verlag,
Berlin.

[Sri93] D. Srivastava. Subsumption and indexing in constraint query languages with linear arithmetic
constraints. Annals of Mathematics and Artificial Intelligence, 8(3-4):315-343, 1993.

[SS07a] R. Sen and Y. N. Srikant. Executable analysis using abstract interpretation with circular linear
progressions. In Proceedings of the 5th IEEE/ACM International Conference on Formal Methods
and Models for Co-Design (MEMOCODE 2007), pages 39-48, Nice, France, 2007. IEEE Computer
Society Press.

[SS07b] R. Sen and Y. N. Srikant. Executable analysis with circular linear progressions. Technical Re-
port IISc-CSA-TR-2007-3, Department of Computer Science and Automation, Indian Institute of
Science, Bangalore, India, 2007.

[SW70] J. Stoer and C. Witzgall. Convexity and Optimization in Finite Dimensions I. Springer-Verlag,
Berlin, 1970.

[War03] H. S. Warren, Jr. Hacker’s Delight. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2003.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 39

[Wey35] H. Weyl. Elementare theorie der konvexen polyeder. Commentarii Mathematici Helvetici,
7:290-306, 1935. English translation in [Wey50].

[Wey50] H. Weyl. The elementary theory of convex polyhedra. In H. W. Kuhn, editor, Contributions to
the Theory of Games - Volume I, number 24 in Annals of Mathematics Studies, pages 3-18. Princeton
University Press, Princeton, New Jersey, 1950. Translated from [Wey35] by H. W. Kuhn.

[Wil93] D. K. Wilde. A library for doing polyhedral operations. Master’s thesis, Oregon State University,
Corvallis, Oregon, December 1993. Also published as IRISA Publication interne 785, Rennes,
France, 1993.

2 GNU General Public License

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share
and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program--to make sure it remains free software for all its users. We,
the Free Software Foundation, use the GNU General Public License for most of our software; it applies
also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for them
if you wish), that you receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender
the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you
modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to
the recipients the same freedoms that you received. You must make sure that they, too, receive or can get
the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software,
and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free
software. For both users’ and authors’ sake, the GPL requires that modified versions be marked as changed,
so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside
them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting
users’ freedom to change the software. The systematic pattern of such abuse occurs in the area of products
for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this
version of the GPL to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed
to protect the freedom of users.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://fsf.org/
http://www.cs.unipr.it/ppl/

2 GNU General Public License 40

Finally, every program is threatened constantly by software patents. States should not allow patents to
restrict development and use of software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could make it effectively proprietary. To
prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as
“you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient
and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that
there is no warranty for the work (except to the extent that warranties are provided), that licensees may
convey the work under this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object
code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized stan-
dards body, or, in the case of interfaces specified for a particular programming language, one that is widely
used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement a
Standard Interface for which an implementation is available to the public in source code form. A “Major
Component”, in this context, means a major essential component (kernel, window system, and so on) of
the specific operating system (if any) on which the executable work runs, or a compiler used to produce the
work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 41

control those activities. However, it does not include the work’s System Libraries, or general-purpose tools
or generally available free programs which are used unmodified in performing those activities but which
are not part of the work. For example, Corresponding Source includes interface definition files associated
with source files for the work, and the source code for shared libraries and dynamically linked subprograms
that the work is specifically designed to require, such as by intimate data communication or control flow
between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other
parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevo-
cable provided the stated conditions are met. This License explicitly affirms your unlimited permission to
run the unmodified Program. The output from running a covered work is covered by this License only if
the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works for you must do so exclusively on
your behalf, under your direction and control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicens-
ing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological
measures to the extent such circumvention is effected by exercising rights under this License with respect
to the covered work, and you disclaim any intention to limit operation or modification of the work as a
means of enforcing, against the work’s users, your or third parties’ legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided
that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact
all notices stating that this License and any non-permissive terms added in accord with section 7 apply
to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this
License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty
protection for a fee.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 42

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the
form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

• b) The work must carry prominent notices stating that it is released under this License and any
conditions added under section 7. This requirement modifies the requirement in section 4 to “keep
intact all notices”.

• c) You must license the entire work, as a whole, under this License to anyone who comes into pos-
session of a copy. This License will therefore apply, along with any applicable section 7 additional
terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License
gives no permission to license the work in any other way, but it does not invalidate such permission
if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however,
if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work
need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature
extensions of the covered work, and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its
resulting copyright are not used to limit the access or legal rights of the compilation’s users beyond what
the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to
apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you
also convey the machine-readable Corresponding Source under the terms of this License, in one of these
ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by the Corresponding Source fixed on a durable physical medium customar-
ily used for software interchange.

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the object
code either (1) a copy of the Corresponding Source for all the software in the product that is covered
by this License, on a durable physical medium customarily used for software interchange, for a price
no more than your reasonable cost of physically performing this conveying of source, or (2) access
to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the Cor-
responding Source. This alternative is allowed only occasionally and noncommercially, and only if
you received the object code with such an offer, in accord with subsection 6b.

• d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the Corresponding Source along with the
object code. If the place to copy the object code is a network server, the Corresponding Source may

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 43

be on a different server (operated by you or a third party) that supports equivalent copying facilities,
provided you maintain clear directions next to the object code saying where to find the Corresponding
Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure
that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers where
the object code and Corresponding Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as
a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for incor-
poration into a dwelling. In determining whether a product is a consumer product, doubtful cases shall
be resolved in favor of coverage. For a particular product received by a particular user, “normally used”
refers to a typical or common use of that class of product, regardless of the status of the particular user
or of the way in which the particular user actually uses, or expects or is expected to use, the product. A
product is a consumer product regardless of whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other
information required to install and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must suffice to ensure that the continued
functioning of the modified object code is in no case prevented or interfered with solely because modifica-
tion has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains the
ability to install modified object code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide
support service, warranty, or updates for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a network may be denied when the
modification itself materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must
be in a format that is publicly documented (and with an implementation available to the public in source
code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable law.
If additional permissions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard to the additional
permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own removal

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 44

in certain cases when you modify the work.) You may place additional permissions on material, added by
you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if
authorized by the copyright holders of that material) supplement the terms of this License with terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

• b) Requiring preservation of specified reasonable legal notices or author attributions in that material
or in the Appropriate Legal Notices displayed by works containing it; or

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of
such material be marked in reasonable ways as different from the original version; or

• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service
marks; or

• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the
material (or modified versions of it) with contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of sec-
tion 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by
this License along with a term that is a further restriction, you may remove that term. If a license document
contains a further restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that the further restriction
does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a
statement of the additional terms that apply to those files, or a notice indicating where to find the applicable
terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license,
or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this
License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your
license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable
means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first time you have received notice of
violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30
days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received
copies or rights from you under this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same material under section 10.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 45

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants you
permission to propagate or modify any covered work. These actions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this
License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets
of one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing
the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, “control” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s
essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate
the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to
sue for patent infringement). To “grant” such a patent license to a party means to make such an agreement
or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause the
Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent li-
cense for this particular work, or (3) arrange, in a manner consistent with the requirements of this License,
to extend the patent license to downstream recipients. “Knowingly relying” means you have actual knowl-

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 46

edge that, but for the patent license, your conveying the covered work in a country, or your recipient’s use
of the covered work in a country, would infringe one or more identifiable patents in that country that you
have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the
covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work,
then the patent license you grant is automatically extended to all recipients of the covered work and works
based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a third
party that is in the business of distributing software, under which you make payment to the third party based
on the extent of your activity of conveying the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory patent license (a) in connection
with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for
and in connection with specific products or compilations that contain the covered work, unless you entered
into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to
infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms
that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the
only way you could satisfy both those terms and this License would be to refrain entirely from conveying
the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered
work with a work licensed under version 3 of the GNU Affero General Public License into a single com-
bined work, and to convey the resulting work. The terms of this License will continue to apply to the part
which is the covered work, but the special requirements of the GNU Affero General Public License, section
13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License “or any later version” applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published by the
Free Software Foundation. If the Program does not specify a version number of the GNU General Public
License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 47

can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose
that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations
are imposed on any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect
according to their terms, reviewing courts shall apply local law that most closely approximates an absolute
waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability
accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively state the exclusion of warranty; and each file should have at least the “copyright”
line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

3 GNU Free Documentation License 48

the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an interactive
mode:

program Copyright (C) year name of author
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General Public
License. Of course, your program’s commands might be different; for a GUI interface, you would use an
“about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright
disclaimer” for the program, if necessary. For more information on this, and how to apply and follow the
GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into proprietary programs. If
your program is a subroutine library, you may consider it more useful to permit linking proprietary applica-
tions with the library. If this is what you want to do, use the GNU Lesser General Public License instead of
this License. But first, please read http://www.gnu.org/philosophy/why-not-lgpl.html.

3 GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free"
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.cs.unipr.it/ppl/

3 GNU Free Documentation License 49

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML, PostScript or PDF produced by some word proces-
sors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

3 GNU Free Documentation License 50

a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements",
or "History".) To "Preserve the Title" of such a section when you modify the Document means that it
remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download
using public-standard network protocols a complete Transparent copy of the Document, free of added
material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Ver-
sion filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

3 GNU Free Documentation License 51

Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

• C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

• D. Preserve all the copyright notices of the Document.

• E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

• F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum below.

• G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

• H. Include an unaltered copy of this License.

• I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a Transpar-
ent copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History" section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

• K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

• M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified
Version.

• N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section.

• O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties--for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

3 GNU Free Documentation License 52

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and
any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting
from the compilation is not used to limit the legal rights of the compilation’s users beyond what the indi-
vidual works permit. When the Document is included in an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

4 Module Index 53

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put
the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled
"GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line
with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.

4 Module Index

4.1 Modules

Here is a list of all modules:

C++ Language Interface 59

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.gnu.org/copyleft/
http://www.cs.unipr.it/ppl/

5 Namespace Index 54

5 Namespace Index

5.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

Parma_Polyhedra_Library (The entire library is confined to this namespace) 69

Parma_Polyhedra_Library::IO_Operators (All input/output operators are confined to this
namespace) 86

std (The standard C++ namespace) 87

6 Class Index

6.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Parma_Polyhedra_Library::BD_Shape< T > 89

Parma_Polyhedra_Library::BHRZ03_Certificate 125

Parma_Polyhedra_Library::Box< ITV > 126

Parma_Polyhedra_Library::Checked_Number< T, Policy > 167

Parma_Polyhedra_Library::Variable::Compare 184

Parma_Polyhedra_Library::BHRZ03_Certificate::Compare 184

Parma_Polyhedra_Library::H79_Certificate::Compare 185

Parma_Polyhedra_Library::Grid_Certificate::Compare 185

Parma_Polyhedra_Library::Congruence 186

Parma_Polyhedra_Library::Congruence_System 193

Parma_Polyhedra_Library::Congruences_Reduction< D1, D2 > 198

Parma_Polyhedra_Library::Constraint_System::const_iterator 200

Parma_Polyhedra_Library::Generator_System::const_iterator 201

Parma_Polyhedra_Library::Grid_Generator_System::const_iterator 203

Parma_Polyhedra_Library::Congruence_System::const_iterator 202

Parma_Polyhedra_Library::Constraint 204

Parma_Polyhedra_Library::Constraint_System 214

Parma_Polyhedra_Library::Constraints_Reduction< D1, D2 > 218

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.1 Class Hierarchy 55

Parma_Polyhedra_Library::Determinate< PSET > 219

Parma_Polyhedra_Library::Domain_Product< D1, D2 > 222

Parma_Polyhedra_Library::Generator 222

Parma_Polyhedra_Library::Grid_Generator 279

Parma_Polyhedra_Library::Generator_System 234

Parma_Polyhedra_Library::Grid_Generator_System 286

Parma_Polyhedra_Library::GMP_Integer 238

Parma_Polyhedra_Library::Grid 242

Parma_Polyhedra_Library::Grid_Certificate 278

Parma_Polyhedra_Library::H79_Certificate 292

Parma_Polyhedra_Library::Interval< Boundary, Info > 293

Parma_Polyhedra_Library::Is_Checked< T > 297

Parma_Polyhedra_Library::Is_Checked< Checked_Number< T, P > > 297

Parma_Polyhedra_Library::Is_Native_Or_Checked< T > 298

Parma_Polyhedra_Library::Linear_Expression 298

Parma_Polyhedra_Library::PIP_Tree_Node::Artificial_Parameter 87

Parma_Polyhedra_Library::MIP_Problem 307

Parma_Polyhedra_Library::PIP_Solution_Node::No_Constraints 322

Parma_Polyhedra_Library::No_Reduction< D1, D2 > 322

Parma_Polyhedra_Library::Octagonal_Shape< T > 323

Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > 357

Parma_Polyhedra_Library::PIP_Problem 389

Parma_Polyhedra_Library::PIP_Tree_Node 405

Parma_Polyhedra_Library::PIP_Decision_Node 387

Parma_Polyhedra_Library::PIP_Solution_Node 402

Parma_Polyhedra_Library::Poly_Con_Relation 439

Parma_Polyhedra_Library::Poly_Gen_Relation 441

Parma_Polyhedra_Library::Polyhedron 443

Parma_Polyhedra_Library::C_Polyhedron 161

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7 Class Index 56

Parma_Polyhedra_Library::NNC_Polyhedron 316

Parma_Polyhedra_Library::Powerset< D > 477

Parma_Polyhedra_Library::Powerset< Parma_Polyhedra_Library::Determinate< PSET >
> 477

Parma_Polyhedra_Library::Pointset_Powerset< PSET > 411

Parma_Polyhedra_Library::Recycle_Input 484

Parma_Polyhedra_Library::Shape_Preserving_Reduction< D1, D2 > 485

Parma_Polyhedra_Library::Smash_Reduction< D1, D2 > 486

Parma_Polyhedra_Library::Throwable 487

Parma_Polyhedra_Library::Variable 487

Parma_Polyhedra_Library::Variables_Set 490

7 Class Index

7.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Parma_Polyhedra_Library::PIP_Tree_Node::Artificial_Parameter (Artificial parameters in
PIP solution trees) 87

Parma_Polyhedra_Library::BD_Shape< T > (A bounded difference shape) 89

Parma_Polyhedra_Library::BHRZ03_Certificate (The convergence certificate for the
BHRZ03 widening operator) 125

Parma_Polyhedra_Library::Box< ITV > (A not necessarily closed, iso-oriented hyperrect-
angle) 126

Parma_Polyhedra_Library::C_Polyhedron (A closed convex polyhedron) 161

Parma_Polyhedra_Library::Checked_Number< T, Policy > (A wrapper for numeric types
implementing a given policy) 167

Parma_Polyhedra_Library::Variable::Compare (Binary predicate defining the total ordering
on variables) 184

Parma_Polyhedra_Library::BHRZ03_Certificate::Compare (A total ordering on BHRZ03
certificates) 184

Parma_Polyhedra_Library::H79_Certificate::Compare (A total ordering on H79 certificates
) 185

Parma_Polyhedra_Library::Grid_Certificate::Compare (A total ordering on Grid certifi-
cates) 185

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.1 Class List 57

Parma_Polyhedra_Library::Congruence (A linear congruence) 186

Parma_Polyhedra_Library::Congruence_System (A system of congruences) 193

Parma_Polyhedra_Library::Congruences_Reduction< D1, D2 > (This class provides the re-
duction method for the Congruences_Product domain) 198

Parma_Polyhedra_Library::Constraint_System::const_iterator (An iterator over a system of
constraints) 200

Parma_Polyhedra_Library::Generator_System::const_iterator (An iterator over a system of
generators) 201

Parma_Polyhedra_Library::Congruence_System::const_iterator (An iterator over a system
of congruences) 202

Parma_Polyhedra_Library::Grid_Generator_System::const_iterator (An iterator over a sys-
tem of grid generators) 203

Parma_Polyhedra_Library::Constraint (A linear equality or inequality) 204

Parma_Polyhedra_Library::Constraint_System (A system of constraints) 214

Parma_Polyhedra_Library::Constraints_Reduction< D1, D2 > (This class provides the re-
duction method for the Constraints_Product domain) 218

Parma_Polyhedra_Library::Determinate< PSET> (A wrapper for PPL pointsets, providing
them with a determinate constraint system interface, as defined in [Bag98]) 219

Parma_Polyhedra_Library::Domain_Product< D1, D2 > (This class is temporary and will
be removed when template typedefs will be supported in C++) 222

Parma_Polyhedra_Library::Generator (A line, ray, point or closure point) 222

Parma_Polyhedra_Library::Generator_System (A system of generators) 234

Parma_Polyhedra_Library::GMP_Integer (Unbounded integers as provided by the GMP li-
brary) 238

Parma_Polyhedra_Library::Grid (A grid) 242

Parma_Polyhedra_Library::Grid_Certificate (The convergence certificate for the Grid
widening operator) 278

Parma_Polyhedra_Library::Grid_Generator (A grid line, parameter or grid point) 279

Parma_Polyhedra_Library::Grid_Generator_System (A system of grid generators) 286

Parma_Polyhedra_Library::H79_Certificate (A convergence certificate for the H79 widening
operator) 292

Parma_Polyhedra_Library::Interval< Boundary, Info > (A generic, not necessarily closed,
possibly restricted interval) 293

Parma_Polyhedra_Library::Is_Checked< T > 297

Parma_Polyhedra_Library::Is_Checked< Checked_Number< T, P > > 297

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.1 Class List 58

Parma_Polyhedra_Library::Is_Native_Or_Checked< T > 298

Parma_Polyhedra_Library::Linear_Expression (A linear expression) 298

Parma_Polyhedra_Library::MIP_Problem (A Mixed Integer (linear) Programming problem
) 307

Parma_Polyhedra_Library::NNC_Polyhedron (A not necessarily closed convex polyhedron)316

Parma_Polyhedra_Library::PIP_Solution_Node::No_Constraints (A tag type to select the al-
ternative copy constructor) 322

Parma_Polyhedra_Library::No_Reduction< D1, D2 > (This class provides the reduction
method for the Direct_Product domain) 322

Parma_Polyhedra_Library::Octagonal_Shape< T > (An octagonal shape) 323

Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > (The partially re-
duced product of two abstractions) 357

Parma_Polyhedra_Library::PIP_Decision_Node (A tree node representing a decision in the
space of solutions) 387

Parma_Polyhedra_Library::PIP_Problem (A Parametric Integer (linear) Programming
problem) 389

Parma_Polyhedra_Library::PIP_Solution_Node (A tree node representing part of the space
of solutions) 402

Parma_Polyhedra_Library::PIP_Tree_Node (A node of the PIP solution tree) 405

Parma_Polyhedra_Library::Pointset_Powerset< PSET> (The powerset construction instan-
tiated on PPL pointset domains) 411

Parma_Polyhedra_Library::Poly_Con_Relation (The relation between a polyhedron and a
constraint) 439

Parma_Polyhedra_Library::Poly_Gen_Relation (The relation between a polyhedron and a
generator) 441

Parma_Polyhedra_Library::Polyhedron (The base class for convex polyhedra) 443

Parma_Polyhedra_Library::Powerset< D > (The powerset construction on a base-level do-
main) 477

Parma_Polyhedra_Library::Recycle_Input (A tag class) 484

Parma_Polyhedra_Library::Shape_Preserving_Reduction< D1, D2 > (This class provides
the reduction method for the Shape_Preserving_Product domain) 485

Parma_Polyhedra_Library::Smash_Reduction< D1, D2 > (This class provides the reduction
method for the Smash_Product domain) 486

Parma_Polyhedra_Library::Throwable (User objects the PPL can throw) 487

Parma_Polyhedra_Library::Variable (A dimension of the vector space) 487

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8 Module Documentation 59

Parma_Polyhedra_Library::Variables_Set (An std::set of variables’ indexes) 490

8 Module Documentation

8.1 C++ Language Interface

The core implementation of the Parma Polyhedra Library is written in C++.

Classes

• class Parma_Polyhedra_Library::Throwable
User objects the PPL can throw.

• struct Parma_Polyhedra_Library::Recycle_Input
A tag class.

• struct Parma_Polyhedra_Library::Is_Checked< T >
• struct Parma_Polyhedra_Library::Is_Checked< Checked_Number< T, P > >

• struct Parma_Polyhedra_Library::Is_Native_Or_Checked< T >
• class Parma_Polyhedra_Library::Checked_Number< T, Policy >

A wrapper for numeric types implementing a given policy.

• class Parma_Polyhedra_Library::Variable
A dimension of the vector space.

• struct Parma_Polyhedra_Library::Variable::Compare
Binary predicate defining the total ordering on variables.

• class Parma_Polyhedra_Library::Linear_Expression
A linear expression.

• class Parma_Polyhedra_Library::Constraint_System
A system of constraints.

• class Parma_Polyhedra_Library::Constraint_System::const_iterator
An iterator over a system of constraints.

• class Parma_Polyhedra_Library::Constraint
A linear equality or inequality.

• class Parma_Polyhedra_Library::Poly_Con_Relation
The relation between a polyhedron and a constraint.

• class Parma_Polyhedra_Library::Generator_System
A system of generators.

• class Parma_Polyhedra_Library::Generator_System::const_iterator
An iterator over a system of generators.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 C++ Language Interface 60

• class Parma_Polyhedra_Library::Generator
A line, ray, point or closure point.

• class Parma_Polyhedra_Library::Congruence_System
A system of congruences.

• class Parma_Polyhedra_Library::Congruence_System::const_iterator
An iterator over a system of congruences.

• class Parma_Polyhedra_Library::Congruence
A linear congruence.

• class Parma_Polyhedra_Library::Grid_Generator_System
A system of grid generators.

• class Parma_Polyhedra_Library::Grid_Generator_System::const_iterator
An iterator over a system of grid generators.

• class Parma_Polyhedra_Library::Grid_Generator
A grid line, parameter or grid point.

• class Parma_Polyhedra_Library::PIP_Problem
A Parametric Integer (linear) Programming problem.

• class Parma_Polyhedra_Library::BHRZ03_Certificate
The convergence certificate for the BHRZ03 widening operator.

• struct Parma_Polyhedra_Library::BHRZ03_Certificate::Compare
A total ordering on BHRZ03 certificates.

• class Parma_Polyhedra_Library::H79_Certificate
A convergence certificate for the H79 widening operator.

• struct Parma_Polyhedra_Library::H79_Certificate::Compare
A total ordering on H79 certificates.

• class Parma_Polyhedra_Library::Poly_Gen_Relation
The relation between a polyhedron and a generator.

• class Parma_Polyhedra_Library::Polyhedron
The base class for convex polyhedra.

• class Parma_Polyhedra_Library::MIP_Problem
A Mixed Integer (linear) Programming problem.

• class Parma_Polyhedra_Library::Interval< Boundary, Info >
A generic, not necessarily closed, possibly restricted interval.

• class Parma_Polyhedra_Library::Grid_Certificate

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 C++ Language Interface 61

The convergence certificate for the Grid widening operator.

• class Parma_Polyhedra_Library::C_Polyhedron
A closed convex polyhedron.

• class Parma_Polyhedra_Library::NNC_Polyhedron
A not necessarily closed convex polyhedron.

• class Parma_Polyhedra_Library::Grid
A grid.

• class Parma_Polyhedra_Library::Box< ITV >

A not necessarily closed, iso-oriented hyperrectangle.

• class Parma_Polyhedra_Library::BD_Shape< T >
A bounded difference shape.

• class Parma_Polyhedra_Library::Octagonal_Shape< T >
An octagonal shape.

• class Parma_Polyhedra_Library::Smash_Reduction< D1, D2 >
This class provides the reduction method for the Smash_Product domain.

• class Parma_Polyhedra_Library::Constraints_Reduction< D1, D2 >
This class provides the reduction method for the Constraints_Product domain.

• class Parma_Polyhedra_Library::Congruences_Reduction< D1, D2 >
This class provides the reduction method for the Congruences_Product domain.

• class Parma_Polyhedra_Library::Shape_Preserving_Reduction< D1, D2 >
This class provides the reduction method for the Shape_Preserving_Product domain.

• class Parma_Polyhedra_Library::No_Reduction< D1, D2 >
This class provides the reduction method for the Direct_Product domain.

• class Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R >

The partially reduced product of two abstractions.

• class Parma_Polyhedra_Library::Determinate< PSET >
A wrapper for PPL pointsets, providing them with a determinate constraint system interface, as defined in
[Bag98].

• class Parma_Polyhedra_Library::Powerset< D >

The powerset construction on a base-level domain.

• class Parma_Polyhedra_Library::Pointset_Powerset< PSET >
The powerset construction instantiated on PPL pointset domains.

• class Parma_Polyhedra_Library::GMP_Integer
Unbounded integers as provided by the GMP library.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 C++ Language Interface 62

Namespaces

• namespace Parma_Polyhedra_Library::IO_Operators
All input/output operators are confined to this namespace.

• namespace std
The standard C++ namespace.

Defines

• #define PPL_VERSION_MAJOR 0
The major number of the PPL version.

• #define PPL_VERSION_MINOR 11
The minor number of the PPL version.

• #define PPL_VERSION_REVISION 0
The revision number of the PPL version.

• #define PPL_VERSION_BETA 0
The beta number of the PPL version. This is zero for official releases and nonzero for development snap-
shots.

• #define PPL_VERSION "0.11"
A string containing the PPL version.

Typedefs

• typedef size_t Parma_Polyhedra_Library::dimension_type
An unsigned integral type for representing space dimensions.

• typedef size_t Parma_Polyhedra_Library::memory_size_type
An unsigned integral type for representing memory size in bytes.

• typedef PPL_COEFFICIENT_TYPE Parma_Polyhedra_Library::Coefficient
An alias for easily naming the type of PPL coefficients.

Enumerations

• enum Parma_Polyhedra_Library::Result {

Parma_Polyhedra_Library::V_EMPTY, Parma_Polyhedra_Library::V_EQ, Parma_Polyhedra_-
Library::V_LT, Parma_Polyhedra_Library::V_GT,

Parma_Polyhedra_Library::V_NE, Parma_Polyhedra_Library::V_LE, Parma_Polyhedra_-
Library::V_GE, Parma_Polyhedra_Library::V_LGE,

Parma_Polyhedra_Library::V_OVERFLOW, Parma_Polyhedra_Library::V_LT_INF, Parma_-
Polyhedra_Library::V_GT_SUP, Parma_Polyhedra_Library::V_LT_PLUS_INFINITY,

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 C++ Language Interface 63

Parma_Polyhedra_Library::V_GT_MINUS_INFINITY, Parma_Polyhedra_Library::V_EQ_-
MINUS_INFINITY, Parma_Polyhedra_Library::V_EQ_PLUS_INFINITY, Parma_Polyhedra_-
Library::V_NAN,

Parma_Polyhedra_Library::V_CVT_STR_UNK, Parma_Polyhedra_Library::V_DIV_ZERO,
Parma_Polyhedra_Library::V_INF_ADD_INF, Parma_Polyhedra_Library::V_INF_DIV_INF,

Parma_Polyhedra_Library::V_INF_MOD, Parma_Polyhedra_Library::V_INF_MUL_ZERO,
Parma_Polyhedra_Library::V_INF_SUB_INF, Parma_Polyhedra_Library::V_MOD_ZERO,

Parma_Polyhedra_Library::V_SQRT_NEG, Parma_Polyhedra_Library::V_UNKNOWN_-
NEG_OVERFLOW, Parma_Polyhedra_Library::V_UNKNOWN_POS_OVERFLOW, Parma_-
Polyhedra_Library::V_UNREPRESENTABLE }

Possible outcomes of a checked arithmetic computation.

• enum Parma_Polyhedra_Library::Degenerate_Element { Parma_Polyhedra_Library::UNIVERSE,
Parma_Polyhedra_Library::EMPTY }

Kinds of degenerate abstract elements.

• enum Parma_Polyhedra_Library::Relation_Symbol {

Parma_Polyhedra_Library::EQUAL, Parma_Polyhedra_Library::LESS_THAN, Parma_-
Polyhedra_Library::LESS_OR_EQUAL, Parma_Polyhedra_Library::GREATER_THAN,

Parma_Polyhedra_Library::GREATER_OR_EQUAL, Parma_Polyhedra_Library::NOT_EQUAL
}

Relation symbols.

• enum Parma_Polyhedra_Library::Complexity_Class { Parma_Polyhedra_-
Library::POLYNOMIAL_COMPLEXITY, Parma_Polyhedra_Library::SIMPLEX_-
COMPLEXITY, Parma_Polyhedra_Library::ANY_COMPLEXITY }

Complexity pseudo-classes.

• enum Parma_Polyhedra_Library::Optimization_Mode { Parma_Polyhedra_-
Library::MINIMIZATION, Parma_Polyhedra_Library::MAXIMIZATION }

Possible optimization modes.

• enum Parma_Polyhedra_Library::Bounded_Integer_Type_Width {

Parma_Polyhedra_Library::BITS_8, Parma_Polyhedra_Library::BITS_16, Parma_Polyhedra_-
Library::BITS_32, Parma_Polyhedra_Library::BITS_64,

Parma_Polyhedra_Library::BITS_128 }
Widths of bounded integer types.

• enum Parma_Polyhedra_Library::Bounded_Integer_Type_Representation { Parma_Polyhedra_-
Library::UNSIGNED, Parma_Polyhedra_Library::SIGNED_2_COMPLEMENT }

Representation of bounded integer types.

• enum Parma_Polyhedra_Library::Bounded_Integer_Type_Overflow { Parma_Polyhedra_-
Library::OVERFLOW_WRAPS, Parma_Polyhedra_Library::OVERFLOW_UNDEFINED,
Parma_Polyhedra_Library::OVERFLOW_IMPOSSIBLE }

Overflow behavior of bounded integer types.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 C++ Language Interface 64

• enum Parma_Polyhedra_Library::Rounding_Dir {

Parma_Polyhedra_Library::ROUND_DOWN, Parma_Polyhedra_Library::ROUND_UP, Parma_-
Polyhedra_Library::ROUND_IGNORE , Parma_Polyhedra_Library::ROUND_NOT_NEEDED ,

Parma_Polyhedra_Library::ROUND_STRICT_RELATION }
Rounding directions for arithmetic computations.

• enum Parma_Polyhedra_Library::PIP_Problem_Status { Parma_Polyhedra_-
Library::UNFEASIBLE_PIP_PROBLEM, Parma_Polyhedra_Library::OPTIMIZED_PIP_-
PROBLEM }

Possible outcomes of the PIP_Problem solver.

• enum Parma_Polyhedra_Library::MIP_Problem_Status { Parma_Polyhedra_-
Library::UNFEASIBLE_MIP_PROBLEM, Parma_Polyhedra_Library::UNBOUNDED_MIP_-
PROBLEM, Parma_Polyhedra_Library::OPTIMIZED_MIP_PROBLEM }

Possible outcomes of the MIP_Problem solver.

Variables

• const Throwable ∗volatile Parma_Polyhedra_Library::abandon_expensive_computations
A pointer to an exception object.

8.1.1 Detailed Description

The core implementation of the Parma Polyhedra Library is written in C++. See Namespace, Hierarchical
and Compound indexes for additional information about each single data type.

8.1.2 Define Documentation

8.1.2.1 #define PPL_VERSION_MAJOR 0

The major number of the PPL version.

8.1.2.2 #define PPL_VERSION_MINOR 11

The minor number of the PPL version.

8.1.2.3 #define PPL_VERSION_REVISION 0

The revision number of the PPL version.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 C++ Language Interface 65

8.1.2.4 #define PPL_VERSION "0.11"

A string containing the PPL version.

Let M and m denote the numbers associated to PPL_VERSION_MAJOR and PPL_VERSION_MINOR,
respectively. The format of PPL_VERSION is M "." m if both PPL_VERSION_REVISION (r) and
PPL_VERSION_BETA (b)are zero, M "." m "pre" b if PPL_VERSION_REVISION is zero and
PPL_VERSION_BETA is not zero, M "." m "." r if PPL_VERSION_REVISION is not zero and
PPL_VERSION_BETA is zero, M "." m "." r "pre" b if neither PPL_VERSION_REVISION
nor PPL_VERSION_BETA are zero.

8.1.3 Typedef Documentation

8.1.3.1 typedef size_t Parma_Polyhedra_Library::dimension_type

An unsigned integral type for representing space dimensions.

8.1.3.2 typedef size_t Parma_Polyhedra_Library::memory_size_type

An unsigned integral type for representing memory size in bytes.

8.1.3.3 typedef PPL_COEFFICIENT_TYPE Parma_Polyhedra_Library::Coefficient

An alias for easily naming the type of PPL coefficients.

Objects of type Coefficient are used to implement the integral valued coefficients occurring in linear expres-
sions, constraints, generators, intervals, bounding boxes and so on. Depending on the chosen configuration
options (see file README.configure), a Coefficient may actually be:

• The GMP_Integer type, which in turn is an alias for the mpz_class type implemented by the C++
interface of the GMP library (this is the default configuration).

• An instance of the Checked_Number class template: with the policy Bounded_Integer_Coefficient_-
Policy, this implements overflow detection on top of a native integral type (available template
instances include checked integers having 8, 16, 32 or 64 bits); with the Checked_Number_-
Transparent_Policy, this is a wrapper for native integral types with no overflow detection (available
template instances are as above).

8.1.4 Enumeration Type Documentation

8.1.4.1 enum Parma_Polyhedra_Library::Result

Possible outcomes of a checked arithmetic computation.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 C++ Language Interface 66

Enumerator:

V_EMPTY The exact result is not comparable.

V_EQ The computed result is exact.

V_LT The computed result is inexact and rounded up.

V_GT The computed result is inexact and rounded down.

V_NE The computed result is inexact.

V_LE The computed result may be inexact and rounded up.

V_GE The computed result may be inexact and rounded down.

V_LGE The computed result may be inexact.

V_OVERFLOW The exact result is a number out of finite bounds.

V_LT_INF A negative integer overflow occurred (rounding up).

V_GT_SUP A positive integer overflow occurred (rounding down).

V_LT_PLUS_INFINITY A positive integer overflow occurred (rounding up).

V_GT_MINUS_INFINITY A negative integer overflow occurred (rounding down).

V_EQ_MINUS_INFINITY Negative infinity result.

V_EQ_PLUS_INFINITY Positive infinity result.

V_NAN Not a number result.

V_CVT_STR_UNK Converting from unknown string.

V_DIV_ZERO Dividing by zero.

V_INF_ADD_INF Adding two infinities having opposite signs.

V_INF_DIV_INF Dividing two infinities.

V_INF_MOD Taking the modulus of an infinity.

V_INF_MUL_ZERO Multiplying an infinity by zero.

V_INF_SUB_INF Subtracting two infinities having the same sign.

V_MOD_ZERO Computing a remainder modulo zero.

V_SQRT_NEG Taking the square root of a negative number.

V_UNKNOWN_NEG_OVERFLOW Unknown result due to intermediate negative overflow.

V_UNKNOWN_POS_OVERFLOW Unknown result due to intermediate positive overflow.

V_UNREPRESENTABLE The computed result is not representable.

8.1.4.2 enum Parma_Polyhedra_Library::Degenerate_Element

Kinds of degenerate abstract elements.

Enumerator:

UNIVERSE The universe element, i.e., the whole vector space.

EMPTY The empty element, i.e., the empty set.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 C++ Language Interface 67

8.1.4.3 enum Parma_Polyhedra_Library::Relation_Symbol

Relation symbols.

Enumerator:

EQUAL Equal to.
LESS_THAN Less than.
LESS_OR_EQUAL Less than or equal to.
GREATER_THAN Greater than.
GREATER_OR_EQUAL Greater than or equal to.
NOT_EQUAL Not equal to.

8.1.4.4 enum Parma_Polyhedra_Library::Complexity_Class

Complexity pseudo-classes.

Enumerator:

POLYNOMIAL_COMPLEXITY Worst-case polynomial complexity.
SIMPLEX_COMPLEXITY Worst-case exponential complexity but typically polynomial behavior.
ANY_COMPLEXITY Any complexity.

8.1.4.5 enum Parma_Polyhedra_Library::Optimization_Mode

Possible optimization modes.

Enumerator:

MINIMIZATION Minimization is requested.
MAXIMIZATION Maximization is requested.

8.1.4.6 enum Parma_Polyhedra_Library::Bounded_Integer_Type_Width

Widths of bounded integer types.

See the section on approximating bounded integers.

Enumerator:

BITS_8 8 bits.
BITS_16 16 bits.
BITS_32 32 bits.
BITS_64 64 bits.
BITS_128 128 bits.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 C++ Language Interface 68

8.1.4.7 enum Parma_Polyhedra_Library::Bounded_Integer_Type_Representation

Representation of bounded integer types.

See the section on approximating bounded integers.

Enumerator:

UNSIGNED Unsigned binary.

SIGNED_2_COMPLEMENT Signed binary where negative values are represented by the two’s
complement of the absolute value.

8.1.4.8 enum Parma_Polyhedra_Library::Bounded_Integer_Type_Overflow

Overflow behavior of bounded integer types.

See the section on approximating bounded integers.

Enumerator:

OVERFLOW_WRAPS On overflow, wrapping takes place. This means that, for a w-bit bounded
integer, the computation happens modulo 2w.

OVERFLOW_UNDEFINED On overflow, the result is undefined. This simply means that the result
of the operation resulting in an overflow can take any value.
Note

Even though something more serious can happen in the system being analyzed ---due to,
e.g., C’s undefined behavior---, here we are only concerned with the results of arithmetic
operations. It is the responsibility of the analyzer to ensure that other manifestations of
undefined behavior are conservatively approximated.

OVERFLOW_IMPOSSIBLE Overflow is impossible. This is for the analysis of languages where
overflow is trapped before it affects the state, for which, thus, any indication that an overflow
may have affected the state is necessarily due to the imprecision of the analysis.

8.1.4.9 enum Parma_Polyhedra_Library::Rounding_Dir

Rounding directions for arithmetic computations.

Enumerator:

ROUND_DOWN Round toward −∞.

ROUND_UP Round toward +∞.

ROUND_IGNORE Rounding is delegated to lower level. Result info is evaluated lazily.

ROUND_NOT_NEEDED Rounding is not needed: client code must ensure that the operation result
is exact and representable in the destination type. Result info is evaluated lazily.

ROUND_STRICT_RELATION The client code is willing to pay an extra price to know the exact
relation beetwen the exact result and the computed one.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9 Namespace Documentation 69

8.1.4.10 enum Parma_Polyhedra_Library::PIP_Problem_Status

Possible outcomes of the PIP_Problem solver.

Enumerator:

UNFEASIBLE_PIP_PROBLEM The problem is unfeasible.

OPTIMIZED_PIP_PROBLEM The problem has an optimal solution.

8.1.4.11 enum Parma_Polyhedra_Library::MIP_Problem_Status

Possible outcomes of the MIP_Problem solver.

Enumerator:

UNFEASIBLE_MIP_PROBLEM The problem is unfeasible.

UNBOUNDED_MIP_PROBLEM The problem is unbounded.

OPTIMIZED_MIP_PROBLEM The problem has an optimal solution.

8.1.5 Variable Documentation

8.1.5.1 const Throwable∗ volatile Parma_Polyhedra_Library::abandon_expensive_computations

A pointer to an exception object.

This pointer, which is initialized to zero, is repeatedly checked along any super-linear (i.e., computationally
expensive) computation path in the library. When it is found nonzero the exception it points to is thrown. In
other words, making this pointer point to an exception (and leaving it in this state) ensures that the library
will return control to the client application, possibly by throwing the given exception, within a time that is
a linear function of the size of the representation of the biggest object (powerset of polyhedra, polyhedron,
system of constraints or generators) on which the library is operating upon.

Note

The only sensible way to assign to this pointer is from within a signal handler or from a parallel thread.
For this reason, the library, apart from ensuring that the pointer is initially set to zero, never assigns to
it. In particular, it does not zero it again when the exception is thrown: it is the client’s responsibility
to do so.

9 Namespace Documentation

9.1 Parma_Polyhedra_Library Namespace Reference

The entire library is confined to this namespace.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library Namespace Reference 70

Namespaces

• namespace IO_Operators
All input/output operators are confined to this namespace.

Classes

• class Throwable
User objects the PPL can throw.

• struct Recycle_Input
A tag class.

• struct Is_Checked
• struct Is_Checked< Checked_Number< T, P > >

• struct Is_Native_Or_Checked
• class Checked_Number

A wrapper for numeric types implementing a given policy.

• class Variable
A dimension of the vector space.

• class Linear_Expression
A linear expression.

• class Constraint_System
A system of constraints.

• class Constraint
A linear equality or inequality.

• class Poly_Con_Relation
The relation between a polyhedron and a constraint.

• class Generator_System
A system of generators.

• class Generator
A line, ray, point or closure point.

• class Congruence_System
A system of congruences.

• class Congruence
A linear congruence.

• class Grid_Generator_System
A system of grid generators.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library Namespace Reference 71

• class Grid_Generator
A grid line, parameter or grid point.

• class Variables_Set
An std::set of variables’ indexes.

• class PIP_Problem
A Parametric Integer (linear) Programming problem.

• class PIP_Tree_Node
A node of the PIP solution tree.

• class PIP_Solution_Node
A tree node representing part of the space of solutions.

• class PIP_Decision_Node
A tree node representing a decision in the space of solutions.

• class BHRZ03_Certificate
The convergence certificate for the BHRZ03 widening operator.

• class H79_Certificate
A convergence certificate for the H79 widening operator.

• class Poly_Gen_Relation
The relation between a polyhedron and a generator.

• class Polyhedron
The base class for convex polyhedra.

• class MIP_Problem
A Mixed Integer (linear) Programming problem.

• class Interval
A generic, not necessarily closed, possibly restricted interval.

• class Grid_Certificate
The convergence certificate for the Grid widening operator.

• class C_Polyhedron
A closed convex polyhedron.

• class NNC_Polyhedron
A not necessarily closed convex polyhedron.

• class Grid
A grid.

• class Box
A not necessarily closed, iso-oriented hyperrectangle.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library Namespace Reference 72

• class BD_Shape
A bounded difference shape.

• class Octagonal_Shape
An octagonal shape.

• class Smash_Reduction
This class provides the reduction method for the Smash_Product domain.

• class Constraints_Reduction
This class provides the reduction method for the Constraints_Product domain.

• class Congruences_Reduction
This class provides the reduction method for the Congruences_Product domain.

• class Shape_Preserving_Reduction
This class provides the reduction method for the Shape_Preserving_Product domain.

• class No_Reduction
This class provides the reduction method for the Direct_Product domain.

• class Partially_Reduced_Product
The partially reduced product of two abstractions.

• class Domain_Product
This class is temporary and will be removed when template typedefs will be supported in C++.

• class Determinate
A wrapper for PPL pointsets, providing them with a determinate constraint system interface, as defined in
[Bag98].

• class Powerset
The powerset construction on a base-level domain.

• class Pointset_Powerset
The powerset construction instantiated on PPL pointset domains.

• class GMP_Integer
Unbounded integers as provided by the GMP library.

Typedefs

• typedef size_t dimension_type
An unsigned integral type for representing space dimensions.

• typedef size_t memory_size_type
An unsigned integral type for representing memory size in bytes.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library Namespace Reference 73

• typedef PPL_COEFFICIENT_TYPE Coefficient
An alias for easily naming the type of PPL coefficients.

Enumerations

• enum Result_Class { VC_NORMAL, VC_MINUS_INFINITY, VC_PLUS_INFINITY, VC_NAN
}

• enum Result_Relation {

VR_EMPTY, VR_EQ, VR_LT, VR_GT,

VR_NE, VR_LE, VR_GE, VR_LGE }
• enum Result {

V_EMPTY, V_EQ, V_LT, V_GT,

V_NE, V_LE, V_GE, V_LGE,

V_OVERFLOW, V_LT_INF, V_GT_SUP, V_LT_PLUS_INFINITY,

V_GT_MINUS_INFINITY, V_EQ_MINUS_INFINITY, V_EQ_PLUS_INFINITY, V_NAN,

V_CVT_STR_UNK, V_DIV_ZERO, V_INF_ADD_INF, V_INF_DIV_INF,

V_INF_MOD, V_INF_MUL_ZERO, V_INF_SUB_INF, V_MOD_ZERO,

V_SQRT_NEG, V_UNKNOWN_NEG_OVERFLOW, V_UNKNOWN_POS_OVERFLOW, V_-
UNREPRESENTABLE }

Possible outcomes of a checked arithmetic computation.

• enum Degenerate_Element { UNIVERSE, EMPTY }
Kinds of degenerate abstract elements.

• enum Relation_Symbol {

EQUAL, LESS_THAN, LESS_OR_EQUAL, GREATER_THAN,

GREATER_OR_EQUAL, NOT_EQUAL }
Relation symbols.

• enum Complexity_Class { POLYNOMIAL_COMPLEXITY, SIMPLEX_COMPLEXITY, ANY_-
COMPLEXITY }

Complexity pseudo-classes.

• enum Optimization_Mode { MINIMIZATION, MAXIMIZATION }
Possible optimization modes.

• enum Bounded_Integer_Type_Width {

BITS_8, BITS_16, BITS_32, BITS_64,

BITS_128 }
Widths of bounded integer types.

• enum Bounded_Integer_Type_Representation { UNSIGNED, SIGNED_2_COMPLEMENT }
Representation of bounded integer types.

• enum Bounded_Integer_Type_Overflow { OVERFLOW_WRAPS, OVERFLOW_UNDEFINED,
OVERFLOW_IMPOSSIBLE }

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library Namespace Reference 74

Overflow behavior of bounded integer types.

• enum Rounding_Dir {

ROUND_DOWN, ROUND_UP, ROUND_IGNORE , ROUND_NOT_NEEDED ,

ROUND_STRICT_RELATION }
Rounding directions for arithmetic computations.

• enum PIP_Problem_Status { UNFEASIBLE_PIP_PROBLEM, OPTIMIZED_PIP_PROBLEM }
Possible outcomes of the PIP_Problem solver.

• enum MIP_Problem_Status { UNFEASIBLE_MIP_PROBLEM, UNBOUNDED_MIP_PROBLEM,
OPTIMIZED_MIP_PROBLEM }

Possible outcomes of the MIP_Problem solver.

• enum I_Result {

I_EMPTY = 1, I_SINGLETON = 2, I_SOME = 4, I_UNIVERSE = 8,

I_NOT_EMPTY = I_SINGLETON | I_SOME | I_UNIVERSE, I_ANY = I_EMPTY | I_NOT_-
EMPTY, I_NOT_UNIVERSE = I_EMPTY | I_SINGLETON | I_SOME, I_NOT_DEGENERATE =
I_SINGLETON | I_SOME,

I_EXACT = 16, I_INEXACT = 32, I_CHANGED = 64, I_UNCHANGED = 128,

I_SINGULARITIES = 256 }

Functions

• unsigned version_major ()
Returns the major number of the PPL version.

• unsigned version_minor ()
Returns the minor number of the PPL version.

• unsigned version_revision ()
Returns the revision number of the PPL version.

• unsigned version_beta ()
Returns the beta number of the PPL version.

• const char ∗ version ()
Returns a character string containing the PPL version.

• const char ∗ banner ()
Returns a character string containing the PPL banner.

• void set_rounding_for_PPL ()
Sets the FPU rounding mode so that the PPL abstractions based on floating point numbers work correctly.

• void restore_pre_PPL_rounding ()
Sets the FPU rounding mode as it was before initialization of the PPL.

• void fpu_initialize_control_functions ()

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library Namespace Reference 75

Initializes the FPU control functions.

• fpu_rounding_direction_type fpu_get_rounding_direction ()
Returns the current FPU rounding direction.

• void fpu_set_rounding_direction (fpu_rounding_direction_type dir)
Sets the FPU rounding direction to dir.

• fpu_rounding_control_word_type fpu_save_rounding_direction (fpu_rounding_direction_type dir)
Sets the FPU rounding direction to dir and returns the rounding control word previously in use.

• fpu_rounding_control_word_type fpu_save_rounding_direction_reset_inexact (fpu_rounding_-
direction_type dir)

Sets the FPU rounding direction to dir, clears the inexact computation status, and returns the rounding
control word previously in use.

• void fpu_restore_rounding_direction (fpu_rounding_control_word_type w)
Restores the FPU rounding rounding control word to cw.

• void fpu_reset_inexact ()
Clears the inexact computation status.

• int fpu_check_inexact ()
Queries the inexact computation status.

• Result_Class result_class (Result r)
Extracts the value class part of r (representable number, unrepresentable minus/plus infinity or nan).

• Result_Relation result_relation (Result r)
Extracts the relation part of r.

• dimension_type not_a_dimension ()
Returns a value that does not designate a valid dimension.

• Rounding_Dir inverse (Rounding_Dir dir)
Returns the inverse rounding mode of dir, ROUND_IGNORE being the inverse of itself.

• void initialize ()
Initializes the library.

• void finalize ()
Finalizes the library.

• unsigned irrational_precision ()
Returns the precision parameter used for irrational calculations.

• void set_irrational_precision (const unsigned p)
Sets the precision parameter used for irrational calculations.

• Coefficient_traits::const_reference Coefficient_zero ()

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library Namespace Reference 76

Returns a const reference to a Coefficient with value 0.

• Coefficient_traits::const_reference Coefficient_one ()
Returns a const reference to a Coefficient with value 1.

• unsigned long isqrt (unsigned long x)
Returns the integer square root of x.

• dimension_type max_space_dimension ()
Returns the maximum space dimension this library can handle.

• template<typename PSET >

bool termination_test_MS (const PSET &pset)
Termination test using an improvement of the method by Mesnard and Serebrenik [BMPZ10].

• template<typename PSET >

bool termination_test_MS_2 (const PSET &pset_before, const PSET &pset_after)
Termination test using an improvement of the method by Mesnard and Serebrenik [BMPZ10].

• template<typename PSET >

bool one_affine_ranking_function_MS (const PSET &pset, Generator &mu)
Termination test with witness ranking function using an improvement of the method by Mesnard and Sere-
brenik [BMPZ10].

• template<typename PSET >

bool one_affine_ranking_function_MS_2 (const PSET &pset_before, const PSET &pset_after, Gen-
erator &mu)

Termination test with witness ranking function using an improvement of the method by Mesnard and Sere-
brenik [BMPZ10].

• template<typename PSET >

void all_affine_ranking_functions_MS (const PSET &pset, C_Polyhedron &mu_space)
Termination test with ranking function space using an improvement of the method by Mesnard and Sere-
brenik [BMPZ10].

• template<typename PSET >

void all_affine_ranking_functions_MS_2 (const PSET &pset_before, const PSET &pset_after, C_-
Polyhedron &mu_space)

Termination test with ranking function space using an improvement of the method by Mesnard and Sere-
brenik [BMPZ10].

• template<typename PSET >

void all_affine_quasi_ranking_functions_MS (const PSET &pset, C_Polyhedron &decreasing_mu_-
space, C_Polyhedron &bounded_mu_space)

Computes the spaces of affine quasi ranking functions using an improvement of the method by Mesnard and
Serebrenik [BMPZ10].

• template<typename PSET >

void all_affine_quasi_ranking_functions_MS_2 (const PSET &pset_before, const PSET &pset_-
after, C_Polyhedron &decreasing_mu_space, C_Polyhedron &bounded_mu_space)

Computes the spaces of affine quasi ranking functions using an improvement of the method by Mesnard and
Serebrenik [BMPZ10].

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library Namespace Reference 77

• template<typename PSET >

bool termination_test_PR (const PSET &pset)
Like termination_test_MS() but using the method by Podelski and Rybalchenko [BMPZ10].

• template<typename PSET >

bool termination_test_PR_2 (const PSET &pset_before, const PSET &pset_after)
Like termination_test_MS_2() but using an alternative formalization of the method by Podelski and Ry-
balchenko [BMPZ10].

• template<typename PSET >

bool one_affine_ranking_function_PR (const PSET &pset, Generator &mu)
Like one_affine_ranking_function_MS() but using the method by Podelski and Rybalchenko [BMPZ10].

• template<typename PSET >

bool one_affine_ranking_function_PR_2 (const PSET &pset_before, const PSET &pset_after, Gen-
erator &mu)

Like one_affine_ranking_function_MS_2() but using an alternative formalization of the method by Podelski
and Rybalchenko [BMPZ10].

• template<typename PSET >

void all_affine_ranking_functions_PR (const PSET &pset, NNC_Polyhedron &mu_space)
Like all_affine_ranking_functions_MS() but using the method by Podelski and Rybalchenko [BMPZ10].

• template<typename PSET >

void all_affine_ranking_functions_PR_2 (const PSET &pset_before, const PSET &pset_after,
NNC_Polyhedron &mu_space)

Like all_affine_ranking_functions_MS_2() but using an alternative formalization of the method by Podelski
and Rybalchenko [BMPZ10].

Memory Size Inspection Functions

• template<typename T >

Enable_If< Is_Native< T >::value, memory_size_type >::type total_memory_in_bytes (const
T &)

• template<typename T >

Enable_If< Is_Native< T >::value, memory_size_type >::type external_memory_in_bytes
(const T &)

• memory_size_type total_memory_in_bytes (const mpz_class &x)
• memory_size_type external_memory_in_bytes (const mpz_class &x)
• memory_size_type total_memory_in_bytes (const mpq_class &x)
• memory_size_type external_memory_in_bytes (const mpq_class &x)

Relational Operators and Comparison Functions

• template<typename T1 , typename T2 >

Enable_If< Is_Native_Or_Checked< T1 >::value &&Is_Native_Or_Checked< T2 >::value,
bool >::type equal (const T1 &x, const T2 &y)

• template<typename T1 , typename T2 >

Enable_If< Is_Native_Or_Checked< T1 >::value &&Is_Native_Or_Checked< T2 >::value,
bool >::type not_equal (const T1 &x, const T2 &y)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library Namespace Reference 78

• template<typename T1 , typename T2 >

Enable_If< Is_Native_Or_Checked< T1 >::value &&Is_Native_Or_Checked< T2 >::value,
bool >::type greater_or_equal (const T1 &x, const T2 &y)

• template<typename T1 , typename T2 >

Enable_If< Is_Native_Or_Checked< T1 >::value &&Is_Native_Or_Checked< T2 >::value,
bool >::type greater_than (const T1 &x, const T2 &y)

• template<typename T1 , typename T2 >

Enable_If< Is_Native_Or_Checked< T1 >::value &&Is_Native_Or_Checked< T2 >::value,
bool >::type less_or_equal (const T1 &x, const T2 &y)

• template<typename T1 , typename T2 >

Enable_If< Is_Native_Or_Checked< T1 >::value &&Is_Native_Or_Checked< T2 >::value,
bool >::type less_than (const T1 &x, const T2 &y)

Input-Output Operators

• template<typename T >

Enable_If< Is_Native_Or_Checked< T >::value, void >::type ascii_dump (std::ostream &s,
const T &t)

Ascii dump for native or checked.

• template<typename T >

Enable_If< Is_Native_Or_Checked< T>::value, bool>::type ascii_load (std::ostream &s, T &t)

Ascii load for native or checked.

Variables

• const Throwable ∗volatile abandon_expensive_computations
A pointer to an exception object.

9.1.1 Detailed Description

The entire library is confined to this namespace.

9.1.2 Enumeration Type Documentation

9.1.2.1 enum Parma_Polyhedra_Library::Result_Class

Enumerator:

VC_NORMAL Representable number result class.

VC_MINUS_INFINITY Negative infinity result class.

VC_PLUS_INFINITY Positive infinity result class.

VC_NAN Not a number result class.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library Namespace Reference 79

9.1.2.2 enum Parma_Polyhedra_Library::Result_Relation

Enumerator:

VR_EMPTY No values satisfies the relation.

VR_EQ Equal. This need to be accompanied by a value.

VR_LT Less than. This need to be accompanied by a value.

VR_GT Greater than. This need to be accompanied by a value.

VR_NE Not equal. This need to be accompanied by a value.

VR_LE Less or equal. This need to be accompanied by a value.

VR_GE Greater or equal. This need to be accompanied by a value.

VR_LGE All values satisfy the relation.

9.1.2.3 enum Parma_Polyhedra_Library::I_Result

Enumerator:

I_EMPTY The resulting set may be empty.

I_SINGLETON The resulting set may have only one value.

I_SOME The resulting set may have more than one value and to be not the domain universe.

I_UNIVERSE The resulting set may be the domain universe.

I_NOT_EMPTY The resulting set is not empty.

I_ANY The resulting set may be empty or not empty.

I_NOT_UNIVERSE The resulting set may be empty or not empty.

I_NOT_DEGENERATE The resulting set can’be empty or the domain universe.

I_EXACT The resulting set is definitely exact.

I_INEXACT The resulting set is definitely inexact.

I_CHANGED The operation has definitely changed the set.

I_UNCHANGED The operation has left the set definitely unchanged.

I_SINGULARITIES The operation is undefined for some combination of values.

9.1.3 Function Documentation

9.1.3.1 const char∗ Parma_Polyhedra_Library::banner ()

Returns a character string containing the PPL banner.

The banner provides information about the PPL version, the licensing, the lack of any warranty whatsoever,
the C++ compiler used to build the library, where to report bugs and where to look for further information.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library Namespace Reference 80

9.1.3.2 void Parma_Polyhedra_Library::set_rounding_for_PPL () [inline]

Sets the FPU rounding mode so that the PPL abstractions based on floating point numbers work correctly.

This is performed automatically at initialization-time. Calling this function is needed only if restore_pre_-
PPL_rounding() has been previously called.

9.1.3.3 void Parma_Polyhedra_Library::restore_pre_PPL_rounding () [inline]

Sets the FPU rounding mode as it was before initialization of the PPL.

After calling this function it is absolutely necessary to call set_rounding_for_PPL() before using any PPL
abstractions based on floating point numbers. This is performed automatically at finalization-time.

9.1.3.4 int Parma_Polyhedra_Library::fpu_check_inexact () [inline]

Queries the inexact computation status.

Returns 0 if the computation was definitely exact, 1 if it was definitely inexact, -1 if definite exactness
information is unavailable.

9.1.3.5 void Parma_Polyhedra_Library::set_irrational_precision (const unsigned p)
[inline]

Sets the precision parameter used for irrational calculations.

The lesser between numerator and denominator is limited to 2∗∗p.

If p is less than or equal to INT_MAX, sets the precision parameter used for irrational calculations to p.

Exceptions

std::invalid_argument Thrown if p is greater than INT_MAX.

9.1.3.6 template<typename PSET > bool Parma_Polyhedra_Library::termination_test_MS (
const PSET & pset)

Termination test using an improvement of the method by Mesnard and Serebrenik [BMPZ10].

Template Parameters

PSET Any pointset supported by the PPL that provides the minimized_constraints()
method.

Parameters

pset A pointset approximating the behavior of a loop whose termination is being analyzed. The vari-
ables indices are allocated as follows:

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library Namespace Reference 81

• x′1, . . . , x
′
n go onto space dimensions 0, . . . , n− 1,

• x1, . . . , xn go onto space dimensions n, . . . , 2n− 1,

where unprimed variables represent the values of the loop-relevant program variables before the
update performed in the loop body, and primed variables represent the values of those program
variables after the update.

Returns

true if any loop approximated by pset definitely terminates; false if the test is inconclusive.
However, if pset precisely characterizes the effect of the loop body onto the loop-relevant program
variables, then true is returned if and only if the loop terminates.

9.1.3.7 template<typename PSET > bool Parma_Polyhedra_Library::termination_test_MS_2 (
const PSET & pset_before, const PSET & pset_after)

Termination test using an improvement of the method by Mesnard and Serebrenik [BMPZ10].

Template Parameters

PSET Any pointset supported by the PPL that provides the minimized_constraints()
method.

Parameters

pset_before A pointset approximating the values of loop-relevant variables before the update per-
formed in the loop body that is being analyzed. The variables indices are allocated as follows:

• x1, . . . , xn go onto space dimensions 0, . . . , n− 1.

pset_after A pointset approximating the values of loop-relevant variables after the update performed
in the loop body that is being analyzed. The variables indices are allocated as follows:

• x′1, . . . , x
′
n go onto space dimensions 0, . . . , n− 1,

• x1, . . . , xn go onto space dimensions n, . . . , 2n− 1,

Note that unprimed variables represent the values of the loop-relevant program variables before the update
performed in the loop body, and primed variables represent the values of those program variables after the
update. Note also that unprimed variables are assigned to different space dimensions in pset_before
and pset_after.

Returns

true if any loop approximated by pset definitely terminates; false if the test is inconclusive.
However, if pset_before and pset_after precisely characterize the effect of the loop body
onto the loop-relevant program variables, then true is returned if and only if the loop terminates.

9.1.3.8 template<typename PSET > bool Parma_Polyhedra_Library::one_-
affine_ranking_function_MS (const PSET & pset, Generator & mu
)

Termination test with witness ranking function using an improvement of the method by Mesnard and Sere-
brenik [BMPZ10].

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library Namespace Reference 82

Template Parameters

PSET Any pointset supported by the PPL that provides the minimized_constraints()
method.

Parameters

pset A pointset approximating the behavior of a loop whose termination is being analyzed. The vari-
ables indices are allocated as follows:

• x′1, . . . , x
′
n go onto space dimensions 0, . . . , n− 1,

• x1, . . . , xn go onto space dimensions n, . . . , 2n− 1,

where unprimed variables represent the values of the loop-relevant program variables before the
update performed in the loop body, and primed variables represent the values of those program
variables after the update.

mu When true is returned, this is assigned a point of space dimension n + 1 encoding one (not
further specified) affine ranking function for the loop being analyzed. The ranking function is of
the form µ0 +

∑n
i=1 µixi where µ0, µ1, . . . , µn are the coefficients of mu corresponding to the

space dimensions n, 0, . . . , n− 1, respectively.

Returns

true if any loop approximated by pset definitely terminates; false if the test is inconclusive.
However, if pset precisely characterizes the effect of the loop body onto the loop-relevant program
variables, then true is returned if and only if the loop terminates.

9.1.3.9 template<typename PSET > bool Parma_Polyhedra_Library::one_affine_ranking_-
function_MS_2 (const PSET & pset_before, const PSET & pset_after, Generator & mu
)

Termination test with witness ranking function using an improvement of the method by Mesnard and Sere-
brenik [BMPZ10].

Template Parameters

PSET Any pointset supported by the PPL that provides the minimized_constraints()
method.

Parameters

pset_before A pointset approximating the values of loop-relevant variables before the update per-
formed in the loop body that is being analyzed. The variables indices are allocated as follows:

• x1, . . . , xn go onto space dimensions 0, . . . , n− 1.

pset_after A pointset approximating the values of loop-relevant variables after the update performed
in the loop body that is being analyzed. The variables indices are allocated as follows:

• x′1, . . . , x
′
n go onto space dimensions 0, . . . , n− 1,

• x1, . . . , xn go onto space dimensions n, . . . , 2n− 1,

Note that unprimed variables represent the values of the loop-relevant program variables before the update
performed in the loop body, and primed variables represent the values of those program variables after the
update. Note also that unprimed variables are assigned to different space dimensions in pset_before
and pset_after.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library Namespace Reference 83

Parameters

mu When true is returned, this is assigned a point of space dimension n + 1 encoding one (not
further specified) affine ranking function for the loop being analyzed. The ranking function is of
the form µ0 +

∑n
i=1 µixi where µ0, µ1, . . . , µn are the coefficients of mu corresponding to the

space dimensions n, 0, . . . , n− 1, respectively.

Returns

true if any loop approximated by pset definitely terminates; false if the test is inconclusive.
However, if pset_before and pset_after precisely characterize the effect of the loop body
onto the loop-relevant program variables, then true is returned if and only if the loop terminates.

9.1.3.10 template<typename PSET > void Parma_Polyhedra_Library::all_affine_-
ranking_functions_MS (const PSET & pset, C_Polyhedron & mu_space
)

Termination test with ranking function space using an improvement of the method by Mesnard and Sere-
brenik [BMPZ10].

Template Parameters

PSET Any pointset supported by the PPL that provides the minimized_constraints()
method.

Parameters

pset A pointset approximating the behavior of a loop whose termination is being analyzed. The vari-
ables indices are allocated as follows:

• x′1, . . . , x
′
n go onto space dimensions 0, . . . , n− 1,

• x1, . . . , xn go onto space dimensions n, . . . , 2n− 1,

where unprimed variables represent the values of the loop-relevant program variables before the
update performed in the loop body, and primed variables represent the values of those program
variables after the update.

mu_space This is assigned a closed polyhedron of space dimension n + 1 representing the space of
all the affine ranking functions for the loops that are precisely characterized by pset. These
ranking functions are of the form µ0 +

∑n
i=1 µixi where µ0, µ1, . . . , µn identify any point of

the mu_space polyhedron. The variables µ0, µ1, . . . , µn correspond to the space dimensions
of mu_space n, 0, . . . , n− 1, respectively. When mu_space is empty, it means that the test is
inconclusive. However, if pset precisely characterizes the effect of the loop body onto the loop-
relevant program variables, then mu_space is empty if and only if the loop does not terminate.

9.1.3.11 template<typename PSET > void Parma_Polyhedra_Library::all_affine_ranking_-
functions_MS_2 (const PSET & pset_before, const PSET & pset_after, C_Polyhedron
& mu_space)

Termination test with ranking function space using an improvement of the method by Mesnard and Sere-
brenik [BMPZ10].

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library Namespace Reference 84

Template Parameters

PSET Any pointset supported by the PPL that provides the minimized_constraints()
method.

Parameters

pset_before A pointset approximating the values of loop-relevant variables before the update per-
formed in the loop body that is being analyzed. The variables indices are allocated as follows:

• x1, . . . , xn go onto space dimensions 0, . . . , n− 1.

pset_after A pointset approximating the values of loop-relevant variables after the update performed
in the loop body that is being analyzed. The variables indices are allocated as follows:

• x′1, . . . , x
′
n go onto space dimensions 0, . . . , n− 1,

• x1, . . . , xn go onto space dimensions n, . . . , 2n− 1,

Note that unprimed variables represent the values of the loop-relevant program variables before the update
performed in the loop body, and primed variables represent the values of those program variables after the
update. Note also that unprimed variables are assigned to different space dimensions in pset_before
and pset_after.

Parameters

mu_space This is assigned a closed polyhedron of space dimension n + 1 representing the space of
all the affine ranking functions for the loops that are precisely characterized by pset. These
ranking functions are of the form µ0 +

∑n
i=1 µixi where µ0, µ1, . . . , µn identify any point of

the mu_space polyhedron. The variables µ0, µ1, . . . , µn correspond to the space dimensions
of mu_space n, 0, . . . , n− 1, respectively. When mu_space is empty, it means that the test is
inconclusive. However, if pset_before and pset_after precisely characterize the effect
of the loop body onto the loop-relevant program variables, then mu_space is empty if and only
if the loop does not terminate.

9.1.3.12 template<typename PSET > void Parma_Polyhedra_Library::all_affine_quasi_-
ranking_functions_MS (const PSET & pset, C_Polyhedron & decreasing_mu_space,
C_Polyhedron & bounded_mu_space)

Computes the spaces of affine quasi ranking functions using an improvement of the method by Mesnard
and Serebrenik [BMPZ10].

Template Parameters

PSET Any pointset supported by the PPL that provides the minimized_constraints()
method.

Parameters

pset A pointset approximating the behavior of a loop whose termination is being analyzed. The vari-
ables indices are allocated as follows:

• x′1, . . . , x
′
n go onto space dimensions 0, . . . , n− 1,

• x1, . . . , xn go onto space dimensions n, . . . , 2n− 1,

where unprimed variables represent the values of the loop-relevant program variables before the
update performed in the loop body, and primed variables represent the values of those program
variables after the update.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library Namespace Reference 85

decreasing_mu_space This is assigned a closed polyhedron of space dimension n + 1 representing
the space of all the decreasing affine functions for the loops that are precisely characterized by
pset.

bounded_mu_space This is assigned a closed polyhedron of space dimension n+ 1 representing the
space of all the lower bounded affine functions for the loops that are precisely characterized by
pset.

These quasi-ranking functions are of the form µ0 +
∑n
i=1 µixi where µ0, µ1, . . . , µn identify any point

of the decreasing_mu_space and bounded_mu_space polyhedrons. The variables µ0, µ1, . . . , µn
correspond to the space dimensions n, 0, . . . , n−1, respectively. When decreasing_mu_space (resp.,
bounded_mu_space) is empty, it means that the test is inconclusive. However, if pset precisely
characterizes the effect of the loop body onto the loop-relevant program variables, then decreasing_-
mu_space (resp., bounded_mu_space) will be empty if and only if there is no decreasing (resp., lower
bounded) affine function, so that the loop does not terminate.

9.1.3.13 template<typename PSET > void Parma_Polyhedra_Library::all_affine_quasi_-
ranking_functions_MS_2 (const PSET & pset_before, const PSET & pset_after,
C_Polyhedron & decreasing_mu_space, C_Polyhedron & bounded_mu_space)

Computes the spaces of affine quasi ranking functions using an improvement of the method by Mesnard
and Serebrenik [BMPZ10].

Template Parameters

PSET Any pointset supported by the PPL that provides the minimized_constraints()
method.

Parameters

pset_before A pointset approximating the values of loop-relevant variables before the update per-
formed in the loop body that is being analyzed. The variables indices are allocated as follows:

• x1, . . . , xn go onto space dimensions 0, . . . , n− 1.

pset_after A pointset approximating the values of loop-relevant variables after the update performed
in the loop body that is being analyzed. The variables indices are allocated as follows:

• x′1, . . . , x
′
n go onto space dimensions 0, . . . , n− 1,

• x1, . . . , xn go onto space dimensions n, . . . , 2n− 1,

Note that unprimed variables represent the values of the loop-relevant program variables before the update
performed in the loop body, and primed variables represent the values of those program variables after the
update. Note also that unprimed variables are assigned to different space dimensions in pset_before
and pset_after.

Parameters

decreasing_mu_space This is assigned a closed polyhedron of space dimension n + 1 representing
the space of all the decreasing affine functions for the loops that are precisely characterized by
pset.

bounded_mu_space This is assigned a closed polyhedron of space dimension n+ 1 representing the
space of all the lower bounded affine functions for the loops that are precisely characterized by
pset.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.2 Parma_Polyhedra_Library::IO_Operators Namespace Reference 86

These ranking functions are of the form µ0 +
∑n
i=1 µixi where µ0, µ1, . . . , µn identify any point of the

decreasing_mu_space and bounded_mu_space polyhedrons. The variables µ0, µ1, . . . , µn cor-
respond to the space dimensions n, 0, . . . , n − 1, respectively. When decreasing_mu_space (resp.,
bounded_mu_space) is empty, it means that the test is inconclusive. However, if pset_before and
pset_after precisely characterize the effect of the loop body onto the loop-relevant program variables,
then decreasing_mu_space (resp., bounded_mu_space) will be empty if and only if there is no
decreasing (resp., lower bounded) affine function, so that the loop does not terminate.

9.2 Parma_Polyhedra_Library::IO_Operators Namespace Reference

All input/output operators are confined to this namespace.

Functions

• std::string wrap_string (const std::string &src_string, unsigned indent_depth, unsigned preferred_-
first_line_length, unsigned preferred_line_length)

Utility function for the wrapping of lines of text.

9.2.1 Detailed Description

All input/output operators are confined to this namespace. This is done so that the library’s input/output
operators do not interfere with those the user might want to define. In fact, it is highly unlikely that any
predefined I/O operator will suit the needs of a client application. On the other hand, those applications for
which the PPL I/O operator are enough can easily obtain access to them. For example, a directive like

using namespace Parma_Polyhedra_Library::IO_Operators;

would suffice for most uses. In more complex situations, such as

const Constraint_System& cs = ...;
copy(cs.begin(), cs.end(),

ostream_iterator<Constraint>(cout, "\n"));

the Parma_Polyhedra_Library namespace must be suitably extended. This can be done as follows:

namespace Parma_Polyhedra_Library {
// Import all the output operators into the main PPL namespace.
using IO_Operators::operator<<;

}

9.2.2 Function Documentation

9.2.2.1 std::string Parma_Polyhedra_Library::IO_Operators::wrap_string (const std::string
& src_string, unsigned indent_depth, unsigned preferred_first_line_length, unsigned
preferred_line_length)

Utility function for the wrapping of lines of text.

Parameters

src_string The source string holding the lines to wrap.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.3 std Namespace Reference 87

indent_depth The indentation depth.

preferred_first_line_length The preferred length for the first line of text.

preferred_line_length The preferred length for all the lines but the first one.

Returns

The wrapped string.

9.3 std Namespace Reference

The standard C++ namespace.

9.3.1 Detailed Description

The standard C++ namespace. The Parma Polyhedra Library conforms to the C++ standard and, in partic-
ular, as far as reserved names are concerned (17.4.3.1, [lib.reserved.names]). The PPL, however, defines
several template specializations for the standard library function templates swap() and iter_swap()
(25.2.2, [lib.alg.swap]), and for the class template numeric_limits (18.2.1, [lib.limits]).

Note

The PPL provides the specializations of the class template numeric_limits not only for PPL-
specific numeric types, but also for the GMP types mpz_class and mpq_class. These specializa-
tions will be removed as soon as they will be provided by the C++ interface of GMP.

10 Class Documentation

10.1 Parma_Polyhedra_Library::PIP_Tree_Node::Artificial_Parameter Class
Reference

Artificial parameters in PIP solution trees.

#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Linear_Expression.

Public Member Functions

• Artificial_Parameter ()
Default constructor: builds a zero artificial parameter.

• Artificial_Parameter (const Linear_Expression &expr, Coefficient_traits::const_reference den)
Constructor.

• Artificial_Parameter (const Artificial_Parameter &y)
Copy constructor.

• Coefficient_traits::const_reference denominator () const
Returns the normalized (i.e., positive) denominator.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Parma_Polyhedra_Library::PIP_Tree_Node::Artificial_Parameter Class Reference 88

• void swap (Artificial_Parameter &y)
Swaps ∗this with y.

• bool operator== (const Artificial_Parameter &y) const
Returns true if and only if ∗this and y are equal.

• bool operator!= (const Artificial_Parameter &y) const
Returns true if and only if ∗this and y are different.

• void ascii_dump () const
Writes to std::cerr an ASCII representation of ∗this.

• void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of ∗this.

• void print () const
Prints ∗this to std::cerr using operator<<.

• bool ascii_load (std::istream &s)
Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets ∗this
accordingly. Returns true if successful, false otherwise.

• memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• bool OK () const
Returns true if and only if the parameter is well-formed.

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &os, const PIP_Tree_Node::Artificial_Parameter &x)
Output operator.

10.1.1 Detailed Description

Artificial parameters in PIP solution trees. These parameters are built from a linear expression combin-
ing other parameters (constant term included) divided by a positive integer denominator. Coefficients at
variables indices corresponding to PIP problem variables are always zero.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 89

10.1.2 Constructor & Destructor Documentation

10.1.2.1 Parma_Polyhedra_Library::PIP_Tree_Node::Artificial_Parameter::Artificial_Parameter
(const Linear_Expression & expr, Coefficient_traits::const_reference den)
[inline]

Constructor.

Builds artificial parameter expr
den .

Parameters

expr The expression that, after normalization, will form the numerator of the artificial parameter.

den The integer constant thatm after normalization, will form the denominator of the artificial param-
eter.

Exceptions

std::invalid_argument Thrown if den is zero.

Normalization will ensure that the denominator is positive.

10.1.3 Member Function Documentation

10.1.3.1 bool Parma_Polyhedra_Library::PIP_Tree_Node::Artificial_Parameter::operator== (
const Artificial_Parameter & y) const

Returns true if and only if ∗this and y are equal.

Note that two artificial parameters having different space dimensions are considered to be different.

10.1.4 Friends And Related Function Documentation

10.1.4.1 std::ostream & operator<< (std::ostream & os, const
PIP_Tree_Node::Artificial_Parameter & x) [related]

Output operator.

The documentation for this class was generated from the following file:

• ppl.hh

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference

A bounded difference shape.

#include <ppl.hh>

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 90

Public Types

• typedef T coefficient_type_base
The numeric base type upon which bounded differences are built.

• typedef N coefficient_type
The (extended) numeric type of the inhomogeneous term of the inequalities defining a BDS.

Public Member Functions

• void ascii_dump () const
Writes to std::cerr an ASCII representation of ∗this.

• void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of ∗this.

• void print () const
Prints ∗this to std::cerr using operator<<.

• bool ascii_load (std::istream &s)
Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets ∗this
accordingly. Returns true if successful, false otherwise.

• memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• int32_t hash_code () const
Returns a 32-bit hash code for ∗this.

Constructors, Assignment, Swap and Destructor

• BD_Shape (dimension_type num_dimensions=0, Degenerate_Element kind=UNIVERSE)
Builds a universe or empty BDS of the specified space dimension.

• BD_Shape (const BD_Shape &y, Complexity_Class complexity=ANY_COMPLEXITY)
Ordinary copy constructor.

• template<typename U >

BD_Shape (const BD_Shape<U>&y, Complexity_Class complexity=ANY_COMPLEXITY)
Builds a conservative, upward approximation of y.

• BD_Shape (const Constraint_System &cs)
Builds a BDS from the system of constraints cs.

• BD_Shape (const Congruence_System &cgs)
Builds a BDS from a system of congruences.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 91

• BD_Shape (const Generator_System &gs)
Builds a BDS from the system of generators gs.

• BD_Shape (const Polyhedron &ph, Complexity_Class complexity=ANY_COMPLEXITY)
Builds a BDS from the polyhedron ph.

• template<typename Interval >

BD_Shape (const Box< Interval > &box, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a BDS out of a box.

• BD_Shape (const Grid &grid, Complexity_Class complexity=ANY_COMPLEXITY)
Builds a BDS out of a grid.

• template<typename U >

BD_Shape (const Octagonal_Shape< U > &os, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a BDS from an octagonal shape.

• BD_Shape & operator= (const BD_Shape &y)
The assignment operator (∗this and y can be dimension-incompatible).

• void swap (BD_Shape &y)
Swaps ∗this with y (∗this and y can be dimension-incompatible).

• ∼BD_Shape ()
Destructor.

Member Functions that Do Not Modify the BD_Shape

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• dimension_type affine_dimension () const
Returns 0, if ∗this is empty; otherwise, returns the affine dimension of ∗this.

• Constraint_System constraints () const
Returns a system of constraints defining ∗this.

• Constraint_System minimized_constraints () const
Returns a minimized system of constraints defining ∗this.

• Congruence_System congruences () const
Returns a system of (equality) congruences satisfied by ∗this.

• Congruence_System minimized_congruences () const
Returns a minimal system of (equality) congruences satisfied by ∗this with the same affine dimension
as ∗this.

• bool bounds_from_above (const Linear_Expression &expr) const
Returns true if and only if expr is bounded from above in ∗this.

• bool bounds_from_below (const Linear_Expression &expr) const

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 92

Returns true if and only if expr is bounded from below in ∗this.

• bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum) const

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value is computed.

• bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum, Generator &g) const

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value and a point where expr reaches it are computed.

• bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum) const

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value is computed.

• bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum, Generator &g) const

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value and a point where expr reaches it are computed.

• bool frequency (const Linear_Expression &expr, Coefficient &freq_n, Coefficient &freq_d, Co-
efficient &val_n, Coefficient &val_d) const

Returns true if and only if there exist a unique value val such that ∗this saturates the equality expr
= val.

• bool contains (const BD_Shape &y) const
Returns true if and only if ∗this contains y.

• bool strictly_contains (const BD_Shape &y) const
Returns true if and only if ∗this strictly contains y.

• bool is_disjoint_from (const BD_Shape &y) const
Returns true if and only if ∗this and y are disjoint.

• Poly_Con_Relation relation_with (const Constraint &c) const
Returns the relations holding between ∗this and the constraint c.

• Poly_Con_Relation relation_with (const Congruence &cg) const
Returns the relations holding between ∗this and the congruence cg.

• Poly_Gen_Relation relation_with (const Generator &g) const
Returns the relations holding between ∗this and the generator g.

• bool is_empty () const
Returns true if and only if ∗this is an empty BDS.

• bool is_universe () const
Returns true if and only if ∗this is a universe BDS.

• bool is_discrete () const
Returns true if and only if ∗this is discrete.

• bool is_topologically_closed () const

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 93

Returns true if and only if ∗this is a topologically closed subset of the vector space.

• bool is_bounded () const
Returns true if and only if ∗this is a bounded BDS.

• bool contains_integer_point () const
Returns true if and only if ∗this contains at least one integer point.

• bool constrains (Variable var) const
Returns true if and only if var is constrained in ∗this.

• bool OK () const
Returns true if and only if ∗this satisfies all its invariants.

Space-Dimension Preserving Member Functions that May Modify the BD_Shape

• void add_constraint (const Constraint &c)
Adds a copy of constraint c to the system of bounded differences defining ∗this.

• void add_congruence (const Congruence &cg)
Adds a copy of congruence cg to the system of congruences of ∗this.

• void add_constraints (const Constraint_System &cs)
Adds the constraints in cs to the system of bounded differences defining ∗this.

• void add_recycled_constraints (Constraint_System &cs)
Adds the constraints in cs to the system of constraints of ∗this.

• void add_congruences (const Congruence_System &cgs)
Adds to ∗this constraints equivalent to the congruences in cgs.

• void add_recycled_congruences (Congruence_System &cgs)
Adds to ∗this constraints equivalent to the congruences in cgs.

• void refine_with_constraint (const Constraint &c)
Uses a copy of constraint c to refine the system of bounded differences defining ∗this.

• void refine_with_congruence (const Congruence &cg)
Uses a copy of congruence cg to refine the system of bounded differences of ∗this.

• void refine_with_constraints (const Constraint_System &cs)
Uses a copy of the constraints in cs to refine the system of bounded differences defining ∗this.

• void refine_with_congruences (const Congruence_System &cgs)
Uses a copy of the congruences in cgs to refine the system of bounded differences defining ∗this.

• void unconstrain (Variable var)
Computes the cylindrification of ∗this with respect to space dimension var, assigning the result to
∗this.

• void unconstrain (const Variables_Set &vars)
Computes the cylindrification of ∗this with respect to the set of space dimensions vars, assigning the
result to ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 94

• void intersection_assign (const BD_Shape &y)
Assigns to ∗this the intersection of ∗this and y.

• void upper_bound_assign (const BD_Shape &y)
Assigns to ∗this the smallest BDS containing the union of ∗this and y.

• bool upper_bound_assign_if_exact (const BD_Shape &y)
If the upper bound of ∗this and y is exact, it is assigned to ∗this and true is returned, otherwise
false is returned.

• bool integer_upper_bound_assign_if_exact (const BD_Shape &y)
If the integer upper bound of ∗this and y is exact, it is assigned to ∗this and true is returned;
otherwise false is returned.

• void difference_assign (const BD_Shape &y)
Assigns to ∗this the smallest BD shape containing the set difference of ∗this and y.

• bool simplify_using_context_assign (const BD_Shape &y)
Assigns to ∗this a meet-preserving simplification of ∗this with respect to y. If false is returned,
then the intersection is empty.

• void affine_image (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to ∗this the affine image of ∗this under the function mapping variable var into the affine
expression specified by expr and denominator.

• void affine_preimage (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to ∗this the affine preimage of ∗this under the function mapping variable var into the affine
expression specified by expr and denominator.

• void generalized_affine_image (Variable var, Relation_Symbol relsym, const Linear_Expression
&expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the affine relation var′ ./ expr
denominator

, where ./
is the relation symbol encoded by relsym.

• void generalized_affine_image (const Linear_Expression &lhs, Relation_Symbol relsym, const
Linear_Expression &rhs)

Assigns to ∗this the image of ∗this with respect to the affine relation lhs′ ./ rhs, where ./ is the
relation symbol encoded by relsym.

• void generalized_affine_preimage (Variable var, Relation_Symbol relsym, const Linear_-
Expression &expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the affine relation var′ ./ expr
denominator

, where
./ is the relation symbol encoded by relsym.

• void generalized_affine_preimage (const Linear_Expression &lhs, Relation_Symbol relsym,
const Linear_Expression &rhs)

Assigns to ∗this the preimage of ∗this with respect to the affine relation lhs′ ./ rhs, where ./ is the
relation symbol encoded by relsym.

• void bounded_affine_image (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the bounded affine relation lb_expr
denominator

≤ var′ ≤
ub_expr

denominator
.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 95

• void bounded_affine_preimage (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the bounded affine relation lb_expr
denominator

≤
var′ ≤ ub_expr

denominator
.

• void time_elapse_assign (const BD_Shape &y)
Assigns to ∗this the result of computing the time-elapse between ∗this and y.

• void wrap_assign (const Variables_Set &vars, Bounded_Integer_Type_Width w, Bounded_-
Integer_Type_Representation r, Bounded_Integer_Type_Overflow o, const Constraint_System
∗pcs=0, unsigned complexity_threshold=16, bool wrap_individually=true)

Wraps the specified dimensions of the vector space.

• void drop_some_non_integer_points (Complexity_Class complexity=ANY_COMPLEXITY)
Possibly tightens ∗this by dropping some points with non-integer coordinates.

• void drop_some_non_integer_points (const Variables_Set &vars, Complexity_Class
complexity=ANY_COMPLEXITY)

Possibly tightens ∗this by dropping some points with non-integer coordinates for the space dimensions
corresponding to vars.

• void topological_closure_assign ()
Assigns to ∗this its topological closure.

• void CC76_extrapolation_assign (const BD_Shape &y, unsigned ∗tp=0)
Assigns to ∗this the result of computing the CC76-extrapolation between ∗this and y.

• template<typename Iterator >

void CC76_extrapolation_assign (const BD_Shape &y, Iterator first, Iterator last, unsigned
∗tp=0)

Assigns to ∗this the result of computing the CC76-extrapolation between ∗this and y.

• void BHMZ05_widening_assign (const BD_Shape &y, unsigned ∗tp=0)
Assigns to ∗this the result of computing the BHMZ05-widening of ∗this and y.

• void limited_BHMZ05_extrapolation_assign (const BD_Shape &y, const Constraint_System
&cs, unsigned ∗tp=0)

Improves the result of the BHMZ05-widening computation by also enforcing those constraints in cs that
are satisfied by all the points of ∗this.

• void CC76_narrowing_assign (const BD_Shape &y)
Assigns to ∗this the result of restoring in y the constraints of ∗this that were lost by CC76-
extrapolation applications.

• void limited_CC76_extrapolation_assign (const BD_Shape &y, const Constraint_System &cs,
unsigned ∗tp=0)

Improves the result of the CC76-extrapolation computation by also enforcing those constraints in cs
that are satisfied by all the points of ∗this.

• void H79_widening_assign (const BD_Shape &y, unsigned ∗tp=0)
Assigns to ∗this the result of computing the H79-widening between ∗this and y.

• void widening_assign (const BD_Shape &y, unsigned ∗tp=0)
Same as H79_widening_assign(y, tp).

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 96

• void limited_H79_extrapolation_assign (const BD_Shape &y, const Constraint_System &cs, un-
signed ∗tp=0)

Improves the result of the H79-widening computation by also enforcing those constraints in cs that are
satisfied by all the points of ∗this.

Member Functions that May Modify the Dimension of the Vector Space

• void add_space_dimensions_and_embed (dimension_type m)
Adds m new dimensions and embeds the old BDS into the new space.

• void add_space_dimensions_and_project (dimension_type m)
Adds m new dimensions to the BDS and does not embed it in the new vector space.

• void concatenate_assign (const BD_Shape &y)
Assigns to ∗this the concatenation of ∗this and y, taken in this order.

• void remove_space_dimensions (const Variables_Set &vars)
Removes all the specified dimensions.

• void remove_higher_space_dimensions (dimension_type new_dimension)
Removes the higher dimensions so that the resulting space will have dimension new_dimension.

• template<typename Partial_Function >

void map_space_dimensions (const Partial_Function &pfunc)
Remaps the dimensions of the vector space according to a partial function.

• void expand_space_dimension (Variable var, dimension_type m)
Creates m copies of the space dimension corresponding to var.

• void fold_space_dimensions (const Variables_Set &vars, Variable dest)
Folds the space dimensions in vars into dest.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension that a BDS can handle.

• static bool can_recycle_constraint_systems ()
Returns false indicating that this domain cannot recycle constraints.

• static bool can_recycle_congruence_systems ()
Returns false indicating that this domain cannot recycle congruences.

Friends

• bool operator== (const BD_Shape< T > &x, const BD_Shape< T > &y)
Returns true if and only if x and y are the same BDS.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 97

Related Functions

(Note that these are not member functions.)

• template<typename T >

std::ostream & operator<< (std::ostream &s, const BD_Shape< T > &bds)
Output operator.

• template<typename T >

bool operator!= (const BD_Shape< T > &x, const BD_Shape< T > &y)
Returns true if and only if x and y aren’t the same BDS.

• template<typename To , typename T >

bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
BD_Shape< T > &x, const BD_Shape< T > &y, Rounding_Dir dir)

Computes the rectilinear (or Manhattan) distance between x and y.

• template<typename Temp , typename To , typename T >

bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
BD_Shape< T > &x, const BD_Shape< T > &y, Rounding_Dir dir, Temp &tmp0, Temp &tmp1,
Temp &tmp2)

Computes the rectilinear (or Manhattan) distance between x and y.

• template<typename To , typename T >

bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
BD_Shape< T > &x, const BD_Shape< T > &y, Rounding_Dir dir)

Computes the euclidean distance between x and y.

• template<typename Temp , typename To , typename T >

bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
BD_Shape< T > &x, const BD_Shape< T > &y, Rounding_Dir dir, Temp &tmp0, Temp &tmp1,
Temp &tmp2)

Computes the euclidean distance between x and y.

• template<typename To , typename T >

bool l_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
BD_Shape< T > &x, const BD_Shape< T > &y, Rounding_Dir dir)

Computes the L∞ distance between x and y.

• template<typename Temp , typename To , typename T >

bool l_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
BD_Shape< T > &x, const BD_Shape< T > &y, Rounding_Dir dir, Temp &tmp0, Temp &tmp1,
Temp &tmp2)

Computes the L∞ distance between x and y.

• template<typename T >

void swap (Parma_Polyhedra_Library::BD_Shape< T > &x, Parma_Polyhedra_Library::BD_-
Shape< T > &y)

Specializes std::swap.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 98

10.2.1 Detailed Description

template<typename T> class Parma_Polyhedra_Library::BD_Shape< T >

A bounded difference shape. The class template BD_Shape<T> allows for the efficient representation of
a restricted kind of topologically closed convex polyhedra called bounded difference shapes (BDSs, for
short). The name comes from the fact that the closed affine half-spaces that characterize the polyhedron
can be expressed by constraints of the form ±xi ≤ k or xi − xj ≤ k, where the inhomogeneous term k is
a rational number.

Based on the class template type parameter T, a family of extended numbers is built and used to approx-
imate the inhomogeneous term of bounded differences. These extended numbers provide a representation
for the value +∞, as well as rounding-aware implementations for several arithmetic functions. The value
of the type parameter T may be one of the following:

• a bounded precision integer type (e.g., int32_t or int64_t);

• a bounded precision floating point type (e.g., float or double);

• an unbounded integer or rational type, as provided by GMP (i.e., mpz_class or mpq_class).

The user interface for BDSs is meant to be as similar as possible to the one developed for the polyhedron
class C_Polyhedron.

The domain of BD shapes optimally supports:

• tautological and inconsistent constraints and congruences;

• bounded difference constraints;

• non-proper congruences (i.e., equalities) that are expressible as bounded-difference constraints.

Depending on the method, using a constraint or congruence that is not optimally supported by the domain
will either raise an exception or result in a (possibly non-optimal) upward approximation.

A constraint is a bounded difference if it has the form

aixi − ajxj ./ b

where ./ ∈ {≤,=,≥} and ai, aj , b are integer coefficients such that ai = 0, or aj = 0, or ai = aj .
The user is warned that the above bounded difference Constraint object will be mapped into a correct and
optimal approximation that, depending on the expressive power of the chosen template argument T, may
loose some precision. Also note that strict constraints are not bounded differences.

For instance, a Constraint object encoding 3x− 3y ≤ 1 will be approximated by:

• x− y ≤ 1, if T is a (bounded or unbounded) integer type;

• x− y ≤ 1
3 , if T is the unbounded rational type mpq_class;

• x− y ≤ k, where k > 1
3 , if T is a floating point type (having no exact representation for 1

3).

On the other hand, depending from the context, a Constraint object encoding 3x − y ≤ 1 will be either
upward approximated (e.g., by safely ignoring it) or it will cause an exception.

In the following examples it is assumed that the type argument T is one of the possible instances listed
above and that variables x, y and z are defined (where they are used) as follows:

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 99

Variable x(0);
Variable y(1);
Variable z(2);

Example 1

The following code builds a BDS corresponding to a cube in R3, given as a system of constraints:

Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 1);
cs.insert(y >= 0);
cs.insert(y <= 1);
cs.insert(z >= 0);
cs.insert(z <= 1);
BD_Shape<T> bd(cs);

Since only those constraints having the syntactic form of a bounded difference are optimally supported,
the following code will throw an exception (caused by constraints 7, 8 and 9):

Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 1);
cs.insert(y >= 0);
cs.insert(y <= 1);
cs.insert(z >= 0);
cs.insert(z <= 1);
cs.insert(x + y <= 0); // 7
cs.insert(x - z + x >= 0); // 8
cs.insert(3*z - y <= 1); // 9
BD_Shape<T> bd(cs);

10.2.2 Constructor & Destructor Documentation

10.2.2.1 template<typename T > Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape (
dimension_type num_dimensions = 0, Degenerate_Element kind = UNIVERSE)
[inline, explicit]

Builds a universe or empty BDS of the specified space dimension.

Parameters

num_dimensions The number of dimensions of the vector space enclosing the BDS;

kind Specifies whether the universe or the empty BDS has to be built.

10.2.2.2 template<typename T > Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape (
const BD_Shape< T > & y, Complexity_Class complexity = ANY_COMPLEXITY)
[inline]

Ordinary copy constructor.

The complexity argument is ignored.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 100

10.2.2.3 template<typename T > template<typename U > Parma_Polyhedra_Library::BD_-
Shape< T >::BD_Shape (const BD_Shape< U > & y, Complexity_Class complexity =
ANY_COMPLEXITY) [inline, explicit]

Builds a conservative, upward approximation of y.

The complexity argument is ignored.

10.2.2.4 template<typename T > Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape (
const Constraint_System & cs) [inline, explicit]

Builds a BDS from the system of constraints cs.

The BDS inherits the space dimension of cs.

Parameters

cs A system of BD constraints.

Exceptions

std::invalid_argument Thrown if cs contains a constraint which is not optimally supported by the
BD shape domain.

10.2.2.5 template<typename T > Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape (
const Congruence_System & cgs) [explicit]

Builds a BDS from a system of congruences.

The BDS inherits the space dimension of cgs

Parameters

cgs A system of congruences.

Exceptions

std::invalid_argument Thrown if cgs contains congruences which are not optimally supported by
the BD shape domain.

10.2.2.6 template<typename T > Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape (
const Generator_System & gs) [explicit]

Builds a BDS from the system of generators gs.

Builds the smallest BDS containing the polyhedron defined by gs. The BDS inherits the space dimension
of gs.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 101

Exceptions

std::invalid_argument Thrown if the system of generators is not empty but has no points.

10.2.2.7 template<typename T > Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape
(const Polyhedron & ph, Complexity_Class complexity = ANY_COMPLEXITY)
[explicit]

Builds a BDS from the polyhedron ph.

Builds a BDS containing ph using algorithms whose complexity does not exceed the one specified by
complexity. If complexity is ANY_COMPLEXITY, then the BDS built is the smallest one containing
ph.

10.2.2.8 template<typename T > template<typename Interval > Parma_Polyhedra_-
Library::BD_Shape< T >::BD_Shape (const Box< Interval > & box,
Complexity_Class complexity = ANY_COMPLEXITY) [inline, explicit]

Builds a BDS out of a box.

The BDS inherits the space dimension of the box. The built BDS is the most precise BDS that includes the
box.

Parameters

box The box representing the BDS to be built.
complexity This argument is ignored as the algorithm used has polynomial complexity.

Exceptions

std::length_error Thrown if the space dimension of box exceeds the maximum allowed space di-
mension.

10.2.2.9 template<typename T > Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape (
const Grid & grid, Complexity_Class complexity = ANY_COMPLEXITY) [inline,
explicit]

Builds a BDS out of a grid.

The BDS inherits the space dimension of the grid. The built BDS is the most precise BDS that includes the
grid.

Parameters

grid The grid used to build the BDS.
complexity This argument is ignored as the algorithm used has polynomial complexity.

Exceptions

std::length_error Thrown if the space dimension of grid exceeds the maximum allowed space di-
mension.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 102

10.2.2.10 template<typename T > template<typename U > Parma_Polyhedra_Library::BD_-
Shape< T >::BD_Shape (const Octagonal_Shape< U > & os, Complexity_Class
complexity = ANY_COMPLEXITY) [inline, explicit]

Builds a BDS from an octagonal shape.

The BDS inherits the space dimension of the octagonal shape. The built BDS is the most precise BDS that
includes the octagonal shape.

Parameters

os The octagonal shape used to build the BDS.

complexity This argument is ignored as the algorithm used has polynomial complexity.

Exceptions

std::length_error Thrown if the space dimension of os exceeds the maximum allowed space dimen-
sion.

10.2.3 Member Function Documentation

10.2.3.1 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::bounds_from_above (const Linear_Expression & expr) const [inline]

Returns true if and only if expr is bounded from above in ∗this.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

10.2.3.2 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::bounds_from_below (const Linear_Expression & expr) const [inline]

Returns true if and only if expr is bounded from below in ∗this.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

10.2.3.3 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T >::maximize (
const Linear_Expression & expr, Coefficient & sup_n, Coefficient & sup_d, bool &
maximum) const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value is computed.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 103

Parameters

expr The linear expression to be maximized subject to ∗this;

sup_n The numerator of the supremum value;

sup_d The denominator of the supremum value;

maximum true if and only if the supremum is also the maximum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from above, false is returned and sup_n, sup_d and
maximum are left untouched.

10.2.3.4 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T >::maximize (
const Linear_Expression & expr, Coefficient & sup_n, Coefficient & sup_d, bool &
maximum, Generator & g) const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value and a point where expr reaches it are computed.

Parameters

expr The linear expression to be maximized subject to ∗this;

sup_n The numerator of the supremum value;

sup_d The denominator of the supremum value;

maximum true if and only if the supremum is also the maximum value;

g When maximization succeeds, will be assigned the point or closure point where expr reaches its
supremum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from above, false is returned and sup_n, sup_d, maximum
and g are left untouched.

10.2.3.5 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T >::minimize (
const Linear_Expression & expr, Coefficient & inf_n, Coefficient & inf_d, bool &
minimum) const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value is computed.

Parameters

expr The linear expression to be minimized subject to ∗this;

inf_n The numerator of the infimum value;

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 104

inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from below, false is returned and inf_n, inf_d and
minimum are left untouched.

10.2.3.6 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T >::minimize (
const Linear_Expression & expr, Coefficient & inf_n, Coefficient & inf_d, bool &
minimum, Generator & g) const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value and a point where expr reaches it are computed.

Parameters

expr The linear expression to be minimized subject to ∗this;

inf_n The numerator of the infimum value;

inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value;

g When minimization succeeds, will be assigned a point or closure point where expr reaches its
infimum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from below, false is returned and inf_n, inf_d, minimum
and g are left untouched.

10.2.3.7 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T >::frequency
(const Linear_Expression & expr, Coefficient & freq_n, Coefficient & freq_d,
Coefficient & val_n, Coefficient & val_d) const

Returns true if and only if there exist a unique value val such that ∗this saturates the equality expr
= val.

Parameters

expr The linear expression for which the frequency is needed;

freq_n If true is returned, the value is set to 0; Present for interface compatibility with class Grid,
where the frequency can have a non-zero value;

freq_d If true is returned, the value is set to 1;

val_n The numerator of val;

val_d The denominator of val;

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 105

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If false is returned, then freq_n, freq_d, val_n and val_d are left untouched.

10.2.3.8 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T >::contains (
const BD_Shape< T > & y) const

Returns true if and only if ∗this contains y.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.2.3.9 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::strictly_contains (const BD_Shape< T > & y) const [inline]

Returns true if and only if ∗this strictly contains y.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.2.3.10 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::is_disjoint_from (const BD_Shape< T > & y) const

Returns true if and only if ∗this and y are disjoint.

Exceptions

std::invalid_argument Thrown if x and y are topology-incompatible or dimension-incompatible.

10.2.3.11 template<typename T > Poly_Con_Relation Parma_Polyhedra_Library::BD_Shape<
T >::relation_with (const Constraint & c) const

Returns the relations holding between ∗this and the constraint c.

Exceptions

std::invalid_argument Thrown if ∗this and constraint c are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 106

10.2.3.12 template<typename T > Poly_Con_Relation Parma_Polyhedra_Library::BD_Shape<
T >::relation_with (const Congruence & cg) const

Returns the relations holding between ∗this and the congruence cg.

Exceptions

std::invalid_argument Thrown if ∗this and congruence cg are dimension-incompatible.

10.2.3.13 template<typename T > Poly_Gen_Relation Parma_Polyhedra_Library::BD_Shape<
T >::relation_with (const Generator & g) const

Returns the relations holding between ∗this and the generator g.

Exceptions

std::invalid_argument Thrown if ∗this and generator g are dimension-incompatible.

10.2.3.14 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T >::constrains
(Variable var) const

Returns true if and only if var is constrained in ∗this.

Exceptions

std::invalid_argument Thrown if var is not a space dimension of ∗this.

10.2.3.15 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::add_constraint (const Constraint & c)

Adds a copy of constraint c to the system of bounded differences defining ∗this.

Parameters

c The constraint to be added.

Exceptions

std::invalid_argument Thrown if ∗this and constraint c are dimension-incompatible, or c is not
optimally supported by the BD shape domain.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 107

10.2.3.16 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::add_congruence (const Congruence & cg)

Adds a copy of congruence cg to the system of congruences of ∗this.

Parameters

cg The congruence to be added.

Exceptions

std::invalid_argument Thrown if ∗this and congruence cg are dimension-incompatible, or cg is
not optimally supported by the BD shape domain.

10.2.3.17 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::add_constraints (const Constraint_System & cs) [inline]

Adds the constraints in cs to the system of bounded differences defining ∗this.

Parameters

cs The constraints that will be added.

Exceptions

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible, or cs contains a con-
straint which is not optimally supported by the BD shape domain.

10.2.3.18 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::add_recycled_constraints (Constraint_System & cs) [inline]

Adds the constraints in cs to the system of constraints of ∗this.

Parameters

cs The constraint system to be added to ∗this. The constraints in cs may be recycled.

Exceptions

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible, or cs contains a con-
straint which is not optimally supported by the BD shape domain.

Warning

The only assumption that can be made on cs upon successful or exceptional return is that it can be
safely destroyed.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 108

10.2.3.19 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::add_congruences (const Congruence_System & cgs) [inline]

Adds to ∗this constraints equivalent to the congruences in cgs.

Parameters

cgs Contains the congruences that will be added to the system of constraints of ∗this.

Exceptions

std::invalid_argument Thrown if ∗this and cgs are dimension-incompatible, or cgs contains a
congruence which is not optimally supported by the BD shape domain.

10.2.3.20 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::add_recycled_congruences (Congruence_System & cgs) [inline]

Adds to ∗this constraints equivalent to the congruences in cgs.

Parameters

cgs Contains the congruences that will be added to the system of constraints of ∗this. Its elements
may be recycled.

Exceptions

std::invalid_argument Thrown if ∗this and cgs are dimension-incompatible, or cgs contains a
congruence which is not optimally supported by the BD shape domain.

Warning

The only assumption that can be made on cgs upon successful or exceptional return is that it can be
safely destroyed.

10.2.3.21 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::refine_with_constraint (const Constraint & c) [inline]

Uses a copy of constraint c to refine the system of bounded differences defining ∗this.

Parameters

c The constraint. If it is not a bounded difference, it will be ignored.

Exceptions

std::invalid_argument Thrown if ∗this and constraint c are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 109

10.2.3.22 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::refine_with_congruence (const Congruence & cg) [inline]

Uses a copy of congruence cg to refine the system of bounded differences of ∗this.

Parameters

cg The congruence. If it is not a bounded difference equality, it will be ignored.

Exceptions

std::invalid_argument Thrown if ∗this and congruence cg are dimension-incompatible.

10.2.3.23 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::refine_with_constraints (const Constraint_System & cs) [inline]

Uses a copy of the constraints in cs to refine the system of bounded differences defining ∗this.

Parameters

cs The constraint system to be used. Constraints that are not bounded differences are ignored.

Exceptions

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible.

10.2.3.24 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::refine_with_congruences (const Congruence_System & cgs)

Uses a copy of the congruences in cgs to refine the system of bounded differences defining ∗this.

Parameters

cgs The congruence system to be used. Congruences that are not bounded difference equalities are
ignored.

Exceptions

std::invalid_argument Thrown if ∗this and cgs are dimension-incompatible.

10.2.3.25 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::unconstrain (Variable var)

Computes the cylindrification of ∗this with respect to space dimension var, assigning the result to
∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 110

Parameters

var The space dimension that will be unconstrained.

Exceptions

std::invalid_argument Thrown if var is not a space dimension of ∗this.

10.2.3.26 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::unconstrain (const Variables_Set & vars)

Computes the cylindrification of ∗this with respect to the set of space dimensions vars, assigning the
result to ∗this.

Parameters

vars The set of space dimension that will be unconstrained.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with one of the Variable objects
contained in vars.

10.2.3.27 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::intersection_assign (const BD_Shape< T > & y)

Assigns to ∗this the intersection of ∗this and y.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.2.3.28 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::upper_bound_assign (const BD_Shape< T > & y)

Assigns to ∗this the smallest BDS containing the union of ∗this and y.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.2.3.29 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::upper_bound_assign_if_exact (const BD_Shape< T > & y) [inline]

If the upper bound of ∗this and y is exact, it is assigned to ∗this and true is returned, otherwise
false is returned.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 111

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.2.3.30 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::integer_upper_bound_assign_if_exact (const BD_Shape< T > & y) [inline]

If the integer upper bound of ∗this and y is exact, it is assigned to ∗this and true is returned; otherwise
false is returned.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

Note

The integer upper bound of two rational BDS is the smallest rational BDS containing all the integral
points of the two arguments. This method requires that the coefficient type parameter T is an integral
type.

10.2.3.31 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::difference_assign (const BD_Shape< T > & y)

Assigns to ∗this the smallest BD shape containing the set difference of ∗this and y.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.2.3.32 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::simplify_using_context_assign (const BD_Shape< T > & y)

Assigns to ∗this a meet-preserving simplification of ∗this with respect to y. If false is returned, then
the intersection is empty.

Exceptions

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

10.2.3.33 template<typename T > void Parma_Polyhedra_Library::BD_Shape<
T >::affine_image (Variable var, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to ∗this the affine image of ∗this under the function mapping variable var into the affine
expression specified by expr and denominator.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 112

Parameters

var The variable to which the affine expression is assigned.

expr The numerator of the affine expression.

denominator The denominator of the affine expression.

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a dimension of ∗this.

10.2.3.34 template<typename T > void Parma_Polyhedra_Library::BD_Shape<
T >::affine_preimage (Variable var, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to ∗this the affine preimage of ∗this under the function mapping variable var into the affine
expression specified by expr and denominator.

Parameters

var The variable to which the affine expression is substituted.

expr The numerator of the affine expression.

denominator The denominator of the affine expression.

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a dimension of ∗this.

10.2.3.35 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::generalized_affine_image (Variable var, Relation_Symbol relsym, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the affine relation var′ ./ expr
denominator , where ./ is

the relation symbol encoded by relsym.

Parameters

var The left hand side variable of the generalized affine transfer function.

relsym The relation symbol.

expr The numerator of the right hand side affine expression.

denominator The denominator of the right hand side affine expression.

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a dimension of ∗this or if relsym is a strict relation symbol.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 113

10.2.3.36 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::generalized_affine_image (const Linear_Expression & lhs, Relation_Symbol
relsym, const Linear_Expression & rhs)

Assigns to ∗this the image of ∗this with respect to the affine relation lhs′ ./ rhs, where ./ is the
relation symbol encoded by relsym.

Parameters

lhs The left hand side affine expression.
relsym The relation symbol.
rhs The right hand side affine expression.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with lhs or rhs or if relsym
is a strict relation symbol.

10.2.3.37 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::generalized_affine_preimage (Variable var, Relation_Symbol relsym, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the affine relation var′ ./ expr
denominator , where ./

is the relation symbol encoded by relsym.

Parameters

var The left hand side variable of the generalized affine transfer function.
relsym The relation symbol.
expr The numerator of the right hand side affine expression.
denominator The denominator of the right hand side affine expression.

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a dimension of ∗this or if relsym is a strict relation symbol.

10.2.3.38 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::generalized_affine_preimage (const Linear_Expression & lhs, Relation_Symbol
relsym, const Linear_Expression & rhs)

Assigns to ∗this the preimage of ∗this with respect to the affine relation lhs′ ./ rhs, where ./ is the
relation symbol encoded by relsym.

Parameters

lhs The left hand side affine expression.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 114

relsym The relation symbol.
rhs The right hand side affine expression.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with lhs or rhs or if relsym
is a strict relation symbol.

10.2.3.39 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::bounded_affine_image (Variable var, const Linear_Expression & lb_expr, const
Linear_Expression & ub_expr, Coefficient_traits::const_reference denominator =
Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the bounded affine relation lb_expr
denominator ≤ var′ ≤

ub_expr
denominator .

Parameters

var The variable updated by the affine relation;
lb_expr The numerator of the lower bounding affine expression;
ub_expr The numerator of the upper bounding affine expression;
denominator The (common) denominator for the lower and upper bounding affine expressions (op-

tional argument with default value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if lb_expr (resp., ub_expr) and
∗this are dimension-incompatible or if var is not a space dimension of ∗this.

10.2.3.40 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::bounded_affine_preimage (Variable var, const Linear_Expression & lb_expr,
const Linear_Expression & ub_expr, Coefficient_traits::const_reference denominator =
Coefficient_one())

Assigns to ∗this the preimage of ∗thiswith respect to the bounded affine relation lb_expr
denominator ≤ var′ ≤

ub_expr
denominator .

Parameters

var The variable updated by the affine relation;
lb_expr The numerator of the lower bounding affine expression;
ub_expr The numerator of the upper bounding affine expression;
denominator The (common) denominator for the lower and upper bounding affine expressions (op-

tional argument with default value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if lb_expr (resp., ub_expr) and
∗this are dimension-incompatible or if var is not a space dimension of ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 115

10.2.3.41 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::time_elapse_assign (const BD_Shape< T > & y) [inline]

Assigns to ∗this the result of computing the time-elapse between ∗this and y.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.2.3.42 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::wrap_assign (const Variables_Set & vars, Bounded_Integer_Type_Width w,
Bounded_Integer_Type_Representation r, Bounded_Integer_Type_Overflow o,
const Constraint_System ∗ pcs = 0, unsigned complexity_threshold = 16, bool
wrap_individually = true)

Wraps the specified dimensions of the vector space.

Parameters

vars The set of Variable objects corresponding to the space dimensions to be wrapped.

w The width of the bounded integer type corresponding to all the dimensions to be wrapped.

r The representation of the bounded integer type corresponding to all the dimensions to be wrapped.

o The overflow behavior of the bounded integer type corresponding to all the dimensions to be
wrapped.

pcs Possibly null pointer to a constraint system whose variables are contained in vars. If ∗pcs
depends on variables not in vars, the behavior is undefined. When non-null, the pointed-to
constraint system is assumed to represent the conditional or looping construct guard with respect
to which wrapping is performed. Since wrapping requires the computation of upper bounds
and due to non-distributivity of constraint refinement over upper bounds, passing a constraint
system in this way can be more precise than refining the result of the wrapping operation with
the constraints in ∗pcs.

complexity_threshold A precision parameter of the wrapping operator: higher values result in possi-
bly improved precision.

wrap_individually true if the dimensions should be wrapped individually (something that results in
much greater efficiency to the detriment of precision).

Exceptions

std::invalid_argument Thrown if ∗pcs is dimension-incompatible with vars, or if ∗this is
dimension-incompatible vars or with ∗pcs.

10.2.3.43 template<typename T > void Parma_Polyhedra_Library::BD_Shape<
T >::drop_some_non_integer_points (Complexity_Class complexity =
ANY_COMPLEXITY)

Possibly tightens ∗this by dropping some points with non-integer coordinates.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 116

Parameters

complexity The maximal complexity of any algorithms used.

Note

Currently there is no optimality guarantee, not even if complexity is ANY_COMPLEXITY.

10.2.3.44 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::drop_some_non_integer_points (const Variables_Set & vars, Complexity_Class
complexity = ANY_COMPLEXITY)

Possibly tightens ∗this by dropping some points with non-integer coordinates for the space dimensions
corresponding to vars.

Parameters

vars Points with non-integer coordinates for these variables/space-dimensions can be discarded.

complexity The maximal complexity of any algorithms used.

Note

Currently there is no optimality guarantee, not even if complexity is ANY_COMPLEXITY.

10.2.3.45 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::CC76_extrapolation_assign (const BD_Shape< T > & y, unsigned ∗ tp = 0)
[inline]

Assigns to ∗this the result of computing the CC76-extrapolation between ∗this and y.

Parameters

y A BDS that must be contained in ∗this.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.2.3.46 template<typename T > template<typename Iterator > void Parma_Polyhedra_-
Library::BD_Shape< T >::CC76_extrapolation_assign (const BD_Shape< T > & y,
Iterator first, Iterator last, unsigned ∗ tp = 0)

Assigns to ∗this the result of computing the CC76-extrapolation between ∗this and y.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 117

Parameters

y A BDS that must be contained in ∗this.

first An iterator referencing the first stop-point.

last An iterator referencing one past the last stop-point.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.2.3.47 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::BHMZ05_widening_assign (const BD_Shape< T > & y, unsigned ∗ tp = 0)

Assigns to ∗this the result of computing the BHMZ05-widening of ∗this and y.

Parameters

y A BDS that must be contained in ∗this.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.2.3.48 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::limited_BHMZ05_extrapolation_assign (const BD_Shape< T > & y, const
Constraint_System & cs, unsigned ∗ tp = 0)

Improves the result of the BHMZ05-widening computation by also enforcing those constraints in cs that
are satisfied by all the points of ∗this.

Parameters

y A BDS that must be contained in ∗this.

cs The system of constraints used to improve the widened BDS.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this, y and cs are dimension-incompatible or if cs contains a
strict inequality.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 118

10.2.3.49 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::CC76_narrowing_assign (const BD_Shape< T > & y)

Assigns to ∗this the result of restoring in y the constraints of ∗this that were lost by CC76-extrapolation
applications.

Parameters

y A BDS that must contain ∗this.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

Note

As was the case for widening operators, the argument y is meant to denote the value computed in the
previous iteration step, whereas ∗this denotes the value computed in the current iteration step (in the
decreasing iteration sequence). Hence, the call x.CC76_narrowing_assign(y) will assign to
x the result of the computation y∆x.

10.2.3.50 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::limited_CC76_extrapolation_assign (const BD_Shape< T > & y, const
Constraint_System & cs, unsigned ∗ tp = 0)

Improves the result of the CC76-extrapolation computation by also enforcing those constraints in cs that
are satisfied by all the points of ∗this.

Parameters

y A BDS that must be contained in ∗this.

cs The system of constraints used to improve the widened BDS.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this, y and cs are dimension-incompatible or if cs contains a
strict inequality.

10.2.3.51 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::H79_widening_assign (const BD_Shape< T > & y, unsigned ∗ tp = 0)
[inline]

Assigns to ∗this the result of computing the H79-widening between ∗this and y.

Parameters

y A BDS that must be contained in ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 119

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.2.3.52 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::limited_H79_extrapolation_assign (const BD_Shape< T > & y, const
Constraint_System & cs, unsigned ∗ tp = 0) [inline]

Improves the result of the H79-widening computation by also enforcing those constraints in cs that are
satisfied by all the points of ∗this.

Parameters

y A BDS that must be contained in ∗this.

cs The system of constraints used to improve the widened BDS.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this, y and cs are dimension-incompatible.

10.2.3.53 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::add_space_dimensions_and_embed (dimension_type m)

Adds m new dimensions and embeds the old BDS into the new space.

Parameters

m The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new BDS, which is defined by a system
of bounded differences in which the variables running through the new dimensions are unconstrained. For
instance, when starting from the BDS B ⊆ R2 and adding a third dimension, the result will be the BDS{

(x, y, z)T ∈ R3
∣∣ (x, y)T ∈ B

}
.

10.2.3.54 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::add_space_dimensions_and_project (dimension_type m)

Adds m new dimensions to the BDS and does not embed it in the new vector space.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 120

Parameters

m The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new BDS, which is defined by a system
of bounded differences in which the variables running through the new dimensions are all constrained to
be equal to 0. For instance, when starting from the BDS B ⊆ R2 and adding a third dimension, the result
will be the BDS {

(x, y, 0)T ∈ R3
∣∣ (x, y)T ∈ B

}
.

10.2.3.55 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::concatenate_assign (const BD_Shape< T > & y)

Assigns to ∗this the concatenation of ∗this and y, taken in this order.

Exceptions

std::length_error Thrown if the concatenation would cause the vector space to exceed dimension
max_space_dimension().

10.2.3.56 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::remove_space_dimensions (const Variables_Set & vars)

Removes all the specified dimensions.

Parameters

vars The set of Variable objects corresponding to the dimensions to be removed.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with one of the Variable objects
contained in vars.

10.2.3.57 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::remove_higher_space_dimensions (dimension_type new_dimension) [inline]

Removes the higher dimensions so that the resulting space will have dimension new_dimension.

Exceptions

std::invalid_argument Thrown if new_dimension is greater than the space dimension of ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 121

10.2.3.58 template<typename T > template<typename Partial_Function > void
Parma_Polyhedra_Library::BD_Shape< T >::map_space_dimensions (const
Partial_Function & pfunc)

Remaps the dimensions of the vector space according to a partial function.

Parameters

pfunc The partial function specifying the destiny of each dimension.

The template type parameter Partial_Function must provide the following methods.

bool has_empty_codomain() const

returns true if and only if the represented partial function has an empty co-domain (i.e., it is always
undefined). The has_empty_codomain() method will always be called before the methods below.
However, if has_empty_codomain() returns true, none of the functions below will be called.

dimension_type max_in_codomain() const

returns the maximum value that belongs to the co-domain of the partial function.

bool maps(dimension_type i, dimension_type& j) const

Let f be the represented function and k be the value of i. If f is defined in k, then f(k) is assigned to j
and true is returned. If f is undefined in k, then false is returned.

The result is undefined if pfunc does not encode a partial function with the properties described in the
specification of the mapping operator.

10.2.3.59 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::expand_space_dimension (Variable var, dimension_type m)

Creates m copies of the space dimension corresponding to var.

Parameters

var The variable corresponding to the space dimension to be replicated;

m The number of replicas to be created.

Exceptions

std::invalid_argument Thrown if var does not correspond to a dimension of the vector space.

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension().

If ∗this has space dimension n, with n > 0, and var has space dimension k ≤ n, then the k-th space
dimension is expanded to m new space dimensions n, n+ 1, . . . , n+m− 1.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 122

10.2.3.60 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::fold_space_dimensions (const Variables_Set & vars, Variable dest)

Folds the space dimensions in vars into dest.

Parameters

vars The set of Variable objects corresponding to the space dimensions to be folded;
dest The variable corresponding to the space dimension that is the destination of the folding operation.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with dest or with one of the
Variable objects contained in vars. Also thrown if dest is contained in vars.

If ∗this has space dimension n, with n > 0, dest has space dimension k ≤ n, vars is a set of variables
whose maximum space dimension is also less than or equal to n, and dest is not a member of vars, then
the space dimensions corresponding to variables in vars are folded into the k-th space dimension.

10.2.3.61 template<typename T > int32_t Parma_Polyhedra_Library::BD_Shape< T
>::hash_code () const [inline]

Returns a 32-bit hash code for ∗this.

If x and y are such that x == y, then x.hash_code() == y.hash_code().

10.2.4 Friends And Related Function Documentation

10.2.4.1 template<typename T > bool operator== (const BD_Shape< T > & x, const
BD_Shape< T > & y) [friend]

Returns true if and only if x and y are the same BDS.

Note that x and y may be dimension-incompatible shapes: in this case, the value false is returned.

10.2.4.2 template<typename T > std::ostream & operator<< (std::ostream & s, const
BD_Shape< T > & c) [related]

Output operator.

Writes a textual representation of bds on s: false is written if bds is an empty polyhedron; true is
written if bds is the universe polyhedron; a system of constraints defining bds is written otherwise, all
constraints separated by ", ".

10.2.4.3 template<typename T > bool operator!= (const BD_Shape< T > & x, const
BD_Shape< T > & y) [related]

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 123

Returns true if and only if x and y aren’t the same BDS.

Note that x and y may be dimension-incompatible shapes: in this case, the value true is returned.

10.2.4.4 template<typename To , typename T > bool rectilinear_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const BD_Shape< T > & x,
const BD_Shape< T > & y, Rounding_Dir dir) [related]

Computes the rectilinear (or Manhattan) distance between x and y.

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<To, Extended_Number_-
Policy>.

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-
Policy>.

10.2.4.5 template<typename Temp , typename To , typename T > bool rectilinear_distance_assign
(Checked_Number< To, Extended_Number_Policy > & r, const BD_Shape< T > & x,
const BD_Shape< T > & y, Rounding_Dir dir, Temp & tmp0, Temp & tmp1, Temp &
tmp2) [related]

Computes the rectilinear (or Manhattan) distance between x and y.

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmp0, tmp1 and tmp2.

10.2.4.6 template<typename To , typename T > bool euclidean_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const BD_Shape< T > & x,
const BD_Shape< T > & y, Rounding_Dir dir) [related]

Computes the euclidean distance between x and y.

If the euclidean distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<To, Extended_Number_-
Policy>.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 124

If the euclidean distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-
Policy>.

10.2.4.7 template<typename Temp , typename To , typename T > bool euclidean_distance_assign
(Checked_Number< To, Extended_Number_Policy > & r, const BD_Shape< T > & x,
const BD_Shape< T > & y, Rounding_Dir dir, Temp & tmp0, Temp & tmp1, Temp &
tmp2) [related]

Computes the euclidean distance between x and y.

If the euclidean distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmp0, tmp1 and tmp2.

10.2.4.8 template<typename To , typename T > bool l_infinity_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const BD_Shape< T > & x,
const BD_Shape< T > & y, Rounding_Dir dir) [related]

Computes the L∞ distance between x and y.

If the L∞ distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<To, Extended_Number_-
Policy>.

If the L∞ distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-
Policy>.

10.2.4.9 template<typename Temp , typename To , typename T > bool l_infinity_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const BD_Shape< T > & x,
const BD_Shape< T > & y, Rounding_Dir dir, Temp & tmp0, Temp & tmp1, Temp &
tmp2) [related]

Computes the L∞ distance between x and y.

If the L∞ distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.3 Parma_Polyhedra_Library::BHRZ03_Certificate Class Reference 125

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmp0, tmp1 and tmp2.

10.2.4.10 template<typename T > void swap (Parma_Polyhedra_Library::BD_Shape< T > &
x, Parma_Polyhedra_Library::BD_Shape< T > & y) [related]

Specializes std::swap.

The documentation for this class was generated from the following file:

• ppl.hh

10.3 Parma_Polyhedra_Library::BHRZ03_Certificate Class Reference

The convergence certificate for the BHRZ03 widening operator.

#include <ppl.hh>

Classes

• struct Compare
A total ordering on BHRZ03 certificates.

Public Member Functions

• BHRZ03_Certificate ()
Default constructor.

• BHRZ03_Certificate (const Polyhedron &ph)
Constructor: computes the certificate for ph.

• BHRZ03_Certificate (const BHRZ03_Certificate &y)
Copy constructor.

• ∼BHRZ03_Certificate ()
Destructor.

• int compare (const BHRZ03_Certificate &y) const
The comparison function for certificates.

• int compare (const Polyhedron &ph) const
Compares ∗this with the certificate for polyhedron ph.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 126

10.3.1 Detailed Description

The convergence certificate for the BHRZ03 widening operator. Convergence certificates are used to in-
stantiate the BHZ03 framework so as to define widening operators for the finite powerset domain.

Note

Each convergence certificate has to be used together with a compatible widening operator. In particular,
BHRZ03_Certificate can certify the convergence of both the BHRZ03 and the H79 widenings.

10.3.2 Member Function Documentation

10.3.2.1 int Parma_Polyhedra_Library::BHRZ03_Certificate::compare (const
BHRZ03_Certificate & y) const

The comparison function for certificates.

Returns

−1, 0 or 1 depending on whether ∗this is smaller than, equal to, or greater than y, respectively.

Compares ∗this with y, using a total ordering which is a refinement of the limited growth ordering
relation for the BHRZ03 widening.

The documentation for this class was generated from the following file:

• ppl.hh

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference

A not necessarily closed, iso-oriented hyperrectangle.

#include <ppl.hh>

Public Types

• typedef ITV interval_type
The type of intervals used to implement the box.

Public Member Functions

• const ITV & get_interval (Variable var) const
Returns a reference the interval that bounds var.

• void set_interval (Variable var, const ITV &i)
Sets to i the interval that bounds var.

• bool get_lower_bound (dimension_type k, bool &closed, Coefficient &n, Coefficient &d) const

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 127

If the k-th space dimension is unbounded below, returns false. Otherwise returns true and set closed,
n and d accordingly.

• bool get_upper_bound (dimension_type k, bool &closed, Coefficient &n, Coefficient &d) const
If the k-th space dimension is unbounded above, returns false. Otherwise returns true and set closed,
n and d accordingly.

• Constraint_System constraints () const
Returns a system of constraints defining ∗this.

• Constraint_System minimized_constraints () const
Returns a minimized system of constraints defining ∗this.

• Congruence_System congruences () const
Returns a system of congruences approximating ∗this.

• Congruence_System minimized_congruences () const
Returns a minimized system of congruences approximating ∗this.

• memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• void ascii_dump () const
Writes to std::cerr an ASCII representation of ∗this.

• void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of ∗this.

• void print () const
Prints ∗this to std::cerr using operator<<.

• void set_empty ()
Causes the box to become empty, i.e., to represent the empty set.

Constructors, Assignment, Swap and Destructor

• Box (dimension_type num_dimensions=0, Degenerate_Element kind=UNIVERSE)
Builds a universe or empty box of the specified space dimension.

• Box (const Box &y, Complexity_Class complexity=ANY_COMPLEXITY)
Ordinary copy constructor.

• template<typename Other_ITV >

Box (const Box< Other_ITV > &y, Complexity_Class complexity=ANY_COMPLEXITY)
Builds a conservative, upward approximation of y.

• Box (const Constraint_System &cs)
Builds a box from the system of constraints cs.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 128

• Box (const Constraint_System &cs, Recycle_Input dummy)
Builds a box recycling a system of constraints cs.

• Box (const Generator_System &gs)
Builds a box from the system of generators gs.

• Box (const Generator_System &gs, Recycle_Input dummy)
Builds a box recycling the system of generators gs.

• Box (const Congruence_System &cgs)
• Box (const Congruence_System &cgs, Recycle_Input dummy)
• template<typename T >

Box (const BD_Shape< T > &bds, Complexity_Class complexity=POLYNOMIAL_-
COMPLEXITY)

Builds a box containing the BDS bds.

• template<typename T >

Box (const Octagonal_Shape< T > &oct, Complexity_Class complexity=POLYNOMIAL_-
COMPLEXITY)

Builds a box containing the octagonal shape oct.

• Box (const Polyhedron &ph, Complexity_Class complexity=ANY_COMPLEXITY)
Builds a box containing the polyhedron ph.

• Box (const Grid &ph, Complexity_Class complexity=POLYNOMIAL_COMPLEXITY)
Builds a box containing the grid gr.

• template<typename D1 , typename D2 , typename R >

Box (const Partially_Reduced_Product< D1, D2, R > &dp, Complexity_Class
complexity=ANY_COMPLEXITY)

Builds a box containing the partially reduced product dp.

• Box & operator= (const Box &y)
The assignment operator (∗this and y can be dimension-incompatible).

• void swap (Box &y)
Swaps ∗this with y (∗this and y can be dimension-incompatible).

Member Functions that Do Not Modify the Box

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• dimension_type affine_dimension () const
Returns 0, if ∗this is empty; otherwise, returns the affine dimension of ∗this.

• bool is_empty () const
Returns true if and only if ∗this is an empty box.

• bool is_universe () const
Returns true if and only if ∗this is a universe box.

• bool is_topologically_closed () const

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 129

Returns true if and only if ∗this is a topologically closed subset of the vector space.

• bool is_discrete () const
Returns true if and only if ∗this is discrete.

• bool is_bounded () const
Returns true if and only if ∗this is a bounded box.

• bool contains_integer_point () const
Returns true if and only if ∗this contains at least one integer point.

• bool constrains (Variable var) const
Returns true if and only if var is constrained in ∗this.

• Poly_Con_Relation relation_with (const Constraint &c) const
Returns the relations holding between ∗this and the constraint c.

• Poly_Con_Relation relation_with (const Congruence &cg) const
Returns the relations holding between ∗this and the congruence cg.

• Poly_Gen_Relation relation_with (const Generator &g) const
Returns the relations holding between ∗this and the generator g.

• bool bounds_from_above (const Linear_Expression &expr) const
Returns true if and only if expr is bounded from above in ∗this.

• bool bounds_from_below (const Linear_Expression &expr) const
Returns true if and only if expr is bounded from below in ∗this.

• bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum) const

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value is computed.

• bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum, Generator &g) const

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value and a point where expr reaches it are computed.

• bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum) const

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value is computed.

• bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum, Generator &g) const

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value and a point where expr reaches it are computed.

• bool frequency (const Linear_Expression &expr, Coefficient &freq_n, Coefficient &freq_d, Co-
efficient &val_n, Coefficient &val_d) const

Returns true if and only if there exist a unique value val such that ∗this saturates the equality expr
= val.

• bool contains (const Box &y) const

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 130

Returns true if and only if ∗this contains y.

• bool strictly_contains (const Box &y) const
Returns true if and only if ∗this strictly contains y.

• bool is_disjoint_from (const Box &y) const
Returns true if and only if ∗this and y are disjoint.

• bool OK () const
Returns true if and only if ∗this satisfies all its invariants.

Space-Dimension Preserving Member Functions that May Modify the Box

• void add_constraint (const Constraint &c)
Adds a copy of constraint c to the system of constraints defining ∗this.

• void add_constraints (const Constraint_System &cs)
Adds the constraints in cs to the system of constraints defining ∗this.

• void add_recycled_constraints (Constraint_System &cs)
Adds the constraints in cs to the system of constraints defining ∗this.

• void add_congruence (const Congruence &cg)
Adds to ∗this a constraint equivalent to the congruence cg.

• void add_congruences (const Congruence_System &cgs)
Adds to ∗this constraints equivalent to the congruences in cgs.

• void add_recycled_congruences (Congruence_System &cgs)
Adds to ∗this constraints equivalent to the congruences in cgs.

• void refine_with_constraint (const Constraint &c)
Use the constraint c to refine ∗this.

• void refine_with_constraints (const Constraint_System &cs)
Use the constraints in cs to refine ∗this.

• void refine_with_congruence (const Congruence &cg)
Use the congruence cg to refine ∗this.

• void refine_with_congruences (const Congruence_System &cgs)
Use the congruences in cgs to refine ∗this.

• void propagate_constraint (const Constraint &c)
Use the constraint c for constraint propagation on ∗this.

• void propagate_constraints (const Constraint_System &cs, dimension_type max_iterations=0)
Use the constraints in cs for constraint propagagion on ∗this.

• void unconstrain (Variable var)
Computes the cylindrification of ∗this with respect to space dimension var, assigning the result to
∗this.

• void unconstrain (const Variables_Set &vars)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 131

Computes the cylindrification of ∗this with respect to the set of space dimensions vars, assigning the
result to ∗this.

• void intersection_assign (const Box &y)
Assigns to ∗this the intersection of ∗this and y.

• void upper_bound_assign (const Box &y)
Assigns to ∗this the smallest box containing the union of ∗this and y.

• bool upper_bound_assign_if_exact (const Box &y)
If the upper bound of ∗this and y is exact, it is assigned to ∗this and true is returned, otherwise
false is returned.

• void difference_assign (const Box &y)
Assigns to ∗this the difference of ∗this and y.

• bool simplify_using_context_assign (const Box &y)
Assigns to ∗this a meet-preserving simplification of ∗this with respect to y. If false is returned,
then the intersection is empty.

• void affine_image (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to ∗this the affine image of ∗this under the function mapping variable var to the affine
expression specified by expr and denominator.

• void affine_preimage (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to ∗this the affine preimage of ∗this under the function mapping variable var to the affine
expression specified by expr and denominator.

• void generalized_affine_image (Variable var, Relation_Symbol relsym, const Linear_Expression
&expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the generalized affine relation var′ ./ expr
denominator

,
where ./ is the relation symbol encoded by relsym.

• void generalized_affine_preimage (Variable var, Relation_Symbol relsym, const Linear_-
Expression &expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation var′ ./
expr

denominator
, where ./ is the relation symbol encoded by relsym.

• void generalized_affine_image (const Linear_Expression &lhs, Relation_Symbol relsym, const
Linear_Expression &rhs)

Assigns to ∗this the image of ∗this with respect to the generalized affine relation lhs′ ./ rhs, where
./ is the relation symbol encoded by relsym.

• void generalized_affine_preimage (const Linear_Expression &lhs, Relation_Symbol relsym,
const Linear_Expression &rhs)

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation lhs′ ./ rhs,
where ./ is the relation symbol encoded by relsym.

• void bounded_affine_image (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the bounded affine relation lb_expr
denominator

≤ var′ ≤
ub_expr

denominator
.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 132

• void bounded_affine_preimage (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the bounded affine relation lb_expr
denominator

≤
var′ ≤ ub_expr

denominator
.

• void time_elapse_assign (const Box &y)
Assigns to ∗this the result of computing the time-elapse between ∗this and y.

• void topological_closure_assign ()
Assigns to ∗this its topological closure.

• void wrap_assign (const Variables_Set &vars, Bounded_Integer_Type_Width w, Bounded_-
Integer_Type_Representation r, Bounded_Integer_Type_Overflow o, const Constraint_System
∗pcs=0, unsigned complexity_threshold=16, bool wrap_individually=true)

Wraps the specified dimensions of the vector space.

• void drop_some_non_integer_points (Complexity_Class complexity=ANY_COMPLEXITY)
Possibly tightens ∗this by dropping some points with non-integer coordinates.

• void drop_some_non_integer_points (const Variables_Set &vars, Complexity_Class
complexity=ANY_COMPLEXITY)

Possibly tightens ∗this by dropping some points with non-integer coordinates for the space dimensions
corresponding to vars.

• template<typename T >

Enable_If< Is_Same< T, Box>::value &&Is_Same_Or_Derived< Interval_Base, ITV>::value,
void >::type CC76_widening_assign (const T &y, unsigned ∗tp=0)

Assigns to ∗this the result of computing the CC76-widening between ∗this and y.

• template<typename T , typename Iterator >

Enable_If< Is_Same< T, Box>::value &&Is_Same_Or_Derived< Interval_Base, ITV>::value,
void >::type CC76_widening_assign (const T &y, Iterator first, Iterator last)

Assigns to ∗this the result of computing the CC76-widening between ∗this and y.

• void widening_assign (const Box &y, unsigned ∗tp=0)
Same as CC76_widening_assign(y, tp).

• void limited_CC76_extrapolation_assign (const Box &y, const Constraint_System &cs, unsigned
∗tp=0)

Improves the result of the CC76-extrapolation computation by also enforcing those constraints in cs
that are satisfied by all the points of ∗this.

• template<typename T >

Enable_If< Is_Same< T, Box>::value &&Is_Same_Or_Derived< Interval_Base, ITV>::value,
void >::type CC76_narrowing_assign (const T &y)

Assigns to ∗this the result of restoring in y the constraints of ∗this that were lost by CC76-
extrapolation applications.

Member Functions that May Modify the Dimension of the Vector Space

• void add_space_dimensions_and_embed (dimension_type m)
Adds m new dimensions and embeds the old box into the new space.

• void add_space_dimensions_and_project (dimension_type m)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 133

Adds m new dimensions to the box and does not embed it in the new vector space.

• void concatenate_assign (const Box &y)
Seeing a box as a set of tuples (its points), assigns to ∗this all the tuples that can be obtained by
concatenating, in the order given, a tuple of ∗this with a tuple of y.

• void remove_space_dimensions (const Variables_Set &vars)
Removes all the specified dimensions.

• void remove_higher_space_dimensions (dimension_type new_dimension)
Removes the higher dimensions so that the resulting space will have dimension new_dimension.

• template<typename Partial_Function >

void map_space_dimensions (const Partial_Function &pfunc)
Remaps the dimensions of the vector space according to a partial function.

• void expand_space_dimension (Variable var, dimension_type m)
Creates m copies of the space dimension corresponding to var.

• void fold_space_dimensions (const Variables_Set &vars, Variable dest)
Folds the space dimensions in vars into dest.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension that a Box can handle.

• static bool can_recycle_constraint_systems ()
Returns false indicating that this domain does not recycle constraints.

• static bool can_recycle_congruence_systems ()
Returns false indicating that this domain does not recycle congruences.

Friends

• bool operator== (const Box< ITV > &x, const Box< ITV > &y)
Returns true if and only if x and y are the same box.

Related Functions

(Note that these are not member functions.)

• template<typename ITV >

bool operator!= (const Box< ITV > &x, const Box< ITV > &y)
Returns true if and only if x and y aren’t the same box.

• template<typename ITV >

std::ostream & operator<< (std::ostream &s, const Box< ITV > &box)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 134

Output operator.

• template<typename To , typename ITV >

bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Box< ITV > &x, const Box< ITV > &y, Rounding_Dir dir)

Computes the rectilinear (or Manhattan) distance between x and y.

• template<typename Temp , typename To , typename ITV >

bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Box< ITV > &x, const Box< ITV > &y, Rounding_Dir dir, Temp &tmp0, Temp &tmp1, Temp
&tmp2)

Computes the rectilinear (or Manhattan) distance between x and y.

• template<typename To , typename ITV >

bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Box< ITV > &x, const Box< ITV > &y, Rounding_Dir dir)

Computes the euclidean distance between x and y.

• template<typename Temp , typename To , typename ITV >

bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Box< ITV > &x, const Box< ITV > &y, Rounding_Dir dir, Temp &tmp0, Temp &tmp1, Temp
&tmp2)

Computes the euclidean distance between x and y.

• template<typename To , typename ITV >

bool l_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Box< ITV > &x, const Box< ITV > &y, Rounding_Dir dir)

Computes the L∞ distance between x and y.

• template<typename Temp , typename To , typename ITV >

bool l_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Box< ITV > &x, const Box< ITV > &y, Rounding_Dir dir, Temp &tmp0, Temp &tmp1, Temp
&tmp2)

Computes the L∞ distance between x and y.

10.4.1 Detailed Description

template<typename ITV> class Parma_Polyhedra_Library::Box< ITV >

A not necessarily closed, iso-oriented hyperrectangle. A Box object represents the smash product of n not
necessarily closed and possibly unbounded intervals represented by objects of class ITV, where n is the
space dimension of the box.

An interval constraint (resp., interval congruence) is a syntactic constraint (resp., congruence) that only
mentions a single space dimension.

The Box domain optimally supports:

• tautological and inconsistent constraints and congruences;

• the interval constraints that are optimally supported by the template argument class ITV;

• the interval congruences that are optimally supported by the template argument class ITV.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 135

Depending on the method, using a constraint or congruence that is not optimally supported by the domain
will either raise an exception or result in a (possibly non-optimal) upward approximation.

The user interface for the Box domain is meant to be as similar as possible to the one developed for the
polyhedron class C_Polyhedron.

10.4.2 Constructor & Destructor Documentation

10.4.2.1 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (
dimension_type num_dimensions = 0, Degenerate_Element kind = UNIVERSE)
[inline, explicit]

Builds a universe or empty box of the specified space dimension.

Parameters

num_dimensions The number of dimensions of the vector space enclosing the box;

kind Specifies whether the universe or the empty box has to be built.

10.4.2.2 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const Box<
ITV > & y, Complexity_Class complexity = ANY_COMPLEXITY) [inline]

Ordinary copy constructor.

The complexity argument is ignored.

10.4.2.3 template<typename ITV > template<typename Other_ITV > Parma_Polyhedra_-
Library::Box< ITV >::Box (const Box< Other_ITV > & y, Complexity_Class
complexity = ANY_COMPLEXITY) [inline, explicit]

Builds a conservative, upward approximation of y.

The complexity argument is ignored.

10.4.2.4 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const
Constraint_System & cs) [inline, explicit]

Builds a box from the system of constraints cs.

The box inherits the space dimension of cs.

Parameters

cs A system of constraints: constraints that are not interval constraints are ignored (even though they
may have contributed to the space dimension).

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 136

10.4.2.5 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const
Constraint_System & cs, Recycle_Input dummy) [inline]

Builds a box recycling a system of constraints cs.

The box inherits the space dimension of cs.

Parameters

cs A system of constraints: constraints that are not interval constraints are ignored (even though they
may have contributed to the space dimension).

dummy A dummy tag to syntactically differentiate this one from the other constructors.

10.4.2.6 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const
Generator_System & gs) [explicit]

Builds a box from the system of generators gs.

Builds the smallest box containing the polyhedron defined by gs. The box inherits the space dimension of
gs.

Exceptions

std::invalid_argument Thrown if the system of generators is not empty but has no points.

10.4.2.7 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const
Generator_System & gs, Recycle_Input dummy) [inline]

Builds a box recycling the system of generators gs.

Builds the smallest box containing the polyhedron defined by gs. The box inherits the space dimension of
gs.

Parameters

gs The generator system describing the polyhedron to be approximated.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions

std::invalid_argument Thrown if the system of generators is not empty but has no points.

10.4.2.8 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const
Congruence_System & cgs) [inline, explicit]

Builds the smallest box containing the grid defined by a system of congruences cgs. The box inherits the
space dimension of cgs.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 137

Parameters

cgs A system of congruences: congruences that are not non-relational equality constraints are ignored
(though they may have contributed to the space dimension).

10.4.2.9 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const
Congruence_System & cgs, Recycle_Input dummy) [inline]

Builds the smallest box containing the grid defined by a system of congruences cgs, recycling cgs. The
box inherits the space dimension of cgs.

Parameters

cgs A system of congruences: congruences that are not non-relational equality constraints are ignored
(though they will contribute to the space dimension).

dummy A dummy tag to syntactically differentiate this one from the other constructors.

10.4.2.10 template<typename ITV > template<typename T > Parma_Polyhedra_Library::Box<
ITV >::Box (const BD_Shape< T > & bds, Complexity_Class complexity =
POLYNOMIAL_COMPLEXITY) [explicit]

Builds a box containing the BDS bds.

Builds the smallest box containing bds using a polynomial algorithm. The complexity argument is
ignored.

10.4.2.11 template<typename ITV > template<typename T > Parma_Polyhedra_Library::Box<
ITV >::Box (const Octagonal_Shape< T > & oct, Complexity_Class complexity =
POLYNOMIAL_COMPLEXITY) [explicit]

Builds a box containing the octagonal shape oct.

Builds the smallest box containing oct using a polynomial algorithm. The complexity argument is
ignored.

10.4.2.12 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (
const Polyhedron & ph, Complexity_Class complexity = ANY_COMPLEXITY)
[explicit]

Builds a box containing the polyhedron ph.

Builds a box containing ph using algorithms whose complexity does not exceed the one specified by
complexity. If complexity is ANY_COMPLEXITY, then the built box is the smallest one containing
ph.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 138

10.4.2.13 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const Grid
& ph, Complexity_Class complexity = POLYNOMIAL_COMPLEXITY) [explicit]

Builds a box containing the grid gr.

Builds the smallest box containing gr using a polynomial algorithm. The complexity argument is
ignored.

10.4.2.14 template<typename ITV > template<typename D1 , typename D2 , typename R >
Parma_Polyhedra_Library::Box< ITV >::Box (const Partially_Reduced_Product<
D1, D2, R > & dp, Complexity_Class complexity = ANY_COMPLEXITY)
[explicit]

Builds a box containing the partially reduced product dp.

Builds a box containing ph using algorithms whose complexity does not exceed the one specified by
complexity.

10.4.3 Member Function Documentation

10.4.3.1 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::constrains (
Variable var) const

Returns true if and only if var is constrained in ∗this.

Exceptions

std::invalid_argument Thrown if var is not a space dimension of ∗this.

10.4.3.2 template<typename ITV > Poly_Con_Relation Parma_Polyhedra_Library::Box< ITV
>::relation_with (const Constraint & c) const

Returns the relations holding between ∗this and the constraint c.

Exceptions

std::invalid_argument Thrown if ∗this and constraint c are dimension-incompatible.

10.4.3.3 template<typename ITV > Poly_Con_Relation Parma_Polyhedra_Library::Box< ITV
>::relation_with (const Congruence & cg) const

Returns the relations holding between ∗this and the congruence cg.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 139

Exceptions

std::invalid_argument Thrown if ∗this and constraint cg are dimension-incompatible.

10.4.3.4 template<typename ITV > Poly_Gen_Relation Parma_Polyhedra_Library::Box< ITV
>::relation_with (const Generator & g) const

Returns the relations holding between ∗this and the generator g.

Exceptions

std::invalid_argument Thrown if ∗this and generator g are dimension-incompatible.

10.4.3.5 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV
>::bounds_from_above (const Linear_Expression & expr) const [inline]

Returns true if and only if expr is bounded from above in ∗this.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

10.4.3.6 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV
>::bounds_from_below (const Linear_Expression & expr) const [inline]

Returns true if and only if expr is bounded from below in ∗this.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

10.4.3.7 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::maximize (
const Linear_Expression & expr, Coefficient & sup_n, Coefficient & sup_d, bool &
maximum) const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value is computed.

Parameters

expr The linear expression to be maximized subject to ∗this;

sup_n The numerator of the supremum value;

sup_d The denominator of the supremum value;

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 140

maximum true if and only if the supremum is also the maximum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from above, false is returned and sup_n, sup_d and
maximum are left untouched.

10.4.3.8 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::maximize (
const Linear_Expression & expr, Coefficient & sup_n, Coefficient & sup_d, bool &
maximum, Generator & g) const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value and a point where expr reaches it are computed.

Parameters

expr The linear expression to be maximized subject to ∗this;
sup_n The numerator of the supremum value;
sup_d The denominator of the supremum value;
maximum true if and only if the supremum is also the maximum value;
g When maximization succeeds, will be assigned the point or closure point where expr reaches its

supremum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from above, false is returned and sup_n, sup_d, maximum
and g are left untouched.

10.4.3.9 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::minimize (
const Linear_Expression & expr, Coefficient & inf_n, Coefficient & inf_d, bool &
minimum) const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value is computed.

Parameters

expr The linear expression to be minimized subject to ∗this;
inf_n The numerator of the infimum value;
inf_d The denominator of the infimum value;
minimum true if and only if the infimum is also the minimum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from below, false is returned and inf_n, inf_d and
minimum are left untouched.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 141

10.4.3.10 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::minimize (
const Linear_Expression & expr, Coefficient & inf_n, Coefficient & inf_d, bool &
minimum, Generator & g) const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value and a point where expr reaches it are computed.

Parameters

expr The linear expression to be minimized subject to ∗this;

inf_n The numerator of the infimum value;

inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value;

g When minimization succeeds, will be assigned a point or closure point where expr reaches its
infimum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from below, false is returned and inf_n, inf_d, minimum
and g are left untouched.

10.4.3.11 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::frequency
(const Linear_Expression & expr, Coefficient & freq_n, Coefficient & freq_d,
Coefficient & val_n, Coefficient & val_d) const

Returns true if and only if there exist a unique value val such that ∗this saturates the equality expr
= val.

Parameters

expr The linear expression for which the frequency is needed;

freq_n If true is returned, the value is set to 0; Present for interface compatibility with class Grid,
where the frequency can have a non-zero value;

freq_d If true is returned, the value is set to 1;

val_n The numerator of val;

val_d The denominator of val;

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If false is returned, then freq_n, freq_d, val_n and val_d are left untouched.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 142

10.4.3.12 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::contains (
const Box< ITV > & y) const

Returns true if and only if ∗this contains y.

Exceptions

std::invalid_argument Thrown if x and y are dimension-incompatible.

10.4.3.13 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV
>::strictly_contains (const Box< ITV > & y) const [inline]

Returns true if and only if ∗this strictly contains y.

Exceptions

std::invalid_argument Thrown if x and y are dimension-incompatible.

10.4.3.14 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV
>::is_disjoint_from (const Box< ITV > & y) const

Returns true if and only if ∗this and y are disjoint.

Exceptions

std::invalid_argument Thrown if x and y are dimension-incompatible.

10.4.3.15 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::add_constraint (const Constraint & c) [inline]

Adds a copy of constraint c to the system of constraints defining ∗this.

Parameters

c The constraint to be added.

Exceptions

std::invalid_argument Thrown if ∗this and constraint c are dimension-incompatible, or c is not
optimally supported by the Box domain.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 143

10.4.3.16 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::add_constraints (const Constraint_System & cs) [inline]

Adds the constraints in cs to the system of constraints defining ∗this.

Parameters

cs The constraints to be added.

Exceptions

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible, or cs contains a con-
straint which is not optimally supported by the box domain.

10.4.3.17 template<typename T > void Parma_Polyhedra_Library::Box< T
>::add_recycled_constraints (Constraint_System & cs) [inline]

Adds the constraints in cs to the system of constraints defining ∗this.

Parameters

cs The constraints to be added. They may be recycled.

Exceptions

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible, or cs contains a con-
straint which is not optimally supported by the box domain.

Warning

The only assumption that can be made on cs upon successful or exceptional return is that it can be
safely destroyed.

10.4.3.18 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::add_congruence (const Congruence & cg) [inline]

Adds to ∗this a constraint equivalent to the congruence cg.

Parameters

cg The congruence to be added.

Exceptions

std::invalid_argument Thrown if ∗this and congruence cg are dimension-incompatible, or cg is
not optimally supported by the box domain.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 144

10.4.3.19 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::add_congruences (const Congruence_System & cgs) [inline]

Adds to ∗this constraints equivalent to the congruences in cgs.

Parameters

cgs The congruences to be added.

Exceptions

std::invalid_argument Thrown if ∗this and cgs are dimension-incompatible, or cgs contains a
congruence which is not optimally supported by the box domain.

10.4.3.20 template<typename T > void Parma_Polyhedra_Library::Box< T
>::add_recycled_congruences (Congruence_System & cgs) [inline]

Adds to ∗this constraints equivalent to the congruences in cgs.

Parameters

cgs The congruence system to be added to ∗this. The congruences in cgs may be recycled.

Exceptions

std::invalid_argument Thrown if ∗this and cgs are dimension-incompatible, or cgs contains a
congruence which is not optimally supported by the box domain.

Warning

The only assumption that can be made on cgs upon successful or exceptional return is that it can be
safely destroyed.

10.4.3.21 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::refine_with_constraint (const Constraint & c) [inline]

Use the constraint c to refine ∗this.

Parameters

c The constraint to be used for refinement.

Exceptions

std::invalid_argument Thrown if ∗this and c are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 145

10.4.3.22 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::refine_with_constraints (const Constraint_System & cs) [inline]

Use the constraints in cs to refine ∗this.

Parameters

cs The constraints to be used for refinement. To avoid termination problems, each constraint in cs
will be used for a single refinement step.

Exceptions

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible.

Note

The user is warned that the accuracy of this refinement operator depends on the order of evaluation of
the constraints in cs, which is in general unpredictable. If a fine control on such an order is needed, the
user should consider calling the method refine_with_constraint(const Constraint&
c) inside an appropriate looping construct.

10.4.3.23 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::refine_with_congruence (const Congruence & cg) [inline]

Use the congruence cg to refine ∗this.

Parameters

cg The congruence to be used for refinement.

Exceptions

std::invalid_argument Thrown if ∗this and cg are dimension-incompatible.

10.4.3.24 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::refine_with_congruences (const Congruence_System & cgs) [inline]

Use the congruences in cgs to refine ∗this.

Parameters

cgs The congruences to be used for refinement.

Exceptions

std::invalid_argument Thrown if ∗this and cgs are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 146

10.4.3.25 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::propagate_constraint (const Constraint & c) [inline]

Use the constraint c for constraint propagation on ∗this.

Parameters

c The constraint to be used for constraint propagation.

Exceptions

std::invalid_argument Thrown if ∗this and c are dimension-incompatible.

10.4.3.26 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::propagate_constraints (const Constraint_System & cs, dimension_type
max_iterations = 0) [inline]

Use the constraints in cs for constraint propagagion on ∗this.

Parameters

cs The constraints to be used for constraint propagation.

max_iterations The maximum number of propagation steps for each constraint in cs. If zero (the
default), the number of propagations will be unbounded, possibly resulting in an infinite loop.

Exceptions

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible.

Warning

This method may lead to non-termination if max_iterations is 0.

10.4.3.27 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV >::unconstrain
(Variable var) [inline]

Computes the cylindrification of ∗this with respect to space dimension var, assigning the result to
∗this.

Parameters

var The space dimension that will be unconstrained.

Exceptions

std::invalid_argument Thrown if var is not a space dimension of ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 147

10.4.3.28 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV >::unconstrain
(const Variables_Set & vars)

Computes the cylindrification of ∗this with respect to the set of space dimensions vars, assigning the
result to ∗this.

Parameters

vars The set of space dimension that will be unconstrained.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with one of the Variable objects
contained in vars.

10.4.3.29 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::intersection_assign (const Box< ITV > & y)

Assigns to ∗this the intersection of ∗this and y.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.4.3.30 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::upper_bound_assign (const Box< ITV > & y)

Assigns to ∗this the smallest box containing the union of ∗this and y.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.4.3.31 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV
>::upper_bound_assign_if_exact (const Box< ITV > & y) [inline]

If the upper bound of ∗this and y is exact, it is assigned to ∗this and true is returned, otherwise
false is returned.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 148

10.4.3.32 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::difference_assign (const Box< ITV > & y)

Assigns to ∗this the difference of ∗this and y.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.4.3.33 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV
>::simplify_using_context_assign (const Box< ITV > & y)

Assigns to ∗this a meet-preserving simplification of ∗this with respect to y. If false is returned, then
the intersection is empty.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.4.3.34 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::affine_image (Variable var, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to ∗this the affine image of ∗this under the function mapping variable var to the affine
expression specified by expr and denominator.

Parameters

var The variable to which the affine expression is assigned;

expr The numerator of the affine expression;

denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this.

10.4.3.35 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::affine_preimage (Variable var, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to ∗this the affine preimage of ∗this under the function mapping variable var to the affine
expression specified by expr and denominator.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 149

Parameters

var The variable to which the affine expression is substituted;

expr The numerator of the affine expression;

denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this.

10.4.3.36 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::generalized_affine_image (Variable var, Relation_Symbol relsym, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the generalized affine relation var′ ./ expr
denominator ,

where ./ is the relation symbol encoded by relsym.

Parameters

var The left hand side variable of the generalized affine relation;

relsym The relation symbol;

expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression (optional argument with default
value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this.

10.4.3.37 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::generalized_affine_preimage (Variable var, Relation_Symbol relsym, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation var′ ./
expr

denominator , where ./ is the relation symbol encoded by relsym.

Parameters

var The left hand side variable of the generalized affine relation;

relsym The relation symbol;

expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression (optional argument with default
value 1).

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 150

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this.

10.4.3.38 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::generalized_affine_image (const Linear_Expression & lhs, Relation_Symbol
relsym, const Linear_Expression & rhs)

Assigns to ∗this the image of ∗this with respect to the generalized affine relation lhs′ ./ rhs, where ./
is the relation symbol encoded by relsym.

Parameters

lhs The left hand side affine expression;

relsym The relation symbol;

rhs The right hand side affine expression.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with lhs or rhs.

10.4.3.39 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::generalized_affine_preimage (const Linear_Expression & lhs, Relation_Symbol
relsym, const Linear_Expression & rhs)

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation lhs′ ./ rhs, where
./ is the relation symbol encoded by relsym.

Parameters

lhs The left hand side affine expression;

relsym The relation symbol;

rhs The right hand side affine expression.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with lhs or rhs.

10.4.3.40 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::bounded_affine_image (Variable var, const Linear_Expression & lb_expr, const
Linear_Expression & ub_expr, Coefficient_traits::const_reference denominator =
Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the bounded affine relation lb_expr
denominator ≤ var′ ≤

ub_expr
denominator .

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 151

Parameters

var The variable updated by the affine relation;

lb_expr The numerator of the lower bounding affine expression;

ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if lb_expr (resp., ub_expr) and
∗this are dimension-incompatible or if var is not a space dimension of ∗this.

10.4.3.41 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::bounded_affine_preimage (Variable var, const Linear_Expression & lb_expr,
const Linear_Expression & ub_expr, Coefficient_traits::const_reference denominator =
Coefficient_one())

Assigns to ∗this the preimage of ∗thiswith respect to the bounded affine relation lb_expr
denominator ≤ var′ ≤

ub_expr
denominator .

Parameters

var The variable updated by the affine relation;

lb_expr The numerator of the lower bounding affine expression;

ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if lb_expr (resp., ub_expr) and
∗this are dimension-incompatible or if var is not a space dimension of ∗this.

10.4.3.42 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::time_elapse_assign (const Box< ITV > & y)

Assigns to ∗this the result of computing the time-elapse between ∗this and y.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 152

10.4.3.43 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::wrap_assign (const Variables_Set & vars, Bounded_Integer_Type_Width w,
Bounded_Integer_Type_Representation r, Bounded_Integer_Type_Overflow o,
const Constraint_System ∗ pcs = 0, unsigned complexity_threshold = 16, bool
wrap_individually = true)

Wraps the specified dimensions of the vector space.

Parameters

vars The set of Variable objects corresponding to the space dimensions to be wrapped.

w The width of the bounded integer type corresponding to all the dimensions to be wrapped.

r The representation of the bounded integer type corresponding to all the dimensions to be wrapped.

o The overflow behavior of the bounded integer type corresponding to all the dimensions to be
wrapped.

pcs Possibly null pointer to a constraint system. When non-null, the pointed-to constraint system
is assumed to represent the conditional or looping construct guard with respect to which wrap-
ping is performed. Since wrapping requires the computation of upper bounds and due to non-
distributivity of constraint refinement over upper bounds, passing a constraint system in this way
can be more precise than refining the result of the wrapping operation with the constraints in
∗pcs.

complexity_threshold A precision parameter which is ignored for the Box domain.

wrap_individually A precision parameter which is ignored for the Box domain.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with one of the Variable objects
contained in vars or with ∗pcs.

10.4.3.44 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::drop_some_non_integer_points (Complexity_Class complexity =
ANY_COMPLEXITY)

Possibly tightens ∗this by dropping some points with non-integer coordinates.

Parameters

complexity The maximal complexity of any algorithms used.

Note

Currently there is no optimality guarantee, not even if complexity is ANY_COMPLEXITY.

10.4.3.45 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::drop_some_non_integer_points (const Variables_Set & vars, Complexity_Class
complexity = ANY_COMPLEXITY)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 153

Possibly tightens ∗this by dropping some points with non-integer coordinates for the space dimensions
corresponding to vars.

Parameters

vars Points with non-integer coordinates for these variables/space-dimensions can be discarded.

complexity The maximal complexity of any algorithms used.

Note

Currently there is no optimality guarantee, not even if complexity is ANY_COMPLEXITY.

10.4.3.46 template<typename ITV > template<typename T > Enable_If< Is_Same< T, Box<
ITV > >::value &&Is_Same_Or_Derived< Interval_Base, ITV >::value, void >::type
Parma_Polyhedra_Library::Box< ITV >::CC76_widening_assign (const T & y,
unsigned ∗ tp = 0)

Assigns to ∗this the result of computing the CC76-widening between ∗this and y.

Parameters

y A box that must be contained in ∗this.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.4.3.47 template<typename ITV > template<typename T , typename Iterator >
Enable_If< Is_Same< T, Box< ITV > >::value &&Is_Same_Or_Derived<
Interval_Base, ITV >::value, void >::type Parma_Polyhedra_Library::Box< ITV
>::CC76_widening_assign (const T & y, Iterator first, Iterator last)

Assigns to ∗this the result of computing the CC76-widening between ∗this and y.

Parameters

y A box that must be contained in ∗this.

first An iterator that points to the first stop-point.

last An iterator that points one past the last stop-point.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 154

10.4.3.48 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::limited_CC76_extrapolation_assign (const Box< ITV > & y, const
Constraint_System & cs, unsigned ∗ tp = 0)

Improves the result of the CC76-extrapolation computation by also enforcing those constraints in cs that
are satisfied by all the points of ∗this.

Parameters

y A box that must be contained in ∗this.

cs The system of constraints used to improve the widened box.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this, y and cs are dimension-incompatible or if cs contains a
strict inequality.

10.4.3.49 template<typename ITV > template<typename T > Enable_If< Is_Same< T, Box<
ITV > >::value &&Is_Same_Or_Derived< Interval_Base, ITV >::value, void >::type
Parma_Polyhedra_Library::Box< ITV >::CC76_narrowing_assign (const T & y)

Assigns to ∗this the result of restoring in y the constraints of ∗this that were lost by CC76-extrapolation
applications.

Parameters

y A Box that must contain ∗this.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

Note

As was the case for widening operators, the argument y is meant to denote the value computed in the
previous iteration step, whereas ∗this denotes the value computed in the current iteration step (in the
decreasing iteration sequence). Hence, the call x.CC76_narrowing_assign(y) will assign to
x the result of the computation y∆x.

10.4.3.50 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::add_space_dimensions_and_embed (dimension_type m) [inline]

Adds m new dimensions and embeds the old box into the new space.

Parameters

m The number of dimensions to add.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 155

The new dimensions will be those having the highest indexes in the new box, which is defined by a system
of interval constraints in which the variables running through the new dimensions are unconstrained. For
instance, when starting from the box B ⊆ R2 and adding a third dimension, the result will be the box{

(x, y, z)T ∈ R3
∣∣ (x, y)T ∈ B

}
.

10.4.3.51 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::add_space_dimensions_and_project (dimension_type m) [inline]

Adds m new dimensions to the box and does not embed it in the new vector space.

Parameters

m The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new box, which is defined by a system
of bounded differences in which the variables running through the new dimensions are all constrained to
be equal to 0. For instance, when starting from the box B ⊆ R2 and adding a third dimension, the result
will be the box {

(x, y, 0)T ∈ R3
∣∣ (x, y)T ∈ B

}
.

10.4.3.52 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::concatenate_assign (const Box< ITV > & y)

Seeing a box as a set of tuples (its points), assigns to ∗this all the tuples that can be obtained by concate-
nating, in the order given, a tuple of ∗this with a tuple of y.

Let B ⊆ Rn and D ⊆ Rm be the boxes corresponding, on entry, to ∗this and y, respectively. Upon
successful completion, ∗this will represent the box R ⊆ Rn+m such that

R
def=
{

(x1, . . . , xn, y1, . . . , ym)T
∣∣∣ (x1, . . . , xn)T ∈ B, (y1, . . . , ym)T ∈ D

}
.

Another way of seeing it is as follows: first increases the space dimension of ∗this by adding
y.space_dimension() new dimensions; then adds to the system of constraints of ∗this a renamed-
apart version of the constraints of y.

10.4.3.53 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::remove_space_dimensions (const Variables_Set & vars) [inline]

Removes all the specified dimensions.

Parameters

vars The set of Variable objects corresponding to the dimensions to be removed.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 156

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with one of the Variable objects
contained in vars.

10.4.3.54 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::remove_higher_space_dimensions (dimension_type new_dimension)

Removes the higher dimensions so that the resulting space will have dimension new_dimension.

Exceptions

std::invalid_argument Thrown if new_dimension is greater than the space dimension of ∗this.

10.4.3.55 template<typename ITV > template<typename Partial_Function > void
Parma_Polyhedra_Library::Box< ITV >::map_space_dimensions (const
Partial_Function & pfunc)

Remaps the dimensions of the vector space according to a partial function.

Parameters

pfunc The partial function specifying the destiny of each dimension.

The template type parameter Partial_Function must provide the following methods.

bool has_empty_codomain() const

returns true if and only if the represented partial function has an empty co-domain (i.e., it is always
undefined). The has_empty_codomain() method will always be called before the methods below.
However, if has_empty_codomain() returns true, none of the functions below will be called.

dimension_type max_in_codomain() const

returns the maximum value that belongs to the co-domain of the partial function.

bool maps(dimension_type i, dimension_type& j) const

Let f be the represented function and k be the value of i. If f is defined in k, then f(k) is assigned to j
and true is returned. If f is undefined in k, then false is returned.

The result is undefined if pfunc does not encode a partial function with the properties described in the
specification of the mapping operator.

10.4.3.56 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::expand_space_dimension (Variable var, dimension_type m) [inline]

Creates m copies of the space dimension corresponding to var.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 157

Parameters

var The variable corresponding to the space dimension to be replicated;
m The number of replicas to be created.

Exceptions

std::invalid_argument Thrown if var does not correspond to a dimension of the vector space.
std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed

dimension max_space_dimension().

If ∗this has space dimension n, with n > 0, and var has space dimension k ≤ n, then the k-th space
dimension is expanded to m new space dimensions n, n+ 1, . . . , n+m− 1.

10.4.3.57 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::fold_space_dimensions (const Variables_Set & vars, Variable dest)

Folds the space dimensions in vars into dest.

Parameters

vars The set of Variable objects corresponding to the space dimensions to be folded;
dest The variable corresponding to the space dimension that is the destination of the folding operation.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with dest or with one of the
Variable objects contained in vars. Also thrown if dest is contained in vars.

If ∗this has space dimension n, with n > 0, dest has space dimension k ≤ n, vars is a set of variables
whose maximum space dimension is also less than or equal to n, and dest is not a member of vars, then
the space dimensions corresponding to variables in vars are folded into the k-th space dimension.

10.4.3.58 template<typename ITV > const ITV & Parma_Polyhedra_Library::Box< ITV
>::get_interval (Variable var) const [inline]

Returns a reference the interval that bounds var.

Exceptions

std::invalid_argument Thrown if var is not a space dimension of ∗this.

10.4.3.59 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV >::set_interval
(Variable var, const ITV & i) [inline]

Sets to i the interval that bounds var.

Exceptions

std::invalid_argument Thrown if var is not a space dimension of ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 158

10.4.3.60 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV
>::get_lower_bound (dimension_type k, bool & closed, Coefficient & n, Coefficient
& d) const [inline]

If the k-th space dimension is unbounded below, returns false. Otherwise returns true and set closed,
n and d accordingly.

Let I the interval corresponding to the k-th space dimension. If I is not bounded from below, simply return
false. Otherwise, set closed, n and d as follows: closed is set to true if the the lower boundary of
I is closed and is set to false otherwise; n and d are assigned the integers n and d such that the canonical
fraction n/d corresponds to the greatest lower bound of I . The fraction n/d is in canonical form if and
only if n and d have no common factors and d is positive, 0/1 being the unique representation for zero.

An undefined behavior is obtained if k is greater than or equal to the space dimension of ∗this.

10.4.3.61 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV
>::get_upper_bound (dimension_type k, bool & closed, Coefficient & n, Coefficient
& d) const [inline]

If the k-th space dimension is unbounded above, returns false. Otherwise returns true and set closed,
n and d accordingly.

Let I the interval corresponding to the k-th space dimension. If I is not bounded from above, simply return
false. Otherwise, set closed, n and d as follows: closed is set to true if the the upper boundary of
I is closed and is set to false otherwise; n and d are assigned the integers n and d such that the canonical
fraction n/d corresponds to the least upper bound of I .

An undefined behavior is obtained if k is greater than or equal to the space dimension of ∗this.

10.4.4 Friends And Related Function Documentation

10.4.4.1 template<typename ITV > bool operator== (const Box< ITV > & x, const Box< ITV
> & y) [friend]

Returns true if and only if x and y are the same box.

Note that x and y may be dimension-incompatible boxes: in this case, the value false is returned.

10.4.4.2 template<typename ITV > bool operator!= (const Box< ITV > & x, const Box< ITV
> & y) [related]

Returns true if and only if x and y aren’t the same box.

Note that x and y may be dimension-incompatible boxes: in this case, the value true is returned.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 159

10.4.4.3 template<typename ITV > std::ostream & operator<< (std::ostream & s, const Box<
ITV > & box) [related]

Output operator.

10.4.4.4 template<typename To , typename ITV > bool rectilinear_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const Box< ITV > & x, const
Box< ITV > & y, Rounding_Dir dir) [related]

Computes the rectilinear (or Manhattan) distance between x and y.

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<To, Extended_Number_-
Policy>.

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-
Policy>.

10.4.4.5 template<typename Temp , typename To , typename ITV > bool
rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > & r,
const Box< ITV > & x, const Box< ITV > & y, Rounding_Dir dir, Temp & tmp0,
Temp & tmp1, Temp & tmp2) [related]

Computes the rectilinear (or Manhattan) distance between x and y.

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmp0, tmp1 and tmp2.

10.4.4.6 template<typename To , typename ITV > bool euclidean_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const Box< ITV > & x, const
Box< ITV > & y, Rounding_Dir dir) [related]

Computes the euclidean distance between x and y.

If the euclidean distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.4 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 160

All computations are performed using variables of type Checked_Number<To, Extended_Number_-
Policy>.

If the euclidean distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-
Policy>.

10.4.4.7 template<typename Temp , typename To , typename ITV > bool
euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > & r,
const Box< ITV > & x, const Box< ITV > & y, Rounding_Dir dir, Temp & tmp0,
Temp & tmp1, Temp & tmp2) [related]

Computes the euclidean distance between x and y.

If the euclidean distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmp0, tmp1 and tmp2.

10.4.4.8 template<typename To , typename ITV > bool l_infinity_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const Box< ITV > & x, const
Box< ITV > & y, Rounding_Dir dir) [related]

Computes the L∞ distance between x and y.

If the L∞ distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<To, Extended_Number_-
Policy>.

If the L∞ distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-
Policy>.

10.4.4.9 template<typename Temp , typename To , typename ITV > bool
l_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > & r,
const Box< ITV > & x, const Box< ITV > & y, Rounding_Dir dir, Temp & tmp0,
Temp & tmp1, Temp & tmp2) [related]

Computes the L∞ distance between x and y.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.5 Parma_Polyhedra_Library::C_Polyhedron Class Reference 161

If the L∞ distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmp0, tmp1 and tmp2.

The documentation for this class was generated from the following file:

• ppl.hh

10.5 Parma_Polyhedra_Library::C_Polyhedron Class Reference

A closed convex polyhedron.

#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Polyhedron.

Public Member Functions

• C_Polyhedron (dimension_type num_dimensions=0, Degenerate_Element kind=UNIVERSE)
Builds either the universe or the empty C polyhedron.

• C_Polyhedron (const Constraint_System &cs)
Builds a C polyhedron from a system of constraints.

• C_Polyhedron (Constraint_System &cs, Recycle_Input dummy)
Builds a C polyhedron recycling a system of constraints.

• C_Polyhedron (const Generator_System &gs)
Builds a C polyhedron from a system of generators.

• C_Polyhedron (Generator_System &gs, Recycle_Input dummy)
Builds a C polyhedron recycling a system of generators.

• C_Polyhedron (const Congruence_System &cgs)
Builds a C polyhedron from a system of congruences.

• C_Polyhedron (Congruence_System &cgs, Recycle_Input dummy)
Builds a C polyhedron recycling a system of congruences.

• C_Polyhedron (const NNC_Polyhedron &y, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a C polyhedron representing the topological closure of the NNC polyhedron y.

• template<typename Interval >

C_Polyhedron (const Box< Interval > &box, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a C polyhedron out of a box.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.5 Parma_Polyhedra_Library::C_Polyhedron Class Reference 162

• template<typename U >

C_Polyhedron (const BD_Shape< U > &bd, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a C polyhedron out of a BD shape.

• template<typename U >

C_Polyhedron (const Octagonal_Shape< U > &os, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a C polyhedron out of an octagonal shape.

• C_Polyhedron (const Grid &grid, Complexity_Class complexity=ANY_COMPLEXITY)
Builds a C polyhedron out of a grid.

• C_Polyhedron (const C_Polyhedron &y, Complexity_Class complexity=ANY_COMPLEXITY)
Ordinary copy constructor.

• C_Polyhedron & operator= (const C_Polyhedron &y)
The assignment operator. (∗this and y can be dimension-incompatible.).

• C_Polyhedron & operator= (const NNC_Polyhedron &y)
Assigns to ∗this the topological closure of the NNC polyhedron y.

• ∼C_Polyhedron ()
Destructor.

• bool poly_hull_assign_if_exact (const C_Polyhedron &y)
If the poly-hull of ∗this and y is exact it is assigned to ∗this and true is returned, otherwise false
is returned.

• bool upper_bound_assign_if_exact (const C_Polyhedron &y)
Same as poly_hull_assign_if_exact(y).

10.5.1 Detailed Description

A closed convex polyhedron. An object of the class C_Polyhedron represents a topologically closed convex
polyhedron in the vector space Rn.

When building a closed polyhedron starting from a system of constraints, an exception is thrown if the
system contains a strict inequality constraint. Similarly, an exception is thrown when building a closed
polyhedron starting from a system of generators containing a closure point.

Note

Such an exception will be obtained even if the system of constraints (resp., generators) actually defines
a topologically closed subset of the vector space, i.e., even if all the strict inequalities (resp., closure
points) in the system happen to be redundant with respect to the system obtained by removing all
the strict inequality constraints (resp., all the closure points). In contrast, when building a closed
polyhedron starting from an object of the class NNC_Polyhedron, the precise topological closure test
will be performed.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.5 Parma_Polyhedra_Library::C_Polyhedron Class Reference 163

10.5.2 Constructor & Destructor Documentation

10.5.2.1 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (dimension_type
num_dimensions = 0, Degenerate_Element kind = UNIVERSE) [inline,
explicit]

Builds either the universe or the empty C polyhedron.

Parameters

num_dimensions The number of dimensions of the vector space enclosing the C polyhedron;
kind Specifies whether a universe or an empty C polyhedron should be built.

Exceptions

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

Both parameters are optional: by default, a 0-dimension space universe C polyhedron is built.

10.5.2.2 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const Constraint_System &
cs) [inline, explicit]

Builds a C polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters

cs The system of constraints defining the polyhedron.

Exceptions

std::invalid_argument Thrown if the system of constraints contains strict inequalities.

10.5.2.3 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (Constraint_System & cs,
Recycle_Input dummy) [inline]

Builds a C polyhedron recycling a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters

cs The system of constraints defining the polyhedron. It is not declared const because its data-
structures may be recycled to build the polyhedron.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions

std::invalid_argument Thrown if the system of constraints contains strict inequalities.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.5 Parma_Polyhedra_Library::C_Polyhedron Class Reference 164

10.5.2.4 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const Generator_System &
gs) [inline, explicit]

Builds a C polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters

gs The system of generators defining the polyhedron.

Exceptions

std::invalid_argument Thrown if the system of generators is not empty but has no points, or if it
contains closure points.

10.5.2.5 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (Generator_System & gs,
Recycle_Input dummy) [inline]

Builds a C polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters

gs The system of generators defining the polyhedron. It is not declared const because its data-
structures may be recycled to build the polyhedron.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions

std::invalid_argument Thrown if the system of generators is not empty but has no points, or if it
contains closure points.

10.5.2.6 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const Congruence_System
& cgs) [explicit]

Builds a C polyhedron from a system of congruences.

The polyhedron inherits the space dimension of the congruence system.

Parameters

cgs The system of congruences defining the polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.5 Parma_Polyhedra_Library::C_Polyhedron Class Reference 165

10.5.2.7 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (Congruence_System & cgs,
Recycle_Input dummy)

Builds a C polyhedron recycling a system of congruences.

The polyhedron inherits the space dimension of the congruence system.

Parameters

cgs The system of congruences defining the polyhedron. It is not declared const because its data-
structures may be recycled to build the polyhedron.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

10.5.2.8 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const NNC_Polyhedron &
y, Complexity_Class complexity = ANY_COMPLEXITY) [explicit]

Builds a C polyhedron representing the topological closure of the NNC polyhedron y.

Parameters

y The NNC polyhedron to be used;

complexity This argument is ignored.

10.5.2.9 template<typename Interval > Parma_Polyhedra_Library::C_Polyhedron::C_-
Polyhedron (const Box< Interval > & box, Complexity_Class complexity =
ANY_COMPLEXITY) [inline, explicit]

Builds a C polyhedron out of a box.

The polyhedron inherits the space dimension of the box and is the most precise that includes the box. The
algorithm used has polynomial complexity.

Parameters

box The box representing the polyhedron to be approximated;

complexity This argument is ignored.

Exceptions

std::length_error Thrown if the space dimension of box exceeds the maximum allowed space di-
mension.

10.5.2.10 template<typename U > Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (
const BD_Shape< U > & bd, Complexity_Class complexity = ANY_COMPLEXITY)
[inline, explicit]

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.5 Parma_Polyhedra_Library::C_Polyhedron Class Reference 166

Builds a C polyhedron out of a BD shape.

The polyhedron inherits the space dimension of the BDS and is the most precise that includes the BDS.

Parameters

bd The BDS used to build the polyhedron.
complexity This argument is ignored as the algorithm used has polynomial complexity.

10.5.2.11 template<typename U > Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron
(const Octagonal_Shape< U > & os, Complexity_Class complexity =
ANY_COMPLEXITY) [inline, explicit]

Builds a C polyhedron out of an octagonal shape.

The polyhedron inherits the space dimension of the octagonal shape and is the most precise that includes
the octagonal shape.

Parameters

os The octagonal shape used to build the polyhedron.
complexity This argument is ignored as the algorithm used has polynomial complexity.

10.5.2.12 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const Grid & grid,
Complexity_Class complexity = ANY_COMPLEXITY) [explicit]

Builds a C polyhedron out of a grid.

The polyhedron inherits the space dimension of the grid and is the most precise that includes the grid.

Parameters

grid The grid used to build the polyhedron.
complexity This argument is ignored as the algorithm used has polynomial complexity.

10.5.2.13 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const C_Polyhedron & y,
Complexity_Class complexity = ANY_COMPLEXITY) [inline]

Ordinary copy constructor.

The complexity argument is ignored.

10.5.3 Member Function Documentation

10.5.3.1 bool Parma_Polyhedra_Library::C_Polyhedron::poly_hull_assign_if_exact (const
C_Polyhedron & y)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.6 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 167

If the poly-hull of ∗this and y is exact it is assigned to ∗this and true is returned, otherwise false
is returned.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

The documentation for this class was generated from the following file:

• ppl.hh

10.6 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template
Reference

A wrapper for numeric types implementing a given policy.

#include <ppl.hh>

Public Member Functions

• bool OK () const
Checks if all the invariants are satisfied.

• Result classify (bool nan=true, bool inf=true, bool sign=true) const
Classifies ∗this.

Constructors

• Checked_Number ()
Default constructor.

• Checked_Number (const Checked_Number &y)
Copy constructor.

• template<typename From , typename From_Policy >

Checked_Number (const Checked_Number< From, From_Policy > &y, Rounding_Dir dir)
Direct initialization from a Checked_Number and rounding mode.

• Checked_Number (signed char y, Rounding_Dir dir)
Direct initialization from a signed char and rounding mode.

• Checked_Number (signed short y, Rounding_Dir dir)
Direct initialization from a signed short and rounding mode.

• Checked_Number (signed int y, Rounding_Dir dir)
Direct initialization from a signed int and rounding mode.

• Checked_Number (signed long y, Rounding_Dir dir)
Direct initialization from a signed long and rounding mode.

• Checked_Number (signed long long y, Rounding_Dir dir)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.6 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 168

Direct initialization from a signed long long and rounding mode.

• Checked_Number (unsigned char y, Rounding_Dir dir)
Direct initialization from an unsigned char and rounding mode.

• Checked_Number (unsigned short y, Rounding_Dir dir)
Direct initialization from an unsigned short and rounding mode.

• Checked_Number (unsigned int y, Rounding_Dir dir)
Direct initialization from an unsigned int and rounding mode.

• Checked_Number (unsigned long y, Rounding_Dir dir)
Direct initialization from an unsigned long and rounding mode.

• Checked_Number (unsigned long long y, Rounding_Dir dir)
Direct initialization from an unsigned long long and rounding mode.

• Checked_Number (float y, Rounding_Dir dir)
Direct initialization from a float and rounding mode.

• Checked_Number (double y, Rounding_Dir dir)
Direct initialization from a double and rounding mode.

• Checked_Number (long double y, Rounding_Dir dir)
Direct initialization from a long double and rounding mode.

• Checked_Number (const mpq_class &y, Rounding_Dir dir)
Direct initialization from a rational and rounding mode.

• Checked_Number (const mpz_class &y, Rounding_Dir dir)
Direct initialization from an unbounded integer and rounding mode.

• Checked_Number (const char ∗y, Rounding_Dir dir)
Direct initialization from a C string and rounding mode.

• template<typename From >

Checked_Number (const From &, Rounding_Dir dir, typename Enable_If< Is_Special< From
>::value, bool >::type ignored=false)

Direct initialization from special and rounding mode.

• template<typename From , typename From_Policy >

Checked_Number (const Checked_Number< From, From_Policy > &y)
Direct initialization from a Checked_Number, default rounding mode.

• Checked_Number (signed char y)
Direct initialization from a signed char, default rounding mode.

• Checked_Number (signed short y)
Direct initialization from a signed short, default rounding mode.

• Checked_Number (signed int y)
Direct initialization from a signed int, default rounding mode.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.6 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 169

• Checked_Number (signed long y)
Direct initialization from a signed long, default rounding mode.

• Checked_Number (signed long long y)
Direct initialization from a signed long long, default rounding mode.

• Checked_Number (unsigned char y)
Direct initialization from an unsigned char, default rounding mode.

• Checked_Number (unsigned short y)
Direct initialization from an unsigned short, default rounding mode.

• Checked_Number (unsigned int y)
Direct initialization from an unsigned int, default rounding mode.

• Checked_Number (unsigned long y)
Direct initialization from an unsigned long, default rounding mode.

• Checked_Number (unsigned long long y)
Direct initialization from an unsigned long long, default rounding mode.

• Checked_Number (float y)
Direct initialization from a float, default rounding mode.

• Checked_Number (double y)
Direct initialization from a double, default rounding mode.

• Checked_Number (long double y)
Direct initialization from a long double, default rounding mode.

• Checked_Number (const mpq_class &y)
Direct initialization from a rational, default rounding mode.

• Checked_Number (const mpz_class &y)
Direct initialization from an unbounded integer, default rounding mode.

• Checked_Number (const char ∗y)
Direct initialization from a C string, default rounding mode.

• template<typename From >

Checked_Number (const From &, typename Enable_If< Is_Special< From >::value, bool
>::type ignored=false)

Direct initialization from special, default rounding mode.

Accessors and Conversions

• operator T () const
Conversion operator: returns a copy of the underlying numeric value.

• T & raw_value ()
Returns a reference to the underlying numeric value.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.6 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 170

• const T & raw_value () const
Returns a const reference to the underlying numeric value.

Assignment Operators

• Checked_Number & operator= (const Checked_Number &y)
Assignment operator.

• template<typename From >

Checked_Number & operator= (const From &y)
Assignment operator.

• template<typename From_Policy >

Checked_Number & operator+= (const Checked_Number< T, From_Policy > &y)
Add and assign operator.

• Checked_Number & operator+= (const T &y)
Add and assign operator.

• template<typename From >

Enable_If< Is_Native_Or_Checked< From >::value, Checked_Number< T, Policy > & >::type
operator+= (const From &y)

Add and assign operator.

• template<typename From_Policy >

Checked_Number & operator-= (const Checked_Number< T, From_Policy > &y)
Subtract and assign operator.

• Checked_Number & operator-= (const T &y)
Subtract and assign operator.

• template<typename From >

Enable_If< Is_Native_Or_Checked< From >::value, Checked_Number< T, Policy > & >::type
operator-= (const From &y)

Subtract and assign operator.

• template<typename From_Policy >

Checked_Number & operator∗= (const Checked_Number< T, From_Policy > &y)
Multiply and assign operator.

• Checked_Number & operator∗= (const T &y)
Multiply and assign operator.

• template<typename From >

Enable_If< Is_Native_Or_Checked< From >::value, Checked_Number< T, Policy > & >::type
operator∗= (const From &y)

Multiply and assign operator.

• template<typename From_Policy >

Checked_Number & operator/= (const Checked_Number< T, From_Policy > &y)
Divide and assign operator.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.6 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 171

• Checked_Number & operator/= (const T &y)
Divide and assign operator.

• template<typename From >

Enable_If< Is_Native_Or_Checked< From >::value, Checked_Number< T, Policy > & >::type
operator/= (const From &y)

Divide and assign operator.

• template<typename From_Policy >

Checked_Number & operator%= (const Checked_Number< T, From_Policy > &y)
Compute remainder and assign operator.

• Checked_Number & operator%= (const T &y)
Compute remainder and assign operator.

• template<typename From >

Enable_If< Is_Native_Or_Checked< From >::value, Checked_Number< T, Policy > & >::type
operator%= (const From &y)

Compute remainder and assign operator.

Increment and Decrement Operators

• Checked_Number & operator++ ()
Pre-increment operator.

• Checked_Number operator++ (int)
Post-increment operator.

• Checked_Number & operator-- ()
Pre-decrement operator.

• Checked_Number operator-- (int)
Post-decrement operator.

Related Functions

(Note that these are not member functions.)

• template<typename T >

Enable_If< Is_Native_Or_Checked< T >::value, bool >::type is_not_a_number (const T &x)
• template<typename T >

Enable_If< Is_Native_Or_Checked< T >::value, bool >::type is_minus_infinity (const T &x)
• template<typename T >

Enable_If< Is_Native_Or_Checked< T >::value, bool >::type is_plus_infinity (const T &x)
• template<typename T >

Enable_If< Is_Native_Or_Checked< T >::value, int >::type is_infinity (const T &x)
• template<typename T >

Enable_If< Is_Native_Or_Checked< T >::value, bool >::type is_integer (const T &x)
• template<typename To , typename From >

Enable_If< Is_Native_Or_Checked< To >::value &&Is_Special< From >::value, Result >::type
construct (To &to, const From &x, Rounding_Dir dir)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.6 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 172

• template<typename To , typename From >

Enable_If< Is_Native_Or_Checked< To >::value &&Is_Special< From >::value, Result >::type
assign_r (To &to, const From &x, Rounding_Dir dir)

• template<typename To >

Enable_If< Is_Native_Or_Checked< To >::value, Result >::type assign_r (To &to, const char ∗x,
Rounding_Dir dir)

• template<typename To , typename To_Policy >

Enable_If< Is_Native_Or_Checked< To >::value, Result >::type assign_r (To &to, char ∗x,
Rounding_Dir dir)

• template<typename T , typename Policy >

void swap (Checked_Number< T, Policy > &x, Checked_Number< T, Policy > &y)
Swaps x with y.

• template<typename T , typename Policy >

const T & raw_value (const Checked_Number< T, Policy > &x)
• template<typename T , typename Policy >

T & raw_value (Checked_Number< T, Policy > &x)

Memory Size Inspection Functions

• template<typename T , typename Policy >

size_t total_memory_in_bytes (const Checked_Number< T, Policy > &x)
Returns the total size in bytes of the memory occupied by x.

• template<typename T , typename Policy >

memory_size_type external_memory_in_bytes (const Checked_Number< T, Policy > &x)
Returns the size in bytes of the memory managed by x.

Arithmetic Operators

• template<typename T , typename Policy >

Checked_Number< T, Policy > operator+ (const Checked_Number< T, Policy > &x)
Unary plus operator.

• template<typename T , typename Policy >

Checked_Number< T, Policy > operator- (const Checked_Number< T, Policy > &x)
Unary minus operator.

• template<typename T , typename Policy >

void floor_assign (Checked_Number< T, Policy > &x)
Assigns to x largest integral value not greater than x.

• template<typename T , typename Policy >

void floor_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy >
&y)

Assigns to x largest integral value not greater than y.

• template<typename T , typename Policy >

void ceil_assign (Checked_Number< T, Policy > &x)
Assigns to x smallest integral value not less than x.

• template<typename T , typename Policy >

void ceil_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy >
&y)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.6 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 173

Assigns to x smallest integral value not less than y.

• template<typename T , typename Policy >

void trunc_assign (Checked_Number< T, Policy > &x)
Round x to the nearest integer not larger in absolute value.

• template<typename T , typename Policy >

void trunc_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy >
&y)

Assigns to x the value of y rounded to the nearest integer not larger in absolute value.

• template<typename T , typename Policy >

void neg_assign (Checked_Number< T, Policy > &x)
Assigns to x its negation.

• template<typename T , typename Policy >

void neg_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy >
&y)

Assigns to x the negation of y.

• template<typename T , typename Policy >

void abs_assign (Checked_Number< T, Policy > &x)
Assigns to x its absolute value.

• template<typename T , typename Policy >

void abs_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy >
&y)

Assigns to x the absolute value of y.

• template<typename T , typename Policy >

void add_mul_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy
> &y, const Checked_Number< T, Policy > &z)

Assigns to x the value x + y ∗ z.

• template<typename T , typename Policy >

void sub_mul_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy
> &y, const Checked_Number< T, Policy > &z)

Assigns to x the value x - y ∗ z.

• template<typename T , typename Policy >

void gcd_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy > &y,
const Checked_Number< T, Policy > &z)

Assigns to x the greatest common divisor of y and z.

• template<typename T , typename Policy >

void gcdext_assign (Checked_Number< T, Policy > &x, Checked_Number< T, Policy > &s,
Checked_Number< T, Policy > &t, const Checked_Number< T, Policy > &y, const Checked_-
Number< T, Policy > &z)

Assigns to x the greatest common divisor of y and z, setting s and t such that s∗y + t∗z = x = gcd(y, z).

• template<typename T , typename Policy >

void lcm_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy > &y,
const Checked_Number< T, Policy > &z)

Assigns to x the least common multiple of y and z.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.6 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 174

• template<typename T , typename Policy >

void mul_2exp_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy
> &y, unsigned int exp)

Assigns to x the value y · 2exp.

• template<typename T , typename Policy >

void div_2exp_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy
> &y, unsigned int exp)

Assigns to x the value y/2exp.

• template<typename T , typename Policy >

void exact_div_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy
> &y, const Checked_Number< T, Policy > &z)

If z divides y, assigns to x the quotient of the integer division of y and z.

• template<typename T , typename Policy >

void sqrt_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy >
&y)

Assigns to x the integer square root of y.

Relational Operators and Comparison Functions

• template<typename T1 , typename T2 >

Enable_If< Is_Native_Or_Checked< T1 >::value &&Is_Native_Or_Checked< T2 >::value
&&(Is_Checked< T1 >::value||Is_Checked< T2 >::value), bool >::type operator== (const T1
&x, const T2 &y)

Equality operator.

• template<typename T1 , typename T2 >

Enable_If< Is_Native_Or_Checked< T1 >::value &&Is_Native_Or_Checked< T2 >::value
&&(Is_Checked< T1 >::value||Is_Checked< T2 >::value), bool >::type operator!= (const T1
&x, const T2 &y)

Disequality operator.

• template<typename T1 , typename T2 >

Enable_If< Is_Native_Or_Checked< T1 >::value &&Is_Native_Or_Checked< T2 >::value
&&(Is_Checked< T1 >::value||Is_Checked< T2 >::value), bool >::type operator>= (const T1
&x, const T2 &y)

Greater than or equal to operator.

• template<typename T1 , typename T2 >

Enable_If< Is_Native_Or_Checked< T1 >::value &&Is_Native_Or_Checked< T2 >::value
&&(Is_Checked< T1 >::value||Is_Checked< T2 >::value), bool >::type operator> (const T1
&x, const T2 &y)

Greater than operator.

• template<typename T1 , typename T2 >

Enable_If< Is_Native_Or_Checked< T1 >::value &&Is_Native_Or_Checked< T2 >::value
&&(Is_Checked< T1 >::value||Is_Checked< T2 >::value), bool >::type operator<= (const T1
&x, const T2 &y)

Less than or equal to operator.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.6 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 175

• template<typename T1 , typename T2 >

Enable_If< Is_Native_Or_Checked< T1 >::value &&Is_Native_Or_Checked< T2 >::value
&&(Is_Checked< T1 >::value||Is_Checked< T2 >::value), bool >::type operator< (const T1
&x, const T2 &y)

Less than operator.

• template<typename From >

Enable_If< Is_Native_Or_Checked< From >::value, int >::type sgn (const From &x)
Returns −1, 0 or 1 depending on whether the value of x is negative, zero or positive, respectively.

• template<typename From1 , typename From2 >

Enable_If< Is_Native_Or_Checked< From1 >::value &&Is_Native_Or_Checked< From2
>::value, int >::type cmp (const From1 &x, const From2 &y)

Returns a negative, zero or positive value depending on whether x is lower than, equal to or greater than
y, respectively.

Input-Output Operators

• template<typename T >

Enable_If< Is_Native_Or_Checked< T >::value, Result >::type output (std::ostream &os, const
T &x, const Numeric_Format &fmt, Rounding_Dir dir)

• template<typename T , typename Policy >

std::ostream & operator<< (std::ostream &os, const Checked_Number< T, Policy > &x)
Output operator.

• template<typename T >

Enable_If< Is_Native_Or_Checked< T >::value, Result >::type input (T &x, std::istream &is,
Rounding_Dir dir)

Input function.

• template<typename T , typename Policy >

std::istream & operator>> (std::istream &is, Checked_Number< T, Policy > &x)
Input operator.

10.6.1 Detailed Description

template<typename T, typename Policy> class Parma_Polyhedra_Library::Checked_Number< T,
Policy >

A wrapper for numeric types implementing a given policy. The wrapper and related functions implement
an interface which is common to all kinds of coefficient types, therefore allowing for a uniform coding
style. This class also implements the policy encoded by the second template parameter. The default policy
is to perform the detection of overflow errors.

10.6.2 Member Function Documentation

10.6.2.1 template<typename T , typename Policy > Result Parma_Polyhedra_-
Library::Checked_Number< T, Policy >::classify (bool nan = true, bool inf = true,
bool sign = true) const [inline]

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.6 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 176

Classifies ∗this.

Returns the appropriate Result characterizing:

• whether ∗this is NaN, if nan is true;

• whether ∗this is a (positive or negative) infinity, if inf is true;

• the sign of ∗this, if sign is true.

10.6.3 Friends And Related Function Documentation

10.6.3.1 template<typename T > Enable_If< Is_Native_Or_Checked< T >::value, bool >::type
is_not_a_number (const T & x) [related]

10.6.3.2 template<typename T > Enable_If< Is_Native_Or_Checked< T >::value, bool >::type
is_minus_infinity (const T & x) [related]

10.6.3.3 template<typename T > Enable_If< Is_Native_Or_Checked< T >::value, bool >::type
is_plus_infinity (const T & x) [related]

10.6.3.4 template<typename T > Enable_If< Is_Native_Or_Checked< T >::value, int >::type
is_infinity (const T & x) [related]

10.6.3.5 template<typename T > Enable_If< Is_Native_Or_Checked< T >::value, bool >::type
is_integer (const T & x) [related]

10.6.3.6 template<typename To , typename From > Enable_If< Is_Native_Or_Checked< To
>::value &&Is_Special< From >::value, Result >::type construct (To & to, const
From & x, Rounding_Dir dir) [related]

10.6.3.7 template<typename To , typename From > Enable_If< Is_Native_Or_Checked< To
>::value &&Is_Special< From >::value, Result >::type assign_r (To & to, const From
& x, Rounding_Dir dir) [related]

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.6 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 177

10.6.3.8 template<typename To > Enable_If< Is_Native_Or_Checked< To >::value, Result
>::type assign_r (To & to, const char ∗ x, Rounding_Dir dir) [related]

10.6.3.9 template<typename To , typename To_Policy > Enable_If< Is_Native_Or_Checked<
To >::value, Result >::type assign_r (To & to, char ∗ x, Rounding_Dir dir)
[related]

10.6.3.10 template<typename T , typename Policy > memory_size_type total_memory_in_bytes (
const Checked_Number< T, Policy > & x) [related]

Returns the total size in bytes of the memory occupied by x.

10.6.3.11 template<typename T , typename Policy > memory_size_type
external_memory_in_bytes (const Checked_Number< T, Policy > & x) [related]

Returns the size in bytes of the memory managed by x.

10.6.3.12 template<typename T , typename Policy > Checked_Number< T, Policy > operator+ (
const Checked_Number< T, Policy > & x) [related]

Unary plus operator.

10.6.3.13 template<typename T , typename Policy > Checked_Number< T, Policy > operator- (
const Checked_Number< T, Policy > & x) [related]

Unary minus operator.

10.6.3.14 template<typename T , typename Policy > void floor_assign (Checked_Number< T,
Policy > & x) [related]

Assigns to x largest integral value not greater than x.

10.6.3.15 template<typename T , typename Policy > void floor_assign (Checked_Number< T,
Policy > & x, const Checked_Number< T, Policy > & y) [related]

Assigns to x largest integral value not greater than y.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.6 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 178

10.6.3.16 template<typename T , typename Policy > void ceil_assign (Checked_Number< T,
Policy > & x) [related]

Assigns to x smallest integral value not less than x.

10.6.3.17 template<typename T , typename Policy > void ceil_assign (Checked_Number< T,
Policy > & x, const Checked_Number< T, Policy > & y) [related]

Assigns to x smallest integral value not less than y.

10.6.3.18 template<typename T , typename Policy > void trunc_assign (Checked_Number< T,
Policy > & x) [related]

Round x to the nearest integer not larger in absolute value.

10.6.3.19 template<typename T , typename Policy > void trunc_assign (Checked_Number< T,
Policy > & x, const Checked_Number< T, Policy > & y) [related]

Assigns to x the value of y rounded to the nearest integer not larger in absolute value.

10.6.3.20 template<typename T , typename Policy > void neg_assign (Checked_Number< T,
Policy > & x) [related]

Assigns to x its negation.

10.6.3.21 template<typename T , typename Policy > void neg_assign (Checked_Number< T,
Policy > & x, const Checked_Number< T, Policy > & y) [related]

Assigns to x the negation of y.

10.6.3.22 template<typename T , typename Policy > void abs_assign (Checked_Number< T,
Policy > & x) [related]

Assigns to x its absolute value.

10.6.3.23 template<typename T , typename Policy > void abs_assign (Checked_Number< T,
Policy > & x, const Checked_Number< T, Policy > & y) [related]

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.6 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 179

Assigns to x the absolute value of y.

10.6.3.24 template<typename T , typename Policy > void add_mul_assign (Checked_Number<
T, Policy > & x, const Checked_Number< T, Policy > & y, const Checked_Number<
T, Policy > & z) [related]

Assigns to x the value x + y ∗ z.

10.6.3.25 template<typename T , typename Policy > void sub_mul_assign (Checked_Number<
T, Policy > & x, const Checked_Number< T, Policy > & y, const Checked_Number<
T, Policy > & z) [related]

Assigns to x the value x - y ∗ z.

10.6.3.26 template<typename T , typename Policy > void gcd_assign (Checked_Number< T,
Policy > & x, const Checked_Number< T, Policy > & y, const Checked_Number< T,
Policy > & z) [related]

Assigns to x the greatest common divisor of y and z.

10.6.3.27 template<typename T , typename Policy > void gcdext_assign (Checked_Number< T,
Policy > & x, Checked_Number< T, Policy > & s, Checked_Number< T, Policy > &
t, const Checked_Number< T, Policy > & y, const Checked_Number< T, Policy > & z
) [related]

Assigns to x the greatest common divisor of y and z, setting s and t such that s∗y + t∗z = x = gcd(y, z).

10.6.3.28 template<typename T , typename Policy > void lcm_assign (Checked_Number< T,
Policy > & x, const Checked_Number< T, Policy > & y, const Checked_Number< T,
Policy > & z) [related]

Assigns to x the least common multiple of y and z.

10.6.3.29 template<typename T , typename Policy > void mul_2exp_assign (Checked_Number<
T, Policy > & x, const Checked_Number< T, Policy > & y, unsigned int exp)
[related]

Assigns to x the value y · 2exp.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.6 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 180

10.6.3.30 template<typename T , typename Policy > void div_2exp_assign (Checked_Number<
T, Policy > & x, const Checked_Number< T, Policy > & y, unsigned int exp)
[related]

Assigns to x the value y/2exp.

10.6.3.31 template<typename T , typename Policy > void exact_div_assign (Checked_Number<
T, Policy > & x, const Checked_Number< T, Policy > & y, const Checked_Number<
T, Policy > & z) [related]

If z divides y, assigns to x the quotient of the integer division of y and z.

The behavior is undefined if z does not divide y.

10.6.3.32 template<typename T , typename Policy > void sqrt_assign (Checked_Number< T,
Policy > & x, const Checked_Number< T, Policy > & y) [related]

Assigns to x the integer square root of y.

10.6.3.33 template<typename T1 , typename T2 > Enable_If< Is_Native_Or_Checked<
T1 >::value &&Is_Native_Or_Checked< T2 >::value &&(Is_Checked< T1
>::value||Is_Checked< T2 >::value), bool >::type operator== (const T1 & x, const
T2 & y) [related]

Equality operator.

10.6.3.34 template<typename T1 , typename T2 > Enable_If< Is_Native_Or_Checked<
T1 >::value &&Is_Native_Or_Checked< T2 >::value &&(Is_Checked< T1
>::value||Is_Checked< T2 >::value), bool >::type operator!= (const T1 & x, const T2
& y) [related]

Disequality operator.

10.6.3.35 template<typename T1 , typename T2 > Enable_If< Is_Native_Or_Checked<
T1 >::value &&Is_Native_Or_Checked< T2 >::value &&(Is_Checked< T1
>::value||Is_Checked< T2 >::value), bool >::type operator>= (const T1 & x, const
T2 & y) [related]

Greater than or equal to operator.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.6 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 181

10.6.3.36 template<typename T1 , typename T2 > Enable_If< Is_Native_Or_Checked<
T1 >::value &&Is_Native_Or_Checked< T2 >::value &&(Is_Checked< T1
>::value||Is_Checked< T2 >::value), bool >::type operator> (const T1 & x, const T2
& y) [related]

Greater than operator.

10.6.3.37 template<typename T1 , typename T2 > Enable_If< Is_Native_Or_Checked<
T1 >::value &&Is_Native_Or_Checked< T2 >::value &&(Is_Checked< T1
>::value||Is_Checked< T2 >::value), bool >::type operator<= (const T1 & x, const
T2 & y) [related]

Less than or equal to operator.

10.6.3.38 template<typename T1 , typename T2 > Enable_If< Is_Native_Or_Checked<
T1 >::value &&Is_Native_Or_Checked< T2 >::value &&(Is_Checked< T1
>::value||Is_Checked< T2 >::value), bool >::type operator< (const T1 & x, const T2
& y) [related]

Less than operator.

10.6.3.39 template<typename From > Enable_If< Is_Native_Or_Checked< From >::value, int
>::type sgn (const From & x) [related]

Returns −1, 0 or 1 depending on whether the value of x is negative, zero or positive, respectively.

10.6.3.40 template<typename From1 , typename From2 > Enable_If< Is_Native_Or_Checked<
From1 >::value &&Is_Native_Or_Checked< From2 >::value, int >::type cmp (const
From1 & x, const From2 & y) [related]

Returns a negative, zero or positive value depending on whether x is lower than, equal to or greater than y,
respectively.

10.6.3.41 template<typename T > Enable_If< Is_Native_Or_Checked< T >::value, Result
>::type output (std::ostream & os, const T & x, const Numeric_Format & fmt,
Rounding_Dir dir) [related]

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.6 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 182

10.6.3.42 template<typename T , typename Policy > std::ostream & operator<< (std::ostream
& os, const Checked_Number< T, Policy > & x) [related]

Output operator.

10.6.3.43 template<typename T > Enable_If< Is_Native_Or_Checked< T >::value, Result
>::type input (T & x, std::istream & is, Rounding_Dir dir) [related]

Input function.

Parameters

is Input stream to read from;

x Number (possibly extended) to assign to in case of successful reading;

dir Rounding mode to be applied.

Returns

Result of the input operation. Success, success with imprecision, overflow, parsing error: all possibil-
ities are taken into account, checked for, and properly reported.

This function attempts reading a (possibly extended) number from the given stream is, possibly rounding
as specified by dir, assigning the result to x upon success, and returning the appropriate Result.

The input syntax allows the specification of:

• plain base-10 integer numbers as 34976098, -77 and +13;

• base-10 integer numbers in scientific notation as 15e2 and 15∗∧2 (both meaning 15 · 102 = 1500),
9200e-2 and -18∗∧+11111111111111111;

• base-10 rational numbers in fraction notation as 15/3 and 15/-3;

• base-10 rational numbers in fraction/scientific notation as 15/30e-1 (meaning 5) and
15∗∧-3/29e2 (meaning 3/580000);

• base-10 rational numbers in floating point notation as 71.3 (meaning 713/10) and -0.123456
(meaning −1929/15625);

• base-10 rational numbers in floating point scientific notation as 2.2e-1 (meaning 11/50) and
-2.20001∗∧+3 (meaning −220001/100);

• integers and rationals (in fractional, floating point and scientific notations) specified by using
Mathematica-style bases, in the range from 2 to 36, as 2∧∧11 (meaning 3), 36∧∧z (mean-
ing 35), 36∧∧xyz (meaning 44027), 2∧∧11.1 (meaning 7/2), 10∧∧2e3 (meaning 2000),
8∧∧2e3 (meaning 1024), 8∧∧2.1e3 (meaning 1088), 8∧∧20402543.120347e7 (meaning
9073863231288), 8∧∧2.1 (meaning 17/8); note that the base and the exponent are always written
as plain base-10 integer numbers; also, when an ambiguity may arise, the character e is interpreted
as a digit, so that 16∧∧1e2 (meaning 482) is different from 16∧∧1∗∧2 (meaning 256);

• the C-style hexadecimal prefix 0x is interpreted as the Mathematica-style prefix 16∧∧;

• special values like inf and +inf (meaning +∞), -inf (meaning −∞), and nan (meaning "not a
number").

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.6 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 183

The rationale behind the accepted syntax can be summarized as follows:

• if the syntax is accepted by Mathematica, then this function accepts it with the same semantics;

• if the syntax is acceptable as standard C++ integer or floating point literal (except for octal notation
and type suffixes, which are not supported), then this function accepts it with the same semantics;

• natural extensions of the above are accepted with the natural extensions of the semantics;

• special values are accepted.

Valid syntax is more formally and completely specified by the following grammar, with the additional
provisos that everything is case insensitive, that the syntactic category BDIGIT is further restricted by the
current base and that for all bases above 14, any e is always interpreted as a digit and never as a delimiter
for the exponent part (if such a delimiter is desired, it has to be written as ∗∧).

number : NAN INF : ’inf’
| SIGN INF ;
| INF
| num NAN : ’nan’
| num DIV num ;
;

SIGN : ’-’
num : unum | ’+’

| SIGN unum ;

unum : unum1 EXP : ’e’
| HEX unum1 | ’*^’
| base BASE unum1 ;
;

POINT : ’.’
unum1 : mantissa ;

| mantissa EXP exponent
; DIV : ’/’

;
mantissa: bdigits

| POINT bdigits MINUS : ’-’
| bdigits POINT ;
| bdigits POINT bdigits
; PLUS : ’+’

;
exponent: SIGN digits

| digits HEX : ’0x’
; ;

bdigits : BDIGIT BASE : ’^^’
| bdigits BDIGIT ;
;

DIGIT : ’0’ .. ’9’
digits : DIGIT ;

| digits DIGIT
; BDIGIT : ’0’ .. ’9’

| ’a’ .. ’z’
;

10.6.3.44 template<typename T , typename Policy > std::istream & operator>> (std::istream &
is, Checked_Number< T, Policy > & x) [related]

Input operator.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.7 Parma_Polyhedra_Library::Variable::Compare Struct Reference 184

10.6.3.45 template<typename T , typename Policy > void swap (Checked_Number< T, Policy >
& x, Checked_Number< T, Policy > & y) [related]

Swaps x with y.

10.6.3.46 template<typename T , typename Policy > const T & raw_value (const
Checked_Number< T, Policy > & x) [related]

10.6.3.47 template<typename T , typename Policy > T & raw_value (Checked_Number< T,
Policy > & x) [related]

The documentation for this class was generated from the following file:

• ppl.hh

10.7 Parma_Polyhedra_Library::Variable::Compare Struct Reference

Binary predicate defining the total ordering on variables.

#include <ppl.hh>

Public Member Functions

• bool operator() (Variable x, Variable y) const
Returns true if and only if x comes before y.

10.7.1 Detailed Description

Binary predicate defining the total ordering on variables.

The documentation for this struct was generated from the following file:

• ppl.hh

10.8 Parma_Polyhedra_Library::BHRZ03_Certificate::Compare Struct Refer-
ence

A total ordering on BHRZ03 certificates.

#include <ppl.hh>

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.9 Parma_Polyhedra_Library::H79_Certificate::Compare Struct Reference 185

Public Member Functions

• bool operator() (const BHRZ03_Certificate &x, const BHRZ03_Certificate &y) const
Returns true if and only if x comes before y.

10.8.1 Detailed Description

A total ordering on BHRZ03 certificates. This binary predicate defines a total ordering on BHRZ03 certifi-
cates which is used when storing information about sets of polyhedra.

The documentation for this struct was generated from the following file:

• ppl.hh

10.9 Parma_Polyhedra_Library::H79_Certificate::Compare Struct Reference

A total ordering on H79 certificates.

#include <ppl.hh>

Public Member Functions

• bool operator() (const H79_Certificate &x, const H79_Certificate &y) const
Returns true if and only if x comes before y.

10.9.1 Detailed Description

A total ordering on H79 certificates. This binary predicate defines a total ordering on H79 certificates
which is used when storing information about sets of polyhedra.

The documentation for this struct was generated from the following file:

• ppl.hh

10.10 Parma_Polyhedra_Library::Grid_Certificate::Compare Struct Reference

A total ordering on Grid certificates.

#include <ppl.hh>

Public Member Functions

• bool operator() (const Grid_Certificate &x, const Grid_Certificate &y) const
Returns true if and only if x comes before y.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.11 Parma_Polyhedra_Library::Congruence Class Reference 186

10.10.1 Detailed Description

A total ordering on Grid certificates. This binary predicate defines a total ordering on Grid certificates
which is used when storing information about sets of grids.

The documentation for this struct was generated from the following file:

• ppl.hh

10.11 Parma_Polyhedra_Library::Congruence Class Reference

A linear congruence.

#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Row.

Public Member Functions

• Congruence (const Congruence &cg)
Ordinary copy constructor.

• Congruence (const Constraint &c)
Copy-constructs (modulo 0) from equality constraint c.

• ∼Congruence ()
Destructor.

• Congruence & operator= (const Congruence &cg)
Assignment operator.

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• Coefficient_traits::const_reference coefficient (Variable v) const
Returns the coefficient of v in ∗this.

• Coefficient_traits::const_reference inhomogeneous_term () const
Returns the inhomogeneous term of ∗this.

• Coefficient_traits::const_reference modulus () const
Returns a const reference to the modulus of ∗this.

• Congruence & operator/= (Coefficient_traits::const_reference k)
Multiplies k into the modulus of ∗this.

• bool is_tautological () const
Returns true if and only if ∗this is a tautology (i.e., an always true congruence).

• bool is_inconsistent () const
Returns true if and only if ∗this is inconsistent (i.e., an always false congruence).

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.11 Parma_Polyhedra_Library::Congruence Class Reference 187

• bool is_proper_congruence () const
Returns true if the modulus is greater than zero.

• bool is_equality () const
Returns true if ∗this is an equality.

• bool is_equal_at_dimension (dimension_type dim, const Congruence &cg) const
Returns true if ∗this is equal to cg in dimension dim.

• memory_size_type total_memory_in_bytes () const
Returns a lower bound to the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• void ascii_dump () const
Writes to std::cerr an ASCII representation of ∗this.

• void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of ∗this.

• void print () const
Prints ∗this to std::cerr using operator<<.

• bool ascii_load (std::istream &s)
Loads from s an ASCII representation of the internal representation of ∗this.

• bool OK () const
Checks if all the invariants are satisfied.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a Congruence can handle.

• static void initialize ()
Initializes the class.

• static void finalize ()
Finalizes the class.

• static const Congruence & zero_dim_integrality ()
Returns a reference to the true (zero-dimension space) congruence 0 = 1 (mod 1), also known as the
integrality congruence.

• static const Congruence & zero_dim_false ()
Returns a reference to the false (zero-dimension space) congruence 0 = 1 (mod 0).

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.11 Parma_Polyhedra_Library::Congruence Class Reference 188

• static Congruence create (const Linear_Expression &e1, const Linear_Expression &e2)
Returns the congruence e1 = e2 (mod 1).

• static Congruence create (const Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the congruence e = n (mod 1).

• static Congruence create (Coefficient_traits::const_reference n, const Linear_Expression &e)
Returns the congruence n = e (mod 1).

Protected Member Functions

• void sign_normalize ()
Normalizes the signs.

• void normalize ()
Normalizes signs and the inhomogeneous term.

• void strong_normalize ()
Calls normalize, then divides out common factors.

Friends

• Congruence operator/ (const Congruence &cg, Coefficient_traits::const_reference k)
Returns a copy of cg, multiplying k into the copy’s modulus.

• Congruence operator/ (const Constraint &c, Coefficient_traits::const_reference m)
Creates a congruence from c, with m as the modulus.

• bool operator== (const Congruence &x, const Congruence &y)
Returns true if and only if x and y are equivalent.

• bool operator!= (const Congruence &x, const Congruence &y)
Returns false if and only if x and y are equivalent.

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &s, const Congruence &c)
Output operators.

• Congruence operator%= (const Linear_Expression &e1, const Linear_Expression &e2)
Returns the congruence e1 = e2 (mod 1).

• Congruence operator%= (const Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the congruence e = n (mod 1).

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.11 Parma_Polyhedra_Library::Congruence Class Reference 189

• void swap (Parma_Polyhedra_Library::Congruence &x, Parma_Polyhedra_Library::Congruence
&y)

Specializes std::swap.

10.11.1 Detailed Description

A linear congruence. An object of the class Congruence is a congruence:

• cg =
∑n−1
i=0 aixi + b = 0 (mod m)

where n is the dimension of the space, ai is the integer coefficient of variable xi, b is the integer inho-
mogeneous term and m is the integer modulus; if m = 0, then cg represents the equality congruence∑n−1
i=0 aixi + b = 0 and, if m 6= 0, then the congruence cg is said to be a proper congruence.

How to build a congruence

Congruences (mod 1) are typically built by applying the congruence symbol ‘%=’ to a pair of lin-
ear expressions. Congruences with modulus m are typically constructed by building a congruence
(mod 1) using the given pair of linear expressions and then adding the modulus m using the modulus
symbol is ‘/’.

The space dimension of a congruence is defined as the maximum space dimension of the arguments of its
constructor.

In the following examples it is assumed that variables x, y and z are defined as follows:

Variable x(0);
Variable y(1);
Variable z(2);

Example 1

The following code builds the equality congruence 3x+ 5y − z = 0, having space dimension 3:

Congruence eq_cg((3*x + 5*y - z %= 0) / 0);

The following code builds the congruence 4x = 2y − 13 (mod 1), having space dimension 2:

Congruence mod1_cg(4*x %= 2*y - 13);

The following code builds the congruence 4x = 2y − 13 (mod 2), having space dimension 2:

Congruence mod2_cg((4*x %= 2*y - 13) / 2);

An unsatisfiable congruence on the zero-dimension space R0 can be specified as follows:

Congruence false_cg = Congruence::zero_dim_false();

Equivalent, but more involved ways are the following:

Congruence false_cg1((Linear_Expression::zero() %= 1) / 0);
Congruence false_cg2((Linear_Expression::zero() %= 1) / 2);

In contrast, the following code defines an unsatisfiable congruence having space dimension 3:

Congruence false_cg3((0*z %= 1) / 0);

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.11 Parma_Polyhedra_Library::Congruence Class Reference 190

How to inspect a congruence

Several methods are provided to examine a congruence and extract all the encoded information: its
space dimension, its modulus and the value of its integer coefficients.

Example 2

The following code shows how it is possible to access the modulus as well as each of the coefficients.
Given a congruence with linear expression e and modulus m (in this case x− 5y + 3z = 4 (mod 5)),
we construct a new congruence with the same modulus m but where the linear expression is 2e (
2x− 10y + 6z = 8 (mod 5)).

Congruence cg1((x - 5*y + 3*z %= 4) / 5);
cout << "Congruence cg1: " << cg1 << endl;
const Coefficient& m = cg1.modulus();
if (m == 0)

cout << "Congruence cg1 is an equality." << endl;
else {

Linear_Expression e;
for (dimension_type i = cg1.space_dimension(); i-- > 0;)

e += 2 * cg1.coefficient(Variable(i)) * Variable(i);
e += 2 * cg1.inhomogeneous_term();

Congruence cg2((e %= 0) / m);
cout << "Congruence cg2: " << cg2 << endl;

}

The actual output could be the following:

Congruence cg1: A - 5*B + 3*C %= 4 / 5
Congruence cg2: 2*A - 10*B + 6*C %= 8 / 5

Note that, in general, the particular output obtained can be syntactically different from the (semanti-
cally equivalent) congruence considered.

10.11.2 Constructor & Destructor Documentation

10.11.2.1 Parma_Polyhedra_Library::Congruence::Congruence (const Constraint & c)
[explicit]

Copy-constructs (modulo 0) from equality constraint c.

Exceptions

std::invalid_argument Thrown if c is an inequality.

10.11.3 Member Function Documentation

10.11.3.1 Coefficient_traits::const_reference Parma_Polyhedra_Library::Congruence::coefficient
(Variable v) const [inline]

Returns the coefficient of v in ∗this.

Exceptions

std::invalid_argument thrown if the index of v is greater than or equal to the space dimension of
∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.11 Parma_Polyhedra_Library::Congruence Class Reference 191

10.11.3.2 Congruence & Parma_Polyhedra_Library::Congruence::operator/= (
Coefficient_traits::const_reference k) [inline]

Multiplies k into the modulus of ∗this.

If called with ∗this representing the congruence e1 = e2 (mod m), then it returns with ∗this represent-
ing the congruence e1 = e2 (mod mk).

10.11.3.3 bool Parma_Polyhedra_Library::Congruence::is_tautological () const

Returns true if and only if ∗this is a tautology (i.e., an always true congruence).

A tautological congruence has one the following two forms:

• an equality:
∑n−1
i=0 0xi + 0 == 0; or

• a proper congruence:
∑n−1
i=0 0xi + b% = 0/m, where b = 0 (mod m).

10.11.3.4 bool Parma_Polyhedra_Library::Congruence::is_inconsistent () const

Returns true if and only if ∗this is inconsistent (i.e., an always false congruence).

An inconsistent congruence has one of the following two forms:

• an equality:
∑n−1
i=0 0xi + b == 0 where b 6= 0; or

• a proper congruence:
∑n−1
i=0 0xi + b% = 0/m, where b 6= 0 (mod m).

10.11.3.5 bool Parma_Polyhedra_Library::Congruence::is_proper_congruence () const
[inline]

Returns true if the modulus is greater than zero.

A congruence with a modulus of 0 is a linear equality.

10.11.3.6 bool Parma_Polyhedra_Library::Congruence::is_equality () const [inline]

Returns true if ∗this is an equality.

A modulus of zero denotes a linear equality.

10.11.3.7 void Parma_Polyhedra_Library::Congruence::sign_normalize () [protected]

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.11 Parma_Polyhedra_Library::Congruence Class Reference 192

Normalizes the signs.

The signs of the coefficients and the inhomogeneous term are normalized, leaving the first non-zero homo-
geneous coefficient positive.

10.11.3.8 void Parma_Polyhedra_Library::Congruence::normalize () [protected]

Normalizes signs and the inhomogeneous term.

Applies sign_normalize, then reduces the inhomogeneous term to the smallest possible positive number.

10.11.3.9 void Parma_Polyhedra_Library::Congruence::strong_normalize () [protected]

Calls normalize, then divides out common factors.

Strongly normalized Congruences have equivalent semantics if and only if their syntaxes (as output by
operator<<) are equal.

10.11.4 Friends And Related Function Documentation

10.11.4.1 Congruence operator/ (const Congruence & cg, Coefficient_traits::const_reference k
) [friend]

Returns a copy of cg, multiplying k into the copy’s modulus.

If cg represents the congruence e1 = e2 (mod m), then the result represents the congruence e1 = e2
(mod mk).

10.11.4.2 Congruence operator/ (const Constraint & c, Coefficient_traits::const_reference m)
[friend]

Creates a congruence from c, with m as the modulus.

10.11.4.3 bool operator== (const Congruence & x, const Congruence & y) [friend]

Returns true if and only if x and y are equivalent.

10.11.4.4 bool operator!= (const Congruence & x, const Congruence & y) [friend]

Returns false if and only if x and y are equivalent.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.12 Parma_Polyhedra_Library::Congruence_System Class Reference 193

10.11.4.5 std::ostream & operator<< (std::ostream & s, const Congruence & c) [related]

Output operators.

10.11.4.6 Congruence operator%= (const Linear_Expression & e1, const Linear_Expression &
e2) [related]

Returns the congruence e1 = e2 (mod 1).

10.11.4.7 Congruence operator%= (const Linear_Expression & e,
Coefficient_traits::const_reference n) [related]

Returns the congruence e = n (mod 1).

10.11.4.8 void swap (Parma_Polyhedra_Library::Congruence & x,
Parma_Polyhedra_Library::Congruence & y) [related]

Specializes std::swap.

The documentation for this class was generated from the following file:

• ppl.hh

10.12 Parma_Polyhedra_Library::Congruence_System Class Reference

A system of congruences.

#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Matrix.

Classes

• class const_iterator
An iterator over a system of congruences.

Public Member Functions

• Congruence_System ()
Default constructor: builds an empty system of congruences.

• Congruence_System (const Congruence &cg)
Builds the singleton system containing only congruence cg.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.12 Parma_Polyhedra_Library::Congruence_System Class Reference 194

• Congruence_System (const Constraint &c)
If c represents the constraint e1 = e2, builds the singleton system containing only constraint e1 = e2

(mod 0).

• Congruence_System (const Constraint_System &cs)
Builds a system containing copies of any equalities in cs.

• Congruence_System (const Congruence_System &cgs)
Ordinary copy constructor.

• ∼Congruence_System ()
Destructor.

• Congruence_System & operator= (const Congruence_System &cgs)
Assignment operator.

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• bool is_equal_to (const Congruence_System &cgs) const
Returns true if and only if ∗this is exactly equal to cgs.

• bool has_linear_equalities () const
Returns true if and only if ∗this contains one or more linear equalities.

• void clear ()
Removes all the congruences and sets the space dimension to 0.

• void insert (const Congruence &cg)
Inserts in ∗this a copy of the congruence cg, increasing the number of space dimensions if needed.

• void insert (const Constraint &c)
Inserts in ∗this a copy of the equality constraint c, seen as a modulo 0 congruence, increasing the number
of space dimensions if needed.

• void insert (const Congruence_System &cgs)
Inserts in ∗this a copy of the congruences in cgs, increasing the number of space dimensions if needed.

• void recycling_insert (Congruence_System &cgs)
Inserts into ∗this the congruences in cgs, increasing the number of space dimensions if needed.

• bool empty () const
Returns true if and only if ∗this has no congruences.

• const_iterator begin () const
Returns the const_iterator pointing to the first congruence, if this is not empty; otherwise, returns the
past-the-end const_iterator.

• const_iterator end () const

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.12 Parma_Polyhedra_Library::Congruence_System Class Reference 195

Returns the past-the-end const_iterator.

• bool OK () const
Checks if all the invariants are satisfied.

• void ascii_dump () const
Writes to std::cerr an ASCII representation of ∗this.

• void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of ∗this.

• void print () const
Prints ∗this to std::cerr using operator<<.

• bool ascii_load (std::istream &s)
Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets ∗this
accordingly. Returns true if successful, false otherwise.

• memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• dimension_type num_equalities () const
Returns the number of equalities.

• dimension_type num_proper_congruences () const
Returns the number of proper congruences.

• void swap (Congruence_System &cgs)
Swaps ∗this with y.

• void add_unit_rows_and_columns (dimension_type dims)
Adds dims rows and dims columns of zeroes to the matrix, initializing the added rows as in the unit
congruence system.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a Congruence_System can handle.

• static void initialize ()
Initializes the class.

• static void finalize ()
Finalizes the class.

• static const Congruence_System & zero_dim_empty ()
Returns the system containing only Congruence::zero_dim_false().

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.12 Parma_Polyhedra_Library::Congruence_System Class Reference 196

Protected Member Functions

• bool satisfies_all_congruences (const Grid_Generator &g) const
Returns true if g satisfies all the congruences.

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &s, const Congruence_System &cgs)
Output operator.

• void swap (Parma_Polyhedra_Library::Congruence_System &x, Parma_Polyhedra_-
Library::Congruence_System &y)

Specializes std::swap.

10.12.1 Detailed Description

A system of congruences. An object of the class Congruence_System is a system of congruences, i.e., a
multiset of objects of the class Congruence. When inserting congruences in a system, space dimensions
are automatically adjusted so that all the congruences in the system are defined on the same vector space.

In all the examples it is assumed that variables x and y are defined as follows:

Variable x(0);
Variable y(1);

Example 1

The following code builds a system of congruences corresponding to an integer grid in R2:

Congruence_System cgs;
cgs.insert(x %= 0);
cgs.insert(y %= 0);

Note that: the congruence system is created with space dimension zero; the first and second congruence
insertions increase the space dimension to 1 and 2, respectively.

Example 2

By adding to the congruence system of the previous example, the congruence x+ y = 1 (mod 2):

cgs.insert((x + y %= 1) / 2);

we obtain the grid containing just those integral points where the sum of the x and y values is odd.

Example 3

The following code builds a system of congruences corresponding to the grid in Z2 containing just the
integral points on the x axis:

Congruence_System cgs;
cgs.insert(x %= 0);
cgs.insert((y %= 0) / 0);

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.12 Parma_Polyhedra_Library::Congruence_System Class Reference 197

Note

After inserting a multiset of congruences in a congruence system, there are no guarantees that an exact
copy of them can be retrieved: in general, only an equivalent congruence system will be available,
where original congruences may have been reordered, removed (if they are trivial, duplicate or implied
by other congruences), linearly combined, etc.

10.12.2 Constructor & Destructor Documentation

10.12.2.1 Parma_Polyhedra_Library::Congruence_System::Congruence_System (const
Constraint & c) [inline, explicit]

If c represents the constraint e1 = e2, builds the singleton system containing only constraint e1 = e2
(mod 0).

Exceptions

std::invalid_argument Thrown if c is not an equality constraint.

10.12.3 Member Function Documentation

10.12.3.1 void Parma_Polyhedra_Library::Congruence_System::insert (const Congruence & cg
) [inline]

Inserts in ∗this a copy of the congruence cg, increasing the number of space dimensions if needed.

The copy of cg will be strongly normalized after being inserted.

10.12.3.2 void Parma_Polyhedra_Library::Congruence_System::insert (const Constraint & c)

Inserts in ∗this a copy of the equality constraint c, seen as a modulo 0 congruence, increasing the number
of space dimensions if needed.

The modulo 0 congruence will be strongly normalized after being inserted.

Exceptions

std::invalid_argument Thrown if c is a relational constraint.

10.12.3.3 void Parma_Polyhedra_Library::Congruence_System::insert (const
Congruence_System & cgs)

Inserts in ∗this a copy of the congruences in cgs, increasing the number of space dimensions if needed.

The inserted copies will be strongly normalized.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.13 Parma_Polyhedra_Library::Congruences_Reduction< D1, D2 > Class Template Reference198

10.12.3.4 void Parma_Polyhedra_Library::Congruence_System::add_unit_rows_and_columns (
dimension_type dims)

Adds dims rows and dims columns of zeroes to the matrix, initializing the added rows as in the unit
congruence system.

Parameters

dims The number of rows and columns to be added: must be strictly positive.

Turns the r × c matrix A into the (r + dims) × (c + dims) matrix
(

0
A
B
A

)
where B is the dims × dims

unit matrix of the form
(

0
1

1
0

)
. The matrix is expanded avoiding reallocation whenever possible.

10.12.4 Friends And Related Function Documentation

10.12.4.1 std::ostream & operator<< (std::ostream & s, const Congruence_System & cgs)
[related]

Output operator.

Writes true if cgs is empty. Otherwise, writes on s the congruences of cgs, all in one row and separated
by ", ".

10.12.4.2 void swap (Parma_Polyhedra_Library::Congruence_System & x,
Parma_Polyhedra_Library::Congruence_System & y) [related]

Specializes std::swap.

The documentation for this class was generated from the following file:

• ppl.hh

10.13 Parma_Polyhedra_Library::Congruences_Reduction< D1, D2 > Class
Template Reference

This class provides the reduction method for the Congruences_Product domain.

#include <ppl.hh>

Public Member Functions

• Congruences_Reduction ()
Default constructor.

• void product_reduce (D1 &d1, D2 &d2)
The congruences reduction operator for detect emptiness or any equalities implied by each of the con-
gruences defining one of the components and the bounds of the other component. It is assumed that the
components are already constraints reduced.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.13 Parma_Polyhedra_Library::Congruences_Reduction< D1, D2 > Class Template Reference199

• ∼Congruences_Reduction ()
Destructor.

10.13.1 Detailed Description

template<typename D1, typename D2> class Parma_Polyhedra_Library::Congruences_-
Reduction< D1, D2 >

This class provides the reduction method for the Congruences_Product domain. The reduction classes are
used to instantiate the Partially_Reduced_Product domain.

This class uses the minimized congruences defining each of the components. For each of the congruences, it
checks if the other component intersects none, one or more than one hyperplane defined by the congruence
and adds equalities or emptiness as appropriate; in more detail: Letting the components be d1 and d2, then,
for each congruence cg representing d1:

• if more than one hyperplane defined by cg intersects d2, then d1 and d2 are unchanged;

• if exactly one hyperplane intersects d2, then d1 and d2 are refined with the corresponding equality ;

• otherwise, d1 and d2 are set to empty. Unless d1 and d2 are already empty, the process is repeated
where the roles of d1 and d2 are reversed. If d1 or d2 is empty, then the emptiness is propagated.

10.13.2 Member Function Documentation

10.13.2.1 template<typename D1 , typename D2 > void Parma_Polyhedra_-
Library::Congruences_Reduction< D1, D2 >::product_reduce (D1 & d1, D2 & d2
)

The congruences reduction operator for detect emptiness or any equalities implied by each of the con-
gruences defining one of the components and the bounds of the other component. It is assumed that the
components are already constraints reduced.

The minimized congruence system defining the domain element d1 is used to check if d2 intersects none,
one or more than one of the hyperplanes defined by the congruences: if it intersects none, then product
is set empty; if it intersects one, then the equality defining this hyperplane is added to both components;
otherwise, the product is unchanged. In each case, the donor domain must provide a congruence system in
minimal form.

Parameters

d1 A pointset domain element;

d2 A pointset domain element;

The documentation for this class was generated from the following file:

• ppl.hh

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.14 Parma_Polyhedra_Library::Constraint_System::const_iterator Class Reference 200

10.14 Parma_Polyhedra_Library::Constraint_System::const_iterator Class Ref-
erence

An iterator over a system of constraints.

#include <ppl.hh>

Public Member Functions

• const_iterator ()
Default constructor.

• const_iterator (const const_iterator &y)
Ordinary copy constructor.

• ∼const_iterator ()
Destructor.

• const_iterator & operator= (const const_iterator &y)
Assignment operator.

• const Constraint & operator∗ () const
Dereference operator.

• const Constraint ∗ operator-> () const
Indirect member selector.

• const_iterator & operator++ ()
Prefix increment operator.

• const_iterator operator++ (int)
Postfix increment operator.

• bool operator== (const const_iterator &y) const
Returns true if and only if ∗this and y are identical.

• bool operator!= (const const_iterator &y) const
Returns true if and only if ∗this and y are different.

10.14.1 Detailed Description

An iterator over a system of constraints. A const_iterator is used to provide read-only access to each
constraint contained in a Constraint_System object.

Example

The following code prints the system of constraints defining the polyhedron ph:

const Constraint_System& cs = ph.constraints();
for (Constraint_System::const_iterator i = cs.begin(),

cs_end = cs.end(); i != cs_end; ++i)
cout << *i << endl;

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.15 Parma_Polyhedra_Library::Generator_System::const_iterator Class Reference 201

The documentation for this class was generated from the following file:

• ppl.hh

10.15 Parma_Polyhedra_Library::Generator_System::const_iterator Class Ref-
erence

An iterator over a system of generators.

#include <ppl.hh>

Inherited by Parma_Polyhedra_Library::Grid_Generator_System::const_iterator[private].

Public Member Functions

• const_iterator ()
Default constructor.

• const_iterator (const const_iterator &y)
Ordinary copy constructor.

• ∼const_iterator ()
Destructor.

• const_iterator & operator= (const const_iterator &y)
Assignment operator.

• const Generator & operator∗ () const
Dereference operator.

• const Generator ∗ operator-> () const
Indirect member selector.

• const_iterator & operator++ ()
Prefix increment operator.

• const_iterator operator++ (int)
Postfix increment operator.

• bool operator== (const const_iterator &y) const
Returns true if and only if ∗this and y are identical.

• bool operator!= (const const_iterator &y) const
Returns true if and only if ∗this and y are different.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.16 Parma_Polyhedra_Library::Congruence_System::const_iterator Class Reference 202

10.15.1 Detailed Description

An iterator over a system of generators. A const_iterator is used to provide read-only access to each
generator contained in an object of Generator_System.

Example

The following code prints the system of generators of the polyhedron ph:

const Generator_System& gs = ph.generators();
for (Generator_System::const_iterator i = gs.begin(),

gs_end = gs.end(); i != gs_end; ++i)
cout << *i << endl;

The same effect can be obtained more concisely by using more features of the STL:

const Generator_System& gs = ph.generators();
copy(gs.begin(), gs.end(), ostream_iterator<Generator>(cout, "\n"));

The documentation for this class was generated from the following file:

• ppl.hh

10.16 Parma_Polyhedra_Library::Congruence_System::const_iterator Class
Reference

An iterator over a system of congruences.

#include <ppl.hh>

Public Member Functions

• const_iterator ()
Default constructor.

• const_iterator (const const_iterator &y)
Ordinary copy constructor.

• ∼const_iterator ()
Destructor.

• const_iterator & operator= (const const_iterator &y)
Assignment operator.

• const Congruence & operator∗ () const
Dereference operator.

• const Congruence ∗ operator-> () const
Indirect member selector.

• const_iterator & operator++ ()
Prefix increment operator.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.17 Parma_Polyhedra_Library::Grid_Generator_System::const_iterator Class Reference 203

• const_iterator operator++ (int)
Postfix increment operator.

• bool operator== (const const_iterator &y) const
Returns true if and only if ∗this and y are identical.

• bool operator!= (const const_iterator &y) const
Returns true if and only if ∗this and y are different.

10.16.1 Detailed Description

An iterator over a system of congruences. A const_iterator is used to provide read-only access to each
congruence contained in an object of Congruence_System.

Example

The following code prints the system of congruences defining the grid gr:

const Congruence_System& cgs = gr.congruences();
for (Congruence_System::const_iterator i = cgs.begin(),

cgs_end = cgs.end(); i != cgs_end; ++i)
cout << *i << endl;

The documentation for this class was generated from the following file:

• ppl.hh

10.17 Parma_Polyhedra_Library::Grid_Generator_System::const_iterator Class
Reference

An iterator over a system of grid generators.

#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Generator_System::const_iterator.

Public Member Functions

• const_iterator ()
Default constructor.

• const_iterator (const const_iterator &y)
Ordinary copy constructor.

• ∼const_iterator ()
Destructor.

• const_iterator & operator= (const const_iterator &y)
Assignment operator.

• const Grid_Generator & operator∗ () const

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.18 Parma_Polyhedra_Library::Constraint Class Reference 204

Dereference operator.

• const Grid_Generator ∗ operator-> () const
Indirect member selector.

• const_iterator & operator++ ()
Prefix increment operator.

• const_iterator operator++ (int)
Postfix increment operator.

• bool operator== (const const_iterator &y) const
Returns true if and only if ∗this and y are identical.

• bool operator!= (const const_iterator &y) const
Returns true if and only if ∗this and y are different.

10.17.1 Detailed Description

An iterator over a system of grid generators. A const_iterator is used to provide read-only access to each
generator contained in an object of Grid_Generator_System.

Example

The following code prints the system of generators of the grid gr:

const Grid_Generator_System& ggs = gr.generators();
for (Grid_Generator_System::const_iterator i = ggs.begin(),

ggs_end = ggs.end(); i != ggs_end; ++i)
cout << *i << endl;

The same effect can be obtained more concisely by using more features of the STL:

const Grid_Generator_System& ggs = gr.generators();
copy(ggs.begin(), ggs.end(), ostream_iterator<Grid_Generator>(cout, "\n"));

The documentation for this class was generated from the following file:

• ppl.hh

10.18 Parma_Polyhedra_Library::Constraint Class Reference

A linear equality or inequality.

#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Linear_Row.

Public Types

• enum Type { EQUALITY, NONSTRICT_INEQUALITY, STRICT_INEQUALITY }
The constraint type.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.18 Parma_Polyhedra_Library::Constraint Class Reference 205

Public Member Functions

• Constraint (const Constraint &c)
Ordinary copy constructor.

• Constraint (const Congruence &cg)
Copy-constructs from equality congruence cg.

• ∼Constraint ()
Destructor.

• Constraint & operator= (const Constraint &c)
Assignment operator.

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• Type type () const
Returns the constraint type of ∗this.

• bool is_equality () const
Returns true if and only if ∗this is an equality constraint.

• bool is_inequality () const
Returns true if and only if ∗this is an inequality constraint (either strict or non-strict).

• bool is_nonstrict_inequality () const
Returns true if and only if ∗this is a non-strict inequality constraint.

• bool is_strict_inequality () const
Returns true if and only if ∗this is a strict inequality constraint.

• Coefficient_traits::const_reference coefficient (Variable v) const
Returns the coefficient of v in ∗this.

• Coefficient_traits::const_reference inhomogeneous_term () const
Returns the inhomogeneous term of ∗this.

• memory_size_type total_memory_in_bytes () const
Returns a lower bound to the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• bool is_tautological () const
Returns true if and only if ∗this is a tautology (i.e., an always true constraint).

• bool is_inconsistent () const
Returns true if and only if ∗this is inconsistent (i.e., an always false constraint).

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.18 Parma_Polyhedra_Library::Constraint Class Reference 206

• bool is_equivalent_to (const Constraint &y) const
Returns true if and only if ∗this and y are equivalent constraints.

• void ascii_dump () const
Writes to std::cerr an ASCII representation of ∗this.

• void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of ∗this.

• void print () const
Prints ∗this to std::cerr using operator<<.

• bool ascii_load (std::istream &s)
Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets ∗this
accordingly. Returns true if successful, false otherwise.

• bool OK () const
Checks if all the invariants are satisfied.

• void swap (Constraint &y)
Swaps ∗this with y.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a Constraint can handle.

• static void initialize ()
Initializes the class.

• static void finalize ()
Finalizes the class.

• static const Constraint & zero_dim_false ()
The unsatisfiable (zero-dimension space) constraint 0 = 1.

• static const Constraint & zero_dim_positivity ()
The true (zero-dimension space) constraint 0 ≤ 1, also known as positivity constraint.

Friends

• Constraint operator== (const Linear_Expression &e1, const Linear_Expression &e2)
Returns the constraint e1 = e2.

• Constraint operator== (Variable v1, Variable v2)
Returns the constraint v1 = v2.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.18 Parma_Polyhedra_Library::Constraint Class Reference 207

• Constraint operator== (const Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the constraint e = n.

• Constraint operator== (Coefficient_traits::const_reference n, const Linear_Expression &e)
Returns the constraint n = e.

• Constraint operator>= (const Linear_Expression &e1, const Linear_Expression &e2)
Returns the constraint e1 >= e2.

• Constraint operator>= (Variable v1, Variable v2)
Returns the constraint v1 >= v2.

• Constraint operator>= (const Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the constraint e >= n.

• Constraint operator>= (Coefficient_traits::const_reference n, const Linear_Expression &e)
Returns the constraint n >= e.

• Constraint operator<= (const Linear_Expression &e1, const Linear_Expression &e2)
Returns the constraint e1 <= e2.

• Constraint operator<= (const Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the constraint e <= n.

• Constraint operator<= (Coefficient_traits::const_reference n, const Linear_Expression &e)
Returns the constraint n <= e.

• Constraint operator> (const Linear_Expression &e1, const Linear_Expression &e2)
Returns the constraint e1 > e2.

• Constraint operator> (Variable v1, Variable v2)
Returns the constraint v1 > v2.

• Constraint operator> (const Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the constraint e > n.

• Constraint operator> (Coefficient_traits::const_reference n, const Linear_Expression &e)
Returns the constraint n > e.

• Constraint operator< (const Linear_Expression &e1, const Linear_Expression &e2)
Returns the constraint e1 < e2.

• Constraint operator< (const Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the constraint e < n.

• Constraint operator< (Coefficient_traits::const_reference n, const Linear_Expression &e)
Returns the constraint n < e.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.18 Parma_Polyhedra_Library::Constraint Class Reference 208

Related Functions

(Note that these are not member functions.)

• bool operator== (const Constraint &x, const Constraint &y)
Returns true if and only if x is equivalent to y.

• bool operator!= (const Constraint &x, const Constraint &y)
Returns true if and only if x is not equivalent to y.

• Constraint operator<= (Variable v1, Variable v2)
Returns the constraint v1 <= v2.

• Constraint operator< (Variable v1, Variable v2)
Returns the constraint v1 < v2.

• void swap (Parma_Polyhedra_Library::Constraint &x, Parma_Polyhedra_Library::Constraint &y)
Specializes std::swap.

• std::ostream & operator<< (std::ostream &s, const Constraint &c)
Output operator.

• std::ostream & operator<< (std::ostream &s, const Constraint::Type &t)
Output operator.

10.18.1 Detailed Description

A linear equality or inequality. An object of the class Constraint is either:

• an equality:
∑n−1
i=0 aixi + b = 0;

• a non-strict inequality:
∑n−1
i=0 aixi + b ≥ 0; or

• a strict inequality:
∑n−1
i=0 aixi + b > 0;

where n is the dimension of the space, ai is the integer coefficient of variable xi and b is the integer
inhomogeneous term.

How to build a constraint

Constraints are typically built by applying a relation symbol to a pair of linear expressions. Available
relation symbols are equality (==), non-strict inequalities (>= and <=) and strict inequalities (< and
>). The space dimension of a constraint is defined as the maximum space dimension of the arguments
of its constructor.

In the following examples it is assumed that variables x, y and z are defined as follows:

Variable x(0);
Variable y(1);
Variable z(2);

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.18 Parma_Polyhedra_Library::Constraint Class Reference 209

Example 1

The following code builds the equality constraint 3x+ 5y − z = 0, having space dimension 3:

Constraint eq_c(3*x + 5*y - z == 0);

The following code builds the (non-strict) inequality constraint 4x ≥ 2y−13, having space dimension
2:

Constraint ineq_c(4*x >= 2*y - 13);

The corresponding strict inequality constraint 4x > 2y − 13 is obtained as follows:

Constraint strict_ineq_c(4*x > 2*y - 13);

An unsatisfiable constraint on the zero-dimension space R0 can be specified as follows:

Constraint false_c = Constraint::zero_dim_false();

Equivalent, but more involved ways are the following:

Constraint false_c1(Linear_Expression::zero() == 1);
Constraint false_c2(Linear_Expression::zero() >= 1);
Constraint false_c3(Linear_Expression::zero() > 0);

In contrast, the following code defines an unsatisfiable constraint having space dimension 3:

Constraint false_c(0*z == 1);

How to inspect a constraint

Several methods are provided to examine a constraint and extract all the encoded information: its
space dimension, its type (equality, non-strict inequality, strict inequality) and the value of its integer
coefficients.

Example 2

The following code shows how it is possible to access each single coefficient of a constraint. Given an
inequality constraint (in this case x − 5y + 3z ≤ 4), we construct a new constraint corresponding to
its complement (thus, in this case we want to obtain the strict inequality constraint x− 5y + 3z > 4).

Constraint c1(x - 5*y + 3*z <= 4);
cout << "Constraint c1: " << c1 << endl;
if (c1.is_equality())

cout << "Constraint c1 is not an inequality." << endl;
else {

Linear_Expression e;
for (dimension_type i = c1.space_dimension(); i-- > 0;)

e += c1.coefficient(Variable(i)) * Variable(i);
e += c1.inhomogeneous_term();
Constraint c2 = c1.is_strict_inequality() ? (e <= 0) : (e < 0);
cout << "Complement c2: " << c2 << endl;

}

The actual output is the following:

Constraint c1: -A + 5*B - 3*C >= -4
Complement c2: A - 5*B + 3*C > 4

Note that, in general, the particular output obtained can be syntactically different from the (semanti-
cally equivalent) constraint considered.

10.18.2 Member Enumeration Documentation

10.18.2.1 enum Parma_Polyhedra_Library::Constraint::Type

The constraint type.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.18 Parma_Polyhedra_Library::Constraint Class Reference 210

Enumerator:

EQUALITY The constraint is an equality.

NONSTRICT_INEQUALITY The constraint is a non-strict inequality.

STRICT_INEQUALITY The constraint is a strict inequality.

10.18.3 Constructor & Destructor Documentation

10.18.3.1 Parma_Polyhedra_Library::Constraint::Constraint (const Congruence & cg)
[explicit]

Copy-constructs from equality congruence cg.

Exceptions

std::invalid_argument Thrown if cg is a proper congruence.

10.18.4 Member Function Documentation

10.18.4.1 Coefficient_traits::const_reference Parma_Polyhedra_Library::Constraint::coefficient (
Variable v) const [inline]

Returns the coefficient of v in ∗this.

Exceptions

std::invalid_argument thrown if the index of v is greater than or equal to the space dimension of
∗this.

10.18.4.2 bool Parma_Polyhedra_Library::Constraint::is_tautological () const

Returns true if and only if ∗this is a tautology (i.e., an always true constraint).

A tautology can have either one of the following forms:

• an equality:
∑n−1
i=0 0xi + 0 = 0; or

• a non-strict inequality:
∑n−1
i=0 0xi + b ≥ 0, where b ≥ 0; or

• a strict inequality:
∑n−1
i=0 0xi + b > 0, where b > 0.

10.18.4.3 bool Parma_Polyhedra_Library::Constraint::is_inconsistent () const

Returns true if and only if ∗this is inconsistent (i.e., an always false constraint).

An inconsistent constraint can have either one of the following forms:

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.18 Parma_Polyhedra_Library::Constraint Class Reference 211

• an equality:
∑n−1
i=0 0xi + b = 0, where b 6= 0; or

• a non-strict inequality:
∑n−1
i=0 0xi + b ≥ 0, where b < 0; or

• a strict inequality:
∑n−1
i=0 0xi + b > 0, where b ≤ 0.

10.18.4.4 bool Parma_Polyhedra_Library::Constraint::is_equivalent_to (const Constraint & y)
const

Returns true if and only if ∗this and y are equivalent constraints.

Constraints having different space dimensions are not equivalent. Note that constraints having different
types may nonetheless be equivalent, if they both are tautologies or inconsistent.

10.18.5 Friends And Related Function Documentation

10.18.5.1 Constraint operator== (const Linear_Expression & e1, const Linear_Expression & e2
) [friend]

Returns the constraint e1 = e2.

10.18.5.2 Constraint operator== (Variable v1, Variable v2) [friend]

Returns the constraint v1 = v2.

10.18.5.3 Constraint operator== (const Linear_Expression & e,
Coefficient_traits::const_reference n) [friend]

Returns the constraint e = n.

10.18.5.4 Constraint operator== (Coefficient_traits::const_reference n, const Linear_Expression
& e) [friend]

Returns the constraint n = e.

10.18.5.5 Constraint operator>= (const Linear_Expression & e1, const Linear_Expression &
e2) [friend]

Returns the constraint e1 >= e2.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.18 Parma_Polyhedra_Library::Constraint Class Reference 212

10.18.5.6 Constraint operator>= (Variable v1, Variable v2) [friend]

Returns the constraint v1 >= v2.

10.18.5.7 Constraint operator>= (const Linear_Expression & e,
Coefficient_traits::const_reference n) [friend]

Returns the constraint e >= n.

10.18.5.8 Constraint operator>= (Coefficient_traits::const_reference n, const
Linear_Expression & e) [friend]

Returns the constraint n >= e.

10.18.5.9 Constraint operator<= (const Linear_Expression & e1, const Linear_Expression &
e2) [friend]

Returns the constraint e1 <= e2.

10.18.5.10 Constraint operator<= (const Linear_Expression & e,
Coefficient_traits::const_reference n) [friend]

Returns the constraint e <= n.

10.18.5.11 Constraint operator<= (Coefficient_traits::const_reference n, const
Linear_Expression & e) [friend]

Returns the constraint n <= e.

10.18.5.12 Constraint operator> (const Linear_Expression & e1, const Linear_Expression &
e2) [friend]

Returns the constraint e1 > e2.

10.18.5.13 Constraint operator> (Variable v1, Variable v2) [friend]

Returns the constraint v1 > v2.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.18 Parma_Polyhedra_Library::Constraint Class Reference 213

10.18.5.14 Constraint operator> (const Linear_Expression & e,
Coefficient_traits::const_reference n) [friend]

Returns the constraint e > n.

10.18.5.15 Constraint operator> (Coefficient_traits::const_reference n, const
Linear_Expression & e) [friend]

Returns the constraint n > e.

10.18.5.16 Constraint operator< (const Linear_Expression & e1, const Linear_Expression &
e2) [friend]

Returns the constraint e1 < e2.

10.18.5.17 Constraint operator< (const Linear_Expression & e,
Coefficient_traits::const_reference n) [friend]

Returns the constraint e < n.

10.18.5.18 Constraint operator< (Coefficient_traits::const_reference n, const
Linear_Expression & e) [friend]

Returns the constraint n < e.

10.18.5.19 bool operator== (const Constraint & x, const Constraint & y) [related]

Returns true if and only if x is equivalent to y.

10.18.5.20 bool operator!= (const Constraint & x, const Constraint & y) [related]

Returns true if and only if x is not equivalent to y.

10.18.5.21 Constraint operator<= (Variable v1, Variable v2) [related]

Returns the constraint v1 <= v2.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.19 Parma_Polyhedra_Library::Constraint_System Class Reference 214

10.18.5.22 Constraint operator< (Variable v1, Variable v2) [related]

Returns the constraint v1 < v2.

10.18.5.23 void swap (Parma_Polyhedra_Library::Constraint & x,
Parma_Polyhedra_Library::Constraint & y) [related]

Specializes std::swap.

10.18.5.24 std::ostream & operator<< (std::ostream & s, const Constraint & c) [related]

Output operator.

10.18.5.25 std::ostream & operator<< (std::ostream & s, const Constraint::Type & t)
[related]

Output operator.

The documentation for this class was generated from the following file:

• ppl.hh

10.19 Parma_Polyhedra_Library::Constraint_System Class Reference

A system of constraints.

#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Linear_System.

Classes

• class const_iterator
An iterator over a system of constraints.

Public Member Functions

• Constraint_System ()
Default constructor: builds an empty system of constraints.

• Constraint_System (const Constraint &c)
Builds the singleton system containing only constraint c.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.19 Parma_Polyhedra_Library::Constraint_System Class Reference 215

• Constraint_System (const Congruence_System &cgs)
Builds a system containing copies of any equalities in cgs.

• Constraint_System (const Constraint_System &cs)
Ordinary copy constructor.

• ∼Constraint_System ()
Destructor.

• Constraint_System & operator= (const Constraint_System &y)
Assignment operator.

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• bool has_equalities () const
Returns true if and only if ∗this contains one or more equality constraints.

• bool has_strict_inequalities () const
Returns true if and only if ∗this contains one or more strict inequality constraints.

• void clear ()
Removes all the constraints from the constraint system and sets its space dimension to 0.

• void insert (const Constraint &c)
Inserts in ∗this a copy of the constraint c, increasing the number of space dimensions if needed.

• bool empty () const
Returns true if and only if ∗this has no constraints.

• const_iterator begin () const
Returns the const_iterator pointing to the first constraint, if ∗this is not empty; otherwise, returns the
past-the-end const_iterator.

• const_iterator end () const
Returns the past-the-end const_iterator.

• bool OK () const
Checks if all the invariants are satisfied.

• void ascii_dump () const
Writes to std::cerr an ASCII representation of ∗this.

• void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of ∗this.

• void print () const
Prints ∗this to std::cerr using operator<<.

• bool ascii_load (std::istream &s)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.19 Parma_Polyhedra_Library::Constraint_System Class Reference 216

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets ∗this
accordingly. Returns true if successful, false otherwise.

• memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• void swap (Constraint_System &y)
Swaps ∗this with y.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a Constraint_System can handle.

• static void initialize ()
Initializes the class.

• static void finalize ()
Finalizes the class.

• static const Constraint_System & zero_dim_empty ()
Returns the singleton system containing only Constraint::zero_dim_false().

Friends

• bool operator== (const Polyhedron &x, const Polyhedron &y)
Returns true if and only if x and y are the same polyhedron.

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &s, const Constraint_System &cs)
Output operator.

• void swap (Parma_Polyhedra_Library::Constraint_System &x, Parma_Polyhedra_-
Library::Constraint_System &y)

Specializes std::swap.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.19 Parma_Polyhedra_Library::Constraint_System Class Reference 217

10.19.1 Detailed Description

A system of constraints. An object of the class Constraint_System is a system of constraints, i.e., a multiset
of objects of the class Constraint. When inserting constraints in a system, space dimensions are automati-
cally adjusted so that all the constraints in the system are defined on the same vector space.

In all the examples it is assumed that variables x and y are defined as follows:

Variable x(0);
Variable y(1);

Example 1

The following code builds a system of constraints corresponding to a square in R2:

Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 3);
cs.insert(y >= 0);
cs.insert(y <= 3);

Note that: the constraint system is created with space dimension zero; the first and third constraint
insertions increase the space dimension to 1 and 2, respectively.

Example 2

By adding four strict inequalities to the constraint system of the previous example, we can remove just
the four vertices from the square defined above.

cs.insert(x + y > 0);
cs.insert(x + y < 6);
cs.insert(x - y < 3);
cs.insert(y - x < 3);

Example 3

The following code builds a system of constraints corresponding to a half-strip in R2:

Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x - y <= 0);
cs.insert(x - y + 1 >= 0);

Note

After inserting a multiset of constraints in a constraint system, there are no guarantees that an exact
copy of them can be retrieved: in general, only an equivalent constraint system will be available, where
original constraints may have been reordered, removed (if they are trivial, duplicate or implied by other
constraints), linearly combined, etc.

10.19.2 Friends And Related Function Documentation

10.19.2.1 bool operator== (const Polyhedron & x, const Polyhedron & y) [friend]

Returns true if and only if x and y are the same polyhedron.

Note that x and y may be topology- and/or dimension-incompatible polyhedra: in those cases, the value
false is returned.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.20 Parma_Polyhedra_Library::Constraints_Reduction< D1, D2 > Class Template Reference218

10.19.2.2 std::ostream & operator<< (std::ostream & s, const Constraint_System & cs)
[related]

Output operator.

Writes true if cs is empty. Otherwise, writes on s the constraints of cs, all in one row and separated by
", ".

10.19.2.3 void swap (Parma_Polyhedra_Library::Constraint_System & x,
Parma_Polyhedra_Library::Constraint_System & y) [related]

Specializes std::swap.

The documentation for this class was generated from the following file:

• ppl.hh

10.20 Parma_Polyhedra_Library::Constraints_Reduction< D1, D2 > Class Tem-
plate Reference

This class provides the reduction method for the Constraints_Product domain.

#include <ppl.hh>

Public Member Functions

• Constraints_Reduction ()
Default constructor.

• void product_reduce (D1 &d1, D2 &d2)
The constraints reduction operator for sharing constraints between the domains.

• ∼Constraints_Reduction ()
Destructor.

10.20.1 Detailed Description

template<typename D1, typename D2> class Parma_Polyhedra_Library::Constraints_Reduction<
D1, D2 >

This class provides the reduction method for the Constraints_Product domain. The reduction classes are
used to instantiate the Partially_Reduced_Product domain. This class adds the constraints defining each of
the component domains to the other component.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.21 Parma_Polyhedra_Library::Determinate< PSET > Class Template Reference 219

10.20.2 Member Function Documentation

10.20.2.1 template<typename D1 , typename D2 > void Parma_Polyhedra_-
Library::Constraints_Reduction< D1, D2 >::product_reduce (D1 & d1, D2 & d2
)

The constraints reduction operator for sharing constraints between the domains.

The minimized constraint system defining the domain element d1 is added to d2 and the minimized con-
straint system defining d2 is added to d1. In each case, the donor domain must provide a constraint system
in minimal form; this must define a polyhedron in which the donor element is contained. The recipient
domain selects a subset of these constraints that it can add to the recipient element. For example: if the
domain D1 is the Grid domain and D2 the NNC Polyhedron domain, then only the equality constraints are
copied from d1 to d2 and from d2 to d1.

Parameters

d1 A pointset domain element;

d2 A pointset domain element;

The documentation for this class was generated from the following file:

• ppl.hh

10.21 Parma_Polyhedra_Library::Determinate< PSET > Class Template Refer-
ence

A wrapper for PPL pointsets, providing them with a determinate constraint system interface, as defined in
[Bag98].

#include <ppl.hh>

Public Member Functions

Constructors and Destructor

• Determinate (const PSET &p)
Constructs a COW-wrapped object corresponding to the pointset p.

• Determinate (const Constraint_System &cs)
Constructs a COW-wrapped object corresponding to the pointset defined by cs.

• Determinate (const Congruence_System &cgs)
Constructs a COW-wrapped object corresponding to the pointset defined by cgs.

• Determinate (const Determinate &y)
Copy constructor.

• ∼Determinate ()
Destructor.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.21 Parma_Polyhedra_Library::Determinate< PSET > Class Template Reference 220

Member Functions that May Modify the Domain Element

• void upper_bound_assign (const Determinate &y)
Assigns to ∗this the upper bound of ∗this and y.

• void meet_assign (const Determinate &y)
Assigns to ∗this the meet of ∗this and y.

• void weakening_assign (const Determinate &y)
Assigns to ∗this the result of weakening ∗this with y.

• void concatenate_assign (const Determinate &y)
Assigns to ∗this the concatenation of ∗this and y, taken in this order.

• PSET & pointset ()
Returns a reference to the embedded element.

• void mutate ()
• Determinate & operator= (const Determinate &y)

Assignment operator.

• void swap (Determinate &y)
Swaps ∗this with y.

Friends

• bool operator== (const Determinate< PSET > &x, const Determinate< PSET > &y)
Returns true if and only if x and y are the same COW-wrapped pointset.

• bool operator!= (const Determinate< PSET > &x, const Determinate< PSET > &y)
Returns true if and only if x and y are different COW-wrapped pointsets.

Related Functions

(Note that these are not member functions.)

• template<typename PSET >

std::ostream & operator<< (std::ostream &, const Determinate< PSET > &)
Output operator.

• template<typename PSET >

void swap (Parma_Polyhedra_Library::Determinate< PSET > &x, Parma_Polyhedra_-
Library::Determinate< PSET > &y)

Specializes std::swap.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.21 Parma_Polyhedra_Library::Determinate< PSET > Class Template Reference 221

Member Functions that Do Not Modify the Domain Element

• const PSET & pointset () const
Returns a const reference to the embedded pointset.

• bool is_top () const
Returns true if and only if ∗this embeds the universe element PSET.

• bool is_bottom () const
Returns true if and only if ∗this embeds the empty element of PSET.

• bool definitely_entails (const Determinate &y) const
Returns true if and only if ∗this entails y.

• bool is_definitely_equivalent_to (const Determinate &y) const
Returns true if and only if ∗this and y are definitely equivalent.

• memory_size_type total_memory_in_bytes () const
Returns a lower bound to the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns a lower bound to the size in bytes of the memory managed by ∗this.

• bool OK () const
Checks if all the invariants are satisfied.

• static bool has_nontrivial_weakening ()

10.21.1 Detailed Description

template<typename PSET> class Parma_Polyhedra_Library::Determinate< PSET >

A wrapper for PPL pointsets, providing them with a determinate constraint system interface, as defined in
[Bag98]. The implementation uses a copy-on-write optimization, making the class suitable for construc-
tions, like the finite powerset and ask-and-tell of [Bag98], that are likely to perform many copies.

10.21.2 Member Function Documentation

10.21.2.1 template<typename PSET > bool Parma_Polyhedra_Library::Determinate< PSET
>::has_nontrivial_weakening () [inline, static]

Returns true if and only if this domain has a nontrivial weakening operator.

10.21.3 Friends And Related Function Documentation

10.21.3.1 template<typename PSET > bool operator== (const Determinate< PSET > & x,
const Determinate< PSET > & y) [friend]

Returns true if and only if x and y are the same COW-wrapped pointset.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.22 Parma_Polyhedra_Library::Domain_Product< D1, D2 > Class Template Reference 222

10.21.3.2 template<typename PSET > bool operator!= (const Determinate< PSET > & x,
const Determinate< PSET > & y) [friend]

Returns true if and only if x and y are different COW-wrapped pointsets.

10.21.3.3 template<typename PSET > std::ostream & operator<< (std::ostream & s, const
Determinate< PSET > & x) [related]

Output operator.

10.21.3.4 template<typename PSET > void swap (Parma_Polyhedra_Library::Determinate<
PSET > & x, Parma_Polyhedra_Library::Determinate< PSET > & y) [related]

Specializes std::swap.

The documentation for this class was generated from the following file:

• ppl.hh

10.22 Parma_Polyhedra_Library::Domain_Product< D1, D2 > Class Template
Reference

This class is temporary and will be removed when template typedefs will be supported in C++.

#include <ppl.hh>

10.22.1 Detailed Description

template<typename D1, typename D2> class Parma_Polyhedra_Library::Domain_Product< D1,
D2 >

This class is temporary and will be removed when template typedefs will be supported in C++. When tem-
plate typedefs will be supported in C++, what now is verbosely denoted by Domain_Product<Domain1,
Domain2>::Direct_Product will simply be denoted by Direct_Product<Domain1, Domain2>.

The documentation for this class was generated from the following file:

• ppl.hh

10.23 Parma_Polyhedra_Library::Generator Class Reference

A line, ray, point or closure point.

#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Linear_Row.

Inherited by Parma_Polyhedra_Library::Grid_Generator[private].

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.23 Parma_Polyhedra_Library::Generator Class Reference 223

Public Types

• enum Type { LINE, RAY, POINT, CLOSURE_POINT }
The generator type.

Public Member Functions

• Generator (const Generator &g)
Ordinary copy constructor.

• ∼Generator ()
Destructor.

• Generator & operator= (const Generator &g)
Assignment operator.

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• Type type () const
Returns the generator type of ∗this.

• bool is_line () const
Returns true if and only if ∗this is a line.

• bool is_ray () const
Returns true if and only if ∗this is a ray.

• bool is_point () const
Returns true if and only if ∗this is a point.

• bool is_closure_point () const
Returns true if and only if ∗this is a closure point.

• Coefficient_traits::const_reference coefficient (Variable v) const
Returns the coefficient of v in ∗this.

• Coefficient_traits::const_reference divisor () const
If ∗this is either a point or a closure point, returns its divisor.

• memory_size_type total_memory_in_bytes () const
Returns a lower bound to the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• bool is_equivalent_to (const Generator &y) const
Returns true if and only if ∗this and y are equivalent generators.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.23 Parma_Polyhedra_Library::Generator Class Reference 224

• void ascii_dump () const
Writes to std::cerr an ASCII representation of ∗this.

• void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of ∗this.

• void print () const
Prints ∗this to std::cerr using operator<<.

• bool ascii_load (std::istream &s)
Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets ∗this
accordingly. Returns true if successful, false otherwise.

• bool OK () const
Checks if all the invariants are satisfied.

• void swap (Generator &y)
Swaps ∗this with y.

Static Public Member Functions

• static Generator line (const Linear_Expression &e)
Returns the line of direction e.

• static Generator ray (const Linear_Expression &e)
Returns the ray of direction e.

• static Generator point (const Linear_Expression &e=Linear_Expression::zero(), Coefficient_-
traits::const_reference d=Coefficient_one())

Returns the point at e / d.

• static Generator closure_point (const Linear_Expression &e=Linear_Expression::zero(),
Coefficient_traits::const_reference d=Coefficient_one())

Returns the closure point at e / d.

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a Generator can handle.

• static void initialize ()
Initializes the class.

• static void finalize ()
Finalizes the class.

• static const Generator & zero_dim_point ()
Returns the origin of the zero-dimensional space R0.

• static const Generator & zero_dim_closure_point ()
Returns, as a closure point, the origin of the zero-dimensional space R0.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.23 Parma_Polyhedra_Library::Generator Class Reference 225

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &s, const Generator &g)
Output operator.

• void swap (Parma_Polyhedra_Library::Generator &x, Parma_Polyhedra_Library::Generator &y)
Specializes std::swap.

• bool operator== (const Generator &x, const Generator &y)
Returns true if and only if x is equivalent to y.

• bool operator!= (const Generator &x, const Generator &y)
Returns true if and only if x is not equivalent to y.

• template<typename To >

bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Generator &x, const Generator &y, Rounding_Dir dir)

Computes the rectilinear (or Manhattan) distance between x and y.

• template<typename Temp , typename To >

bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Generator &x, const Generator &y, Rounding_Dir dir, Temp &tmp0, Temp &tmp1, Temp &tmp2)

Computes the rectilinear (or Manhattan) distance between x and y.

• template<typename To >

bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Generator &x, const Generator &y, Rounding_Dir dir)

Computes the euclidean distance between x and y.

• template<typename Temp , typename To >

bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Generator &x, const Generator &y, Rounding_Dir dir, Temp &tmp0, Temp &tmp1, Temp &tmp2)

Computes the euclidean distance between x and y.

• template<typename To >

bool l_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Generator &x, const Generator &y, Rounding_Dir dir)

Computes the L∞ distance between x and y.

• template<typename Temp , typename To >

bool l_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Generator &x, const Generator &y, Rounding_Dir dir, Temp &tmp0, Temp &tmp1, Temp &tmp2)

Computes the L∞ distance between x and y.

• std::ostream & operator<< (std::ostream &s, const Generator::Type &t)
Output operator.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.23 Parma_Polyhedra_Library::Generator Class Reference 226

10.23.1 Detailed Description

A line, ray, point or closure point. An object of the class Generator is one of the following:

• a line l = (a0, . . . , an−1)T;

• a ray r = (a0, . . . , an−1)T;

• a point p = (a0
d , . . . ,

an−1
d)T;

• a closure point c = (a0
d , . . . ,

an−1
d)T;

where n is the dimension of the space and, for points and closure points, d > 0 is the divisor.

A note on terminology.

As observed in Section Representations of Convex Polyhedra, there are cases when, in order to repre-
sent a polyhedron P using the generator system G = (L,R, P,C), we need to include in the finite set
P even points of P that are not vertices of P . This situation is even more frequent when working with
NNC polyhedra and it is the reason why we prefer to use the word ‘point’ where other libraries use the
word ‘vertex’.

How to build a generator.

Each type of generator is built by applying the corresponding function (line, ray, point or
closure_point) to a linear expression, representing a direction in the space; the space dimen-
sion of the generator is defined as the space dimension of the corresponding linear expression. Linear
expressions used to define a generator should be homogeneous (any constant term will be simply ig-
nored). When defining points and closure points, an optional Coefficient argument can be used as a
common divisor for all the coefficients occurring in the provided linear expression; the default value
for this argument is 1.

In all the following examples it is assumed that variables x, y and z are defined as follows:

Variable x(0);
Variable y(1);
Variable z(2);

Example 1

The following code builds a line with direction x− y − z and having space dimension 3:

Generator l = line(x - y - z);

As mentioned above, the constant term of the linear expression is not relevant. Thus, the following
code has the same effect:

Generator l = line(x - y - z + 15);

By definition, the origin of the space is not a line, so that the following code throws an exception:

Generator l = line(0*x);

Example 2

The following code builds a ray with the same direction as the line in Example 1:

Generator r = ray(x - y - z);

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.23 Parma_Polyhedra_Library::Generator Class Reference 227

As is the case for lines, when specifying a ray the constant term of the linear expression is not relevant;
also, an exception is thrown when trying to build a ray from the origin of the space.

Example 3

The following code builds the point p = (1, 0, 2)T ∈ R3:

Generator p = point(1*x + 0*y + 2*z);

The same effect can be obtained by using the following code:

Generator p = point(x + 2*z);

Similarly, the origin 0 ∈ R3 can be defined using either one of the following lines of code:

Generator origin3 = point(0*x + 0*y + 0*z);
Generator origin3_alt = point(0*z);

Note however that the following code would have defined a different point, namely 0 ∈ R2:

Generator origin2 = point(0*y);

The following two lines of code both define the only point having space dimension zero, namely
0 ∈ R0. In the second case we exploit the fact that the first argument of the function point is
optional.

Generator origin0 = Generator::zero_dim_point();
Generator origin0_alt = point();

Example 4

The point p specified in Example 3 above can also be obtained with the following code, where we
provide a non-default value for the second argument of the function point (the divisor):

Generator p = point(2*x + 0*y + 4*z, 2);

Obviously, the divisor can be usefully exploited to specify points having some non-integer (but ratio-
nal) coordinates. For instance, the point q = (−1.5, 3.2, 2.1)T ∈ R3 can be specified by the following
code:

Generator q = point(-15*x + 32*y + 21*z, 10);

If a zero divisor is provided, an exception is thrown.

Example 5

Closure points are specified in the same way we defined points, but invoking their specific constructor
function. For instance, the closure point c = (1, 0, 2)T ∈ R3 is defined by

Generator c = closure_point(1*x + 0*y + 2*z);

For the particular case of the (only) closure point having space dimension zero, we can use any of the
following:

Generator closure_origin0 = Generator::zero_dim_closure_point();
Generator closure_origin0_alt = closure_point();

How to inspect a generator

Several methods are provided to examine a generator and extract all the encoded information: its space
dimension, its type and the value of its integer coefficients.

Example 6

The following code shows how it is possible to access each single coefficient of a generator. If g1
is a point having coordinates (a0, . . . , an−1)T, we construct the closure point g2 having coordinates
(a0, 2a1, . . . , (i+ 1)ai, . . . , nan−1)T.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.23 Parma_Polyhedra_Library::Generator Class Reference 228

if (g1.is_point()) {
cout << "Point g1: " << g1 << endl;
Linear_Expression e;
for (dimension_type i = g1.space_dimension(); i-- > 0;)

e += (i + 1) * g1.coefficient(Variable(i)) * Variable(i);
Generator g2 = closure_point(e, g1.divisor());
cout << "Closure point g2: " << g2 << endl;

}
else

cout << "Generator g1 is not a point." << endl;

Therefore, for the point

Generator g1 = point(2*x - y + 3*z, 2);

we would obtain the following output:

Point g1: p((2*A - B + 3*C)/2)
Closure point g2: cp((2*A - 2*B + 9*C)/2)

When working with (closure) points, be careful not to confuse the notion of coefficient with the notion
of coordinate: these are equivalent only when the divisor of the (closure) point is 1.

10.23.2 Member Enumeration Documentation

10.23.2.1 enum Parma_Polyhedra_Library::Generator::Type

The generator type.

Enumerator:

LINE The generator is a line.

RAY The generator is a ray.

POINT The generator is a point.

CLOSURE_POINT The generator is a closure point.

Reimplemented in Parma_Polyhedra_Library::Grid_Generator.

10.23.3 Member Function Documentation

10.23.3.1 Generator line (const Linear_Expression & e) [inline, static]

Returns the line of direction e.

Shorthand for Generator Generator::line(const Linear_Expression& e).

Exceptions

std::invalid_argument Thrown if the homogeneous part of e represents the origin of the vector space.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.23 Parma_Polyhedra_Library::Generator Class Reference 229

10.23.3.2 Generator ray (const Linear_Expression & e) [inline, static]

Returns the ray of direction e.

Shorthand for Generator Generator::ray(const Linear_Expression& e).

Exceptions

std::invalid_argument Thrown if the homogeneous part of e represents the origin of the vector space.

10.23.3.3 Generator point (const Linear_Expression & e = Linear_Expression::zero(),
Coefficient_traits::const_reference d = Coefficient_one()) [inline,
static]

Returns the point at e / d.

Shorthand for Generator Generator::point(const Linear_Expression& e, Coefficient_traits::const_reference
d).

Both e and d are optional arguments, with default values Linear_Expression::zero() and Coefficient_one(),
respectively.

Exceptions

std::invalid_argument Thrown if d is zero.

10.23.3.4 Generator closure_point (const Linear_Expression & e = Linear_-
Expression::zero(), Coefficient_traits::const_reference d =
Coefficient_one()) [inline, static]

Returns the closure point at e / d.

Shorthand for Generator Generator::closure_point(const Linear_Expression& e, Coefficient_traits::const_-
reference d).

Both e and d are optional arguments, with default values Linear_Expression::zero() and Coefficient_one(),
respectively.

Exceptions

std::invalid_argument Thrown if d is zero.

10.23.3.5 Coefficient_traits::const_reference Parma_Polyhedra_Library::Generator::coefficient (
Variable v) const [inline]

Returns the coefficient of v in ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.23 Parma_Polyhedra_Library::Generator Class Reference 230

Exceptions

std::invalid_argument Thrown if the index of v is greater than or equal to the space dimension of
∗this.

Reimplemented in Parma_Polyhedra_Library::Grid_Generator.

10.23.3.6 Coefficient_traits::const_reference Parma_Polyhedra_Library::Generator::divisor ()
const [inline]

If ∗this is either a point or a closure point, returns its divisor.

Exceptions

std::invalid_argument Thrown if ∗this is neither a point nor a closure point.

Reimplemented in Parma_Polyhedra_Library::Grid_Generator.

10.23.3.7 bool Parma_Polyhedra_Library::Generator::is_equivalent_to (const Generator & y)
const

Returns true if and only if ∗this and y are equivalent generators.

Generators having different space dimensions are not equivalent.

10.23.4 Friends And Related Function Documentation

10.23.4.1 std::ostream & operator<< (std::ostream & s, const Generator & g) [related]

Output operator.

10.23.4.2 void swap (Parma_Polyhedra_Library::Generator & x,
Parma_Polyhedra_Library::Generator & y) [related]

Specializes std::swap.

10.23.4.3 bool operator== (const Generator & x, const Generator & y) [related]

Returns true if and only if x is equivalent to y.

10.23.4.4 bool operator!= (const Generator & x, const Generator & y) [related]

Returns true if and only if x is not equivalent to y.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.23 Parma_Polyhedra_Library::Generator Class Reference 231

10.23.4.5 template<typename To > bool rectilinear_distance_assign (Checked_Number< To,
Extended_Number_Policy > & r, const Generator & x, const Generator & y,
Rounding_Dir dir) [related]

Computes the rectilinear (or Manhattan) distance between x and y.

Computes the euclidean distance between x and y.

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<To, Extended_Number_-
Policy>.

Note

Distances are only defined between generators that are points and/or closure points; for rays or lines,
false is returned.

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-
Policy>.

Note

Distances are only defined between generators that are points and/or closure points; for rays or lines,
false is returned.

If the euclidean distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-
Policy>.

Note

Distances are only defined between generators that are points and/or closure points; for rays or lines,
false is returned.

10.23.4.6 template<typename Temp , typename To > bool rectilinear_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const Generator & x, const
Generator & y, Rounding_Dir dir, Temp & tmp0, Temp & tmp1, Temp & tmp2)
[related]

Computes the rectilinear (or Manhattan) distance between x and y.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.23 Parma_Polyhedra_Library::Generator Class Reference 232

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmp0, tmp1 and tmp2.

Note

Distances are only defined between generators that are points and/or closure points; for rays or lines,
false is returned.

10.23.4.7 template<typename To > bool euclidean_distance_assign (Checked_Number< To,
Extended_Number_Policy > & r, const Generator & x, const Generator & y,
Rounding_Dir dir) [related]

Computes the euclidean distance between x and y.

If the euclidean distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<To, Extended_Number_-
Policy>.

Note

Distances are only defined between generators that are points and/or closure points; for rays or lines,
false is returned.

10.23.4.8 template<typename Temp , typename To > bool euclidean_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const Generator & x, const
Generator & y, Rounding_Dir dir, Temp & tmp0, Temp & tmp1, Temp & tmp2)
[related]

Computes the euclidean distance between x and y.

If the euclidean distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmp0, tmp1 and tmp2.

Note

Distances are only defined between generators that are points and/or closure points; for rays or lines,
false is returned.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.23 Parma_Polyhedra_Library::Generator Class Reference 233

10.23.4.9 template<typename To > bool l_infinity_distance_assign (Checked_Number< To,
Extended_Number_Policy > & r, const Generator & x, const Generator & y,
Rounding_Dir dir) [related]

Computes the L∞ distance between x and y.

If the L∞ distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<To, Extended_Number_-
Policy>.

Note

Distances are only defined between generators that are points and/or closure points; for rays or lines,
false is returned.

If the L∞ distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-
Policy>.

Note

Distances are only defined between generators that are points and/or closure points; for rays or lines,
false is returned.

10.23.4.10 template<typename Temp , typename To > bool l_infinity_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const Generator & x, const
Generator & y, Rounding_Dir dir, Temp & tmp0, Temp & tmp1, Temp & tmp2)
[related]

Computes the L∞ distance between x and y.

If the L∞ distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmp0, tmp1 and tmp2.

Note

Distances are only defined between generators that are points and/or closure points; for rays or lines,
false is returned.

10.23.4.11 std::ostream & operator<< (std::ostream & s, const Generator::Type & t)
[related]

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.24 Parma_Polyhedra_Library::Generator_System Class Reference 234

Output operator.

The documentation for this class was generated from the following file:

• ppl.hh

10.24 Parma_Polyhedra_Library::Generator_System Class Reference

A system of generators.

#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Linear_System.

Inherited by Parma_Polyhedra_Library::Grid_Generator_System[private].

Classes

• class const_iterator
An iterator over a system of generators.

Public Member Functions

• Generator_System ()
Default constructor: builds an empty system of generators.

• Generator_System (const Generator &g)
Builds the singleton system containing only generator g.

• Generator_System (const Generator_System &gs)
Ordinary copy constructor.

• ∼Generator_System ()
Destructor.

• Generator_System & operator= (const Generator_System &y)
Assignment operator.

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• void clear ()
Removes all the generators from the generator system and sets its space dimension to 0.

• void insert (const Generator &g)
Inserts in ∗this a copy of the generator g, increasing the number of space dimensions if needed.

• bool empty () const
Returns true if and only if ∗this has no generators.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.24 Parma_Polyhedra_Library::Generator_System Class Reference 235

• const_iterator begin () const
Returns the const_iterator pointing to the first generator, if ∗this is not empty; otherwise, returns the
past-the-end const_iterator.

• const_iterator end () const
Returns the past-the-end const_iterator.

• bool OK () const
Checks if all the invariants are satisfied.

• void ascii_dump () const
Writes to std::cerr an ASCII representation of ∗this.

• void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of ∗this.

• void print () const
Prints ∗this to std::cerr using operator<<.

• bool ascii_load (std::istream &s)
Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets ∗this
accordingly. Returns true if successful, false otherwise.

• memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• void swap (Generator_System &y)
Swaps ∗this with y.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a Generator_System can handle.

• static void initialize ()
Initializes the class.

• static void finalize ()
Finalizes the class.

• static const Generator_System & zero_dim_univ ()
Returns the singleton system containing only Generator::zero_dim_point().

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.24 Parma_Polyhedra_Library::Generator_System Class Reference 236

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &s, const Generator_System &gs)
Output operator.

• void swap (Parma_Polyhedra_Library::Generator_System &x, Parma_Polyhedra_-
Library::Generator_System &y)

Specializes std::swap.

10.24.1 Detailed Description

A system of generators. An object of the class Generator_System is a system of generators, i.e., a multiset
of objects of the class Generator (lines, rays, points and closure points). When inserting generators in a
system, space dimensions are automatically adjusted so that all the generators in the system are defined
on the same vector space. A system of generators which is meant to define a non-empty polyhedron must
include at least one point: the reason is that lines, rays and closure points need a supporting point (lines
and rays only specify directions while closure points only specify points in the topological closure of the
NNC polyhedron).

In all the examples it is assumed that variables x and y are defined as follows:

Variable x(0);
Variable y(1);

Example 1

The following code defines the line having the same direction as the x axis (i.e., the first Cartesian
axis) in R2:

Generator_System gs;
gs.insert(line(x + 0*y));

As said above, this system of generators corresponds to an empty polyhedron, because the line has no
supporting point. To define a system of generators that does correspond to the x axis, we can add the
following code which inserts the origin of the space as a point:

gs.insert(point(0*x + 0*y));

Since space dimensions are automatically adjusted, the following code obtains the same effect:

gs.insert(point(0*x));

In contrast, if we had added the following code, we would have defined a line parallel to the x axis
through the point (0, 1)T ∈ R2.

gs.insert(point(0*x + 1*y));

Example 2

The following code builds a ray having the same direction as the positive part of the x axis in R2:

Generator_System gs;
gs.insert(ray(x + 0*y));

To define a system of generators indeed corresponding to the set{
(x, 0)T ∈ R2

∣∣ x ≥ 0
}
,

one just has to add the origin:

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.24 Parma_Polyhedra_Library::Generator_System Class Reference 237

gs.insert(point(0*x + 0*y));

Example 3

The following code builds a system of generators having four points and corresponding to a square in
R2 (the same as Example 1 for the system of constraints):

Generator_System gs;
gs.insert(point(0*x + 0*y));
gs.insert(point(0*x + 3*y));
gs.insert(point(3*x + 0*y));
gs.insert(point(3*x + 3*y));

Example 4

By using closure points, we can define the kernel (i.e., the largest open set included in a given set)
of the square defined in the previous example. Note that a supporting point is needed and, for that
purpose, any inner point could be considered.

Generator_System gs;
gs.insert(point(x + y));
gs.insert(closure_point(0*x + 0*y));
gs.insert(closure_point(0*x + 3*y));
gs.insert(closure_point(3*x + 0*y));
gs.insert(closure_point(3*x + 3*y));

Example 5

The following code builds a system of generators having two points and a ray, corresponding to a
half-strip in R2 (the same as Example 2 for the system of constraints):

Generator_System gs;
gs.insert(point(0*x + 0*y));
gs.insert(point(0*x + 1*y));
gs.insert(ray(x - y));

Note

After inserting a multiset of generators in a generator system, there are no guarantees that an exact
copy of them can be retrieved: in general, only an equivalent generator system will be available,
where original generators may have been reordered, removed (if they are duplicate or redundant), etc.

10.24.2 Member Function Documentation

10.24.2.1 bool Parma_Polyhedra_Library::Generator_System::OK () const

Checks if all the invariants are satisfied.

Returns true if and only if ∗this is a valid Linear_System and each row in the system is a valid Gener-
ator.

Reimplemented in Parma_Polyhedra_Library::Grid_Generator_System.

10.24.2.2 bool Parma_Polyhedra_Library::Generator_System::ascii_load (std::istream & s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets ∗this
accordingly. Returns true if successful, false otherwise.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.25 Parma_Polyhedra_Library::GMP_Integer Class Reference 238

Resizes the matrix of generators using the numbers of rows and columns read from s, then initializes the
coordinates of each generator and its type reading the contents from s.

Reimplemented in Parma_Polyhedra_Library::Grid_Generator_System.

10.24.3 Friends And Related Function Documentation

10.24.3.1 std::ostream & operator<< (std::ostream & s, const Generator_System & gs)
[related]

Output operator.

Writes false if gs is empty. Otherwise, writes on s the generators of gs, all in one row and separated
by ", ".

10.24.3.2 void swap (Parma_Polyhedra_Library::Generator_System & x,
Parma_Polyhedra_Library::Generator_System & y) [related]

Specializes std::swap.

The documentation for this class was generated from the following file:

• ppl.hh

10.25 Parma_Polyhedra_Library::GMP_Integer Class Reference

Unbounded integers as provided by the GMP library.

#include <ppl.hh>

Related Functions

(Note that these are not member functions.)

Accessor Functions

• const mpz_class & raw_value (const GMP_Integer &x)
Returns a const reference to the underlying integer value.

• mpz_class & raw_value (GMP_Integer &x)
Returns a reference to the underlying integer value.

Memory Size Inspection Functions

• memory_size_type total_memory_in_bytes (const GMP_Integer &x)
Returns the total size in bytes of the memory occupied by x.

• memory_size_type external_memory_in_bytes (const GMP_Integer &x)
Returns the size in bytes of the memory managed by x.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.25 Parma_Polyhedra_Library::GMP_Integer Class Reference 239

Arithmetic Operators

• void neg_assign (GMP_Integer &x)
Assigns to x its negation.

• void neg_assign (GMP_Integer &x, const GMP_Integer &y)
Assigns to x the negation of y.

• void abs_assign (GMP_Integer &x)
Assigns to x its absolute value.

• void abs_assign (GMP_Integer &x, const GMP_Integer &y)
Assigns to x the absolute value of y.

• void rem_assign (GMP_Integer &x, const GMP_Integer &y, const GMP_Integer &z)
Assigns to x the remainder of the division of y by z.

• void gcd_assign (GMP_Integer &x, const GMP_Integer &y, const GMP_Integer &z)
Assigns to x the greatest common divisor of y and z.

• void gcdext_assign (GMP_Integer &x, GMP_Integer &s, GMP_Integer &t, const GMP_Integer
&y, const GMP_Integer &z)

Extended GCD.

• void lcm_assign (GMP_Integer &x, const GMP_Integer &y, const GMP_Integer &z)
Assigns to x the least common multiple of y and z.

• void add_mul_assign (GMP_Integer &x, const GMP_Integer &y, const GMP_Integer &z)
Assigns to x the value x + y ∗ z.

• void sub_mul_assign (GMP_Integer &x, const GMP_Integer &y, const GMP_Integer &z)
Assigns to x the value x - y ∗ z.

• void mul_2exp_assign (GMP_Integer &x, const GMP_Integer &y, unsigned int exp)
Assigns to x the value y · 2exp.

• void div_2exp_assign (GMP_Integer &x, const GMP_Integer &y, unsigned int exp)
Assigns to x the value y/2exp.

• void exact_div_assign (GMP_Integer &x, const GMP_Integer &y, const GMP_Integer &z)
If z divides y, assigns to x the quotient of the integer division of y and z.

• void sqrt_assign (GMP_Integer &x, const GMP_Integer &y)
Assigns to x the integer square root of y.

• int cmp (const GMP_Integer &x, const GMP_Integer &y)
Returns a negative, zero or positive value depending on whether x is lower than, equal to or greater than
y, respectively.

10.25.1 Detailed Description

Unbounded integers as provided by the GMP library. GMP_Integer is an alias for the mpz_-
class type defined in the C++ interface of the GMP library. For more information, see
http://www.swox.com/gmp/

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.swox.com/gmp/
http://www.cs.unipr.it/ppl/

10.25 Parma_Polyhedra_Library::GMP_Integer Class Reference 240

10.25.2 Friends And Related Function Documentation

10.25.2.1 const mpz_class & raw_value (const GMP_Integer & x) [related]

Returns a const reference to the underlying integer value.

10.25.2.2 mpz_class & raw_value (GMP_Integer & x) [related]

Returns a reference to the underlying integer value.

10.25.2.3 memory_size_type total_memory_in_bytes (const GMP_Integer & x) [related]

Returns the total size in bytes of the memory occupied by x.

10.25.2.4 memory_size_type external_memory_in_bytes (const GMP_Integer & x)
[related]

Returns the size in bytes of the memory managed by x.

10.25.2.5 void neg_assign (GMP_Integer & x) [related]

Assigns to x its negation.

10.25.2.6 void neg_assign (GMP_Integer & x, const GMP_Integer & y) [related]

Assigns to x the negation of y.

10.25.2.7 void abs_assign (GMP_Integer & x) [related]

Assigns to x its absolute value.

10.25.2.8 void abs_assign (GMP_Integer & x, const GMP_Integer & y) [related]

Assigns to x the absolute value of y.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.25 Parma_Polyhedra_Library::GMP_Integer Class Reference 241

10.25.2.9 void rem_assign (GMP_Integer & x, const GMP_Integer & y, const GMP_Integer &
z) [related]

Assigns to x the remainder of the division of y by z.

10.25.2.10 void gcd_assign (GMP_Integer & x, const GMP_Integer & y, const GMP_Integer &
z) [related]

Assigns to x the greatest common divisor of y and z.

10.25.2.11 void gcdext_assign (GMP_Integer & x, GMP_Integer & s, GMP_Integer & t, const
GMP_Integer & y, const GMP_Integer & z) [related]

Extended GCD.

Assigns to x the greatest common divisor of y and z, and to s and t the values such that y ∗ s + z ∗ t =
x.

10.25.2.12 void lcm_assign (GMP_Integer & x, const GMP_Integer & y, const GMP_Integer &
z) [related]

Assigns to x the least common multiple of y and z.

10.25.2.13 void add_mul_assign (GMP_Integer & x, const GMP_Integer & y, const
GMP_Integer & z) [related]

Assigns to x the value x + y ∗ z.

10.25.2.14 void sub_mul_assign (GMP_Integer & x, const GMP_Integer & y, const
GMP_Integer & z) [related]

Assigns to x the value x - y ∗ z.

10.25.2.15 void mul_2exp_assign (GMP_Integer & x, const GMP_Integer & y, unsigned int
exp) [related]

Assigns to x the value y · 2exp.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 242

10.25.2.16 void div_2exp_assign (GMP_Integer & x, const GMP_Integer & y, unsigned int exp
) [related]

Assigns to x the value y/2exp.

10.25.2.17 void exact_div_assign (GMP_Integer & x, const GMP_Integer & y, const
GMP_Integer & z) [related]

If z divides y, assigns to x the quotient of the integer division of y and z.

The behavior is undefined if z does not divide y.

10.25.2.18 void sqrt_assign (GMP_Integer & x, const GMP_Integer & y) [related]

Assigns to x the integer square root of y.

The documentation for this class was generated from the following file:

• ppl.hh

10.26 Parma_Polyhedra_Library::Grid Class Reference

A grid.

#include <ppl.hh>

Public Types

• typedef Coefficient coefficient_type
The numeric type of coefficients.

Public Member Functions

• Grid (dimension_type num_dimensions=0, Degenerate_Element kind=UNIVERSE)
Builds a grid having the specified properties.

• Grid (const Congruence_System &cgs)
Builds a grid, copying a system of congruences.

• Grid (Congruence_System &cgs, Recycle_Input dummy)
Builds a grid, recycling a system of congruences.

• Grid (const Constraint_System &cs)
Builds a grid, copying a system of constraints.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 243

• Grid (Constraint_System &cs, Recycle_Input dummy)
Builds a grid, recycling a system of constraints.

• Grid (const Grid_Generator_System &const_gs)
Builds a grid, copying a system of grid generators.

• Grid (Grid_Generator_System &gs, Recycle_Input dummy)
Builds a grid, recycling a system of grid generators.

• template<typename Interval >

Grid (const Box< Interval > &box, Complexity_Class complexity=ANY_COMPLEXITY)
Builds a grid out of a box.

• template<typename U >

Grid (const BD_Shape< U > &bd, Complexity_Class complexity=ANY_COMPLEXITY)
Builds a grid out of a bounded-difference shape.

• template<typename U >

Grid (const Octagonal_Shape< U > &os, Complexity_Class complexity=ANY_COMPLEXITY)
Builds a grid out of an octagonal shape.

• Grid (const Polyhedron &ph, Complexity_Class complexity=ANY_COMPLEXITY)
Builds a grid from a polyhedron using algorithms whose complexity does not exceed the one specified by
complexity. If complexity is ANY_COMPLEXITY, then the grid built is the smallest one containing
ph.

• Grid (const Grid &y, Complexity_Class complexity=ANY_COMPLEXITY)
Ordinary copy constructor.

• Grid & operator= (const Grid &y)
The assignment operator. (∗this and y can be dimension-incompatible.).

Member Functions that Do Not Modify the Grid

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• dimension_type affine_dimension () const
Returns 0, if ∗this is empty; otherwise, returns the affine dimension of ∗this.

• Constraint_System constraints () const
Returns a system of equality constraints satisfied by ∗this with the same affine dimension as ∗this.

• Constraint_System minimized_constraints () const
Returns a minimal system of equality constraints satisfied by ∗this with the same affine dimension as
∗this.

• const Congruence_System & congruences () const
Returns the system of congruences.

• const Congruence_System & minimized_congruences () const

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 244

Returns the system of congruences in minimal form.

• const Grid_Generator_System & grid_generators () const
Returns the system of generators.

• const Grid_Generator_System & minimized_grid_generators () const
Returns the minimized system of generators.

• Poly_Con_Relation relation_with (const Congruence &cg) const
Returns the relations holding between ∗this and cg.

• Poly_Gen_Relation relation_with (const Grid_Generator &g) const
Returns the relations holding between ∗this and g.

• Poly_Gen_Relation relation_with (const Generator &g) const
Returns the relations holding between ∗this and g.

• Poly_Con_Relation relation_with (const Constraint &c) const
Returns the relations holding between ∗this and c.

• bool is_empty () const
Returns true if and only if ∗this is an empty grid.

• bool is_universe () const
Returns true if and only if ∗this is a universe grid.

• bool is_topologically_closed () const
Returns true if and only if ∗this is a topologically closed subset of the vector space.

• bool is_disjoint_from (const Grid &y) const
Returns true if and only if ∗this and y are disjoint.

• bool is_discrete () const
Returns true if and only if ∗this is discrete.

• bool is_bounded () const
Returns true if and only if ∗this is bounded.

• bool contains_integer_point () const
Returns true if and only if ∗this contains at least one integer point.

• bool constrains (Variable var) const
Returns true if and only if var is constrained in ∗this.

• bool bounds_from_above (const Linear_Expression &expr) const
Returns true if and only if expr is bounded in ∗this.

• bool bounds_from_below (const Linear_Expression &expr) const
Returns true if and only if expr is bounded in ∗this.

• bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum) const

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value is computed.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 245

• bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum, Generator &point) const

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value and a point where expr reaches it are computed.

• bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum) const

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value is computed.

• bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum, Generator &point) const

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value and a point where expr reaches it are computed.

• bool frequency (const Linear_Expression &expr, Coefficient &freq_n, Coefficient &freq_d, Co-
efficient &val_n, Coefficient &val_d) const

Returns true if and only if ∗this is not empty and frequency for ∗this with respect to expr is
defined, in which case the frequency and the value for expr that is closest to zero are computed.

• bool contains (const Grid &y) const
Returns true if and only if ∗this contains y.

• bool strictly_contains (const Grid &y) const
Returns true if and only if ∗this strictly contains y.

• bool OK (bool check_not_empty=false) const
Checks if all the invariants are satisfied.

Space Dimension Preserving Member Functions that May Modify the Grid

• void add_congruence (const Congruence &cg)
Adds a copy of congruence cg to ∗this.

• void add_grid_generator (const Grid_Generator &g)
Adds a copy of grid generator g to the system of generators of ∗this.

• void add_congruences (const Congruence_System &cgs)
Adds a copy of each congruence in cgs to ∗this.

• void add_recycled_congruences (Congruence_System &cgs)
Adds the congruences in cgs to ∗this.

• void add_constraint (const Constraint &c)
Adds to ∗this a congruence equivalent to constraint c.

• void add_constraints (const Constraint_System &cs)
Adds to ∗this congruences equivalent to the constraints in cs.

• void add_recycled_constraints (Constraint_System &cs)
Adds to ∗this congruences equivalent to the constraints in cs.

• void refine_with_congruence (const Congruence &cg)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 246

Uses a copy of the congruence cg to refine ∗this.

• void refine_with_congruences (const Congruence_System &cgs)
Uses a copy of the congruences in cgs to refine ∗this.

• void refine_with_constraint (const Constraint &c)
Uses a copy of the constraint c to refine ∗this.

• void refine_with_constraints (const Constraint_System &cs)
Uses a copy of the constraints in cs to refine ∗this.

• void add_grid_generators (const Grid_Generator_System &gs)
Adds a copy of the generators in gs to the system of generators of ∗this.

• void add_recycled_grid_generators (Grid_Generator_System &gs)
Adds the generators in gs to the system of generators of this.

• void unconstrain (Variable var)
Computes the cylindrification of ∗this with respect to space dimension var, assigning the result to
∗this.

• void unconstrain (const Variables_Set &vars)
Computes the cylindrification of ∗this with respect to the set of space dimensions vars, assigning the
result to ∗this.

• void intersection_assign (const Grid &y)
Assigns to ∗this the intersection of ∗this and y.

• void upper_bound_assign (const Grid &y)
Assigns to ∗this the least upper bound of ∗this and y.

• bool upper_bound_assign_if_exact (const Grid &y)
If the upper bound of ∗this and y is exact it is assigned to this and true is returned, otherwise
false is returned.

• void difference_assign (const Grid &y)
Assigns to ∗this the grid-difference of ∗this and y.

• bool simplify_using_context_assign (const Grid &y)
Assigns to ∗this a meet-preserving simplification of ∗this with respect to y. If false is returned,
then the intersection is empty.

• void affine_image (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to ∗this the affine image of this under the function mapping variable var to the affine
expression specified by expr and denominator.

• void affine_preimage (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to ∗this the affine preimage of ∗this under the function mapping variable var to the affine
expression specified by expr and denominator.

• void generalized_affine_image (Variable var, Relation_Symbol relsym, const Linear_Expression
&expr, Coefficient_traits::const_reference denominator=Coefficient_one(), Coefficient_-
traits::const_reference modulus=Coefficient_zero())

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 247

Assigns to ∗this the image of ∗this with respect to the generalized affine relation var′ = expr
denominator

(mod modulus).

• void generalized_affine_preimage (Variable var, Relation_Symbol relsym, const Linear_-
Expression &expr, Coefficient_traits::const_reference denominator=Coefficient_one(),
Coefficient_traits::const_reference modulus=Coefficient_zero())

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation var′ =
expr

denominator
(mod modulus).

• void generalized_affine_image (const Linear_Expression &lhs, Relation_Symbol relsym, const
Linear_Expression &rhs, Coefficient_traits::const_reference modulus=Coefficient_zero())

Assigns to ∗this the image of ∗this with respect to the generalized affine relation lhs′ = rhs
(mod modulus).

• void generalized_affine_preimage (const Linear_Expression &lhs, Relation_Symbol rel-
sym, const Linear_Expression &rhs, Coefficient_traits::const_reference modulus=Coefficient_-
zero())

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation lhs′ = rhs
(mod modulus).

• void bounded_affine_image (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the bounded affine relation lb_expr
denominator

≤ var′ ≤
ub_expr

denominator
.

• void bounded_affine_preimage (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the bounded affine relation lb_expr
denominator

≤
var′ ≤ ub_expr

denominator
.

• void time_elapse_assign (const Grid &y)
Assigns to ∗this the result of computing the time-elapse between ∗this and y.

• void wrap_assign (const Variables_Set &vars, Bounded_Integer_Type_Width w, Bounded_-
Integer_Type_Representation r, Bounded_Integer_Type_Overflow o, const Constraint_System
∗pcs=0, unsigned complexity_threshold=16, bool wrap_individually=true)

Wraps the specified dimensions of the vector space.

• void drop_some_non_integer_points (Complexity_Class complexity=ANY_COMPLEXITY)
Possibly tightens ∗this by dropping all points with non-integer coordinates.

• void drop_some_non_integer_points (const Variables_Set &vars, Complexity_Class
complexity=ANY_COMPLEXITY)

Possibly tightens ∗this by dropping all points with non-integer coordinates for the space dimensions
corresponding to vars.

• void topological_closure_assign ()
Assigns to ∗this its topological closure.

• void congruence_widening_assign (const Grid &y, unsigned ∗tp=NULL)
Assigns to ∗this the result of computing the Grid widening between ∗this and y using congruence
systems.

• void generator_widening_assign (const Grid &y, unsigned ∗tp=NULL)
Assigns to ∗this the result of computing the Grid widening between ∗this and y using generator
systems.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 248

• void widening_assign (const Grid &y, unsigned ∗tp=NULL)
Assigns to ∗this the result of computing the Grid widening between ∗this and y.

• void limited_congruence_extrapolation_assign (const Grid &y, const Congruence_System &cgs,
unsigned ∗tp=NULL)

Improves the result of the congruence variant of Grid widening computation by also enforcing those
congruences in cgs that are satisfied by all the points of ∗this.

• void limited_generator_extrapolation_assign (const Grid &y, const Congruence_System &cgs,
unsigned ∗tp=NULL)

Improves the result of the generator variant of the Grid widening computation by also enforcing those
congruences in cgs that are satisfied by all the points of ∗this.

• void limited_extrapolation_assign (const Grid &y, const Congruence_System &cgs, unsigned
∗tp=NULL)

Improves the result of the Grid widening computation by also enforcing those congruences in cgs that
are satisfied by all the points of ∗this.

Member Functions that May Modify the Dimension of the Vector Space

• void add_space_dimensions_and_embed (dimension_type m)
Adds m new space dimensions and embeds the old grid in the new vector space.

• void add_space_dimensions_and_project (dimension_type m)
Adds m new space dimensions to the grid and does not embed it in the new vector space.

• void concatenate_assign (const Grid &y)
Assigns to ∗this the concatenation of ∗this and y, taken in this order.

• void remove_space_dimensions (const Variables_Set &vars)
Removes all the specified dimensions from the vector space.

• void remove_higher_space_dimensions (dimension_type new_dimension)
Removes the higher dimensions of the vector space so that the resulting space will have dimension
new_dimension..

• template<typename Partial_Function >

void map_space_dimensions (const Partial_Function &pfunc)
Remaps the dimensions of the vector space according to a partial function.

• void expand_space_dimension (Variable var, dimension_type m)
Creates m copies of the space dimension corresponding to var.

• void fold_space_dimensions (const Variables_Set &vars, Variable dest)
Folds the space dimensions in vars into dest.

Miscellaneous Member Functions

• ∼Grid ()
Destructor.

• void swap (Grid &y)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 249

Swaps ∗this with grid y. (∗this and y can be dimension-incompatible.).

• void ascii_dump () const
Writes to std::cerr an ASCII representation of ∗this.

• void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of ∗this.

• void print () const
Prints ∗this to std::cerr using operator<<.

• bool ascii_load (std::istream &s)
Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets
∗this accordingly. Returns true if successful, false otherwise.

• memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• int32_t hash_code () const
Returns a 32-bit hash code for ∗this.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension all kinds of Grid can handle.

• static bool can_recycle_congruence_systems ()
Returns true indicating that this domain has methods that can recycle congruences.

• static bool can_recycle_constraint_systems ()
Returns true indicating that this domain has methods that can recycle constraints.

Friends

• bool operator== (const Grid &x, const Grid &y)
Returns true if and only if x and y are the same grid.

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &s, const Grid &gr)
Output operator.

• bool operator!= (const Grid &x, const Grid &y)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 250

Returns true if and only if x and y are different grids.

• void swap (Parma_Polyhedra_Library::Grid &x, Parma_Polyhedra_Library::Grid &y)
Specializes std::swap.

10.26.1 Detailed Description

A grid. An object of the class Grid represents a rational grid.

The domain of grids optimally supports:

• all (proper and non-proper) congruences;

• tautological and inconsistent constraints;

• linear equality constraints (i.e., non-proper congruences).

Depending on the method, using a constraint that is not optimally supported by the domain will either raise
an exception or result in a (possibly non-optimal) upward approximation.

The domain of grids support a concept of double description similar to the one developed for polyhedra:
hence, a grid can be specified as either a finite system of congruences or a finite system of generators (see
Section Rational Grids) and it is always possible to obtain either representation. That is, if we know the
system of congruences, we can obtain from this a system of generators that define the same grid and vice
versa. These systems can contain redundant members, or they can be in the minimal form.

A key attribute of any grid is its space dimension (the dimension n ∈ N of the enclosing vector space):

• all grids, the empty ones included, are endowed with a space dimension;

• most operations working on a grid and another object (another grid, a congruence, a generator, a set
of variables, etc.) will throw an exception if the grid and the object are not dimension-compatible
(see Section Space Dimensions and Dimension-compatibility for Grids);

• the only ways in which the space dimension of a grid can be changed are with explicit calls to
operators provided for that purpose, and with standard copy, assignment and swap operators.

Note that two different grids can be defined on the zero-dimension space: the empty grid and the universe
grid R0.

In all the examples it is assumed that variables x and y are defined (where they are used) as follows:

Variable x(0);
Variable y(1);

Example 1

The following code builds a grid corresponding to the even integer pairs in R2, given as a system of
congruences:

Congruence_System cgs;
cgs.insert((x %= 0) / 2);
cgs.insert((y %= 0) / 2);
Grid gr(cgs);

The following code builds the same grid as above, but starting from a system of generators specifying
three of the points:

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 251

Grid_Generator_System gs;
gs.insert(grid_point(0*x + 0*y));
gs.insert(grid_point(0*x + 2*y));
gs.insert(grid_point(2*x + 0*y));
Grid gr(gs);

Example 2

The following code builds a grid corresponding to a line in R2 by adding a single congruence to the
universe grid:

Congruence_System cgs;
cgs.insert(x - y == 0);
Grid gr(cgs);

The following code builds the same grid as above, but starting from a system of generators specifying
a point and a line:

Grid_Generator_System gs;
gs.insert(grid_point(0*x + 0*y));
gs.insert(grid_line(x + y));
Grid gr(gs);

Example 3

The following code builds a grid corresponding to the integral points on the line x = y in R2 con-
structed by adding an equality and congruence to the universe grid:

Congruence_System cgs;
cgs.insert(x - y == 0);
cgs.insert(x %= 0);
Grid gr(cgs);

The following code builds the same grid as above, but starting from a system of generators specifying
a point and a parameter:

Grid_Generator_System gs;
gs.insert(grid_point(0*x + 0*y));
gs.insert(parameter(x + y));
Grid gr(gs);

Example 4

The following code builds the grid corresponding to a plane by creating the universe grid in R2:

Grid gr(2);

The following code builds the same grid as above, but starting from the empty grid in R2 and inserting
the appropriate generators (a point, and two lines).

Grid gr(2, EMPTY);
gr.add_grid_generator(grid_point(0*x + 0*y));
gr.add_grid_generator(grid_line(x));
gr.add_grid_generator(grid_line(y));

Note that a generator system must contain a point when describing a grid. To ensure that this is
always the case it is required that the first generator inserted in an empty grid is a point (otherwise, an
exception is thrown).

Example 5

The following code shows the use of the function add_space_dimensions_and_embed:

Grid gr(1);
gr.add_congruence(x == 2);
gr.add_space_dimensions_and_embed(1);

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 252

We build the universe grid in the 1-dimension space R. Then we add a single equality congruence,
thus obtaining the grid corresponding to the singleton set {2} ⊆ R. After the last line of code, the
resulting grid is {

(2, y)T ∈ R2
∣∣ y ∈ R

}
.

Example 6

The following code shows the use of the function add_space_dimensions_and_project:

Grid gr(1);
gr.add_congruence(x == 2);
gr.add_space_dimensions_and_project(1);

The first two lines of code are the same as in Example 4 for add_space_dimensions_and_-
embed. After the last line of code, the resulting grid is the singleton set

{
(2, 0)T

}
⊆ R2.

Example 7

The following code shows the use of the function affine_image:

Grid gr(2, EMPTY);
gr.add_grid_generator(grid_point(0*x + 0*y));
gr.add_grid_generator(grid_point(4*x + 0*y));
gr.add_grid_generator(grid_point(0*x + 2*y));
Linear_Expression expr = x + 3;
gr.affine_image(x, expr);

In this example the starting grid is all the pairs of x and y in R2 where x is an integer multiple of 4
and y is an integer multiple of 2. The considered variable is x and the affine expression is x+ 3. The
resulting grid is the given grid translated 3 integers to the right (all the pairs (x, y) where x is -1 plus
an integer multiple of 4 and y is an integer multiple of 2). Moreover, if the affine transformation for
the same variable x is instead x+ y:

Linear_Expression expr = x + y;

the resulting grid is every second integral point along the x = y line, with this line of points repeated
at every fourth integral value along the x axis. Instead, if we do not use an invertible transformation
for the same variable; for example, the affine expression y:

Linear_Expression expr = y;

the resulting grid is every second point along the x = y line.

Example 8

The following code shows the use of the function affine_preimage:

Grid gr(2, EMPTY);
gr.add_grid_generator(grid_point(0*x + 0*y));
gr.add_grid_generator(grid_point(4*x + 0*y));
gr.add_grid_generator(grid_point(0*x + 2*y));
Linear_Expression expr = x + 3;
gr.affine_preimage(x, expr);

In this example the starting grid, var and the affine expression and the denominator are the same as
in Example 6, while the resulting grid is similar but translated 3 integers to the left (all the pairs (x, y)
where x is -3 plus an integer multiple of 4 and y is an integer multiple of 2).. Moreover, if the affine
transformation for x is x+ y

Linear_Expression expr = x + y;

the resulting grid is a similar grid to the result in Example 6, only the grid is slanted along x = −y.
Instead, if we do not use an invertible transformation for the same variable x, for example, the affine
expression y:

Linear_Expression expr = y;

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 253

the resulting grid is every fourth line parallel to the x axis.

Example 9

For this example we also use the variables:
Variable z(2);
Variable w(3);

The following code shows the use of the function remove_space_dimensions:
Grid_Generator_System gs;
gs.insert(grid_point(3*x + y +0*z + 2*w));
Grid gr(gs);
Variables_Set vars;
vars.insert(y);
vars.insert(z);
gr.remove_space_dimensions(vars);

The starting grid is the singleton set
{

(3, 1, 0, 2)T
}
⊆ R4, while the resulting grid is

{
(3, 2)T

}
⊆

R2. Be careful when removing space dimensions incrementally: since dimensions are automatically
renamed after each application of the remove_space_dimensions operator, unexpected results
can be obtained. For instance, by using the following code we would obtain a different result:

set<Variable> vars1;
vars1.insert(y);
gr.remove_space_dimensions(vars1);
set<Variable> vars2;
vars2.insert(z);
gr.remove_space_dimensions(vars2);

In this case, the result is the grid
{

(3, 0)T
}
⊆ R2: when removing the set of dimensions vars2 we

are actually removing variable w of the original grid. For the same reason, the operator remove_-
space_dimensions is not idempotent: removing twice the same non-empty set of dimensions is
never the same as removing them just once.

10.26.2 Constructor & Destructor Documentation

10.26.2.1 Parma_Polyhedra_Library::Grid::Grid (dimension_type num_dimensions = 0,
Degenerate_Element kind = UNIVERSE) [inline, explicit]

Builds a grid having the specified properties.

Parameters

num_dimensions The number of dimensions of the vector space enclosing the grid;
kind Specifies whether the universe or the empty grid has to be built.

Exceptions

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

10.26.2.2 Parma_Polyhedra_Library::Grid::Grid (const Congruence_System & cgs)
[inline, explicit]

Builds a grid, copying a system of congruences.

The grid inherits the space dimension of the congruence system.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 254

Parameters

cgs The system of congruences defining the grid.

Exceptions

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

10.26.2.3 Parma_Polyhedra_Library::Grid::Grid (Congruence_System & cgs, Recycle_Input
dummy) [inline]

Builds a grid, recycling a system of congruences.

The grid inherits the space dimension of the congruence system.

Parameters

cgs The system of congruences defining the grid. Its data-structures may be recycled to build the grid.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

10.26.2.4 Parma_Polyhedra_Library::Grid::Grid (const Constraint_System & cs)
[explicit]

Builds a grid, copying a system of constraints.

The grid inherits the space dimension of the constraint system.

Parameters

cs The system of constraints defining the grid.

Exceptions

std::invalid_argument Thrown if the constraint system cs contains inequality constraints.

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

10.26.2.5 Parma_Polyhedra_Library::Grid::Grid (Constraint_System & cs, Recycle_Input
dummy)

Builds a grid, recycling a system of constraints.

The grid inherits the space dimension of the constraint system.

Parameters

cs The system of constraints defining the grid. Its data-structures may be recycled to build the grid.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 255

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions

std::invalid_argument Thrown if the constraint system cs contains inequality constraints.

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

10.26.2.6 Parma_Polyhedra_Library::Grid::Grid (const Grid_Generator_System & const_gs)
[inline, explicit]

Builds a grid, copying a system of grid generators.

The grid inherits the space dimension of the generator system.

Parameters

const_gs The system of generators defining the grid.

Exceptions

std::invalid_argument Thrown if the system of generators is not empty but has no points.

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

10.26.2.7 Parma_Polyhedra_Library::Grid::Grid (Grid_Generator_System & gs,
Recycle_Input dummy) [inline]

Builds a grid, recycling a system of grid generators.

The grid inherits the space dimension of the generator system.

Parameters

gs The system of generators defining the grid. Its data-structures may be recycled to build the grid.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions

std::invalid_argument Thrown if the system of generators is not empty but has no points.

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

10.26.2.8 template<typename Interval > Parma_Polyhedra_Library::Grid::Grid (const
Box< Interval > & box, Complexity_Class complexity = ANY_COMPLEXITY)
[explicit]

Builds a grid out of a box.

The grid inherits the space dimension of the box. The built grid is the most precise grid that includes the
box.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 256

Parameters

box The box representing the grid to be built.

complexity This argument is ignored as the algorithm used has polynomial complexity.

Exceptions

std::length_error Thrown if the space dimension of box exceeds the maximum allowed space di-
mension.

10.26.2.9 template<typename U > Parma_Polyhedra_Library::Grid::Grid (const BD_Shape<
U > & bd, Complexity_Class complexity = ANY_COMPLEXITY) [inline,
explicit]

Builds a grid out of a bounded-difference shape.

The grid inherits the space dimension of the BDS. The built grid is the most precise grid that includes the
BDS.

Parameters

bd The BDS representing the grid to be built.

complexity This argument is ignored as the algorithm used has polynomial complexity.

Exceptions

std::length_error Thrown if the space dimension of bd exceeds the maximum allowed space dimen-
sion.

10.26.2.10 template<typename U > Parma_Polyhedra_Library::Grid::Grid (const
Octagonal_Shape< U > & os, Complexity_Class complexity = ANY_COMPLEXITY)
[inline, explicit]

Builds a grid out of an octagonal shape.

The grid inherits the space dimension of the octagonal shape. The built grid is the most precise grid that
includes the octagonal shape.

Parameters

os The octagonal shape representing the grid to be built.

complexity This argument is ignored as the algorithm used has polynomial complexity.

Exceptions

std::length_error Thrown if the space dimension of os exceeds the maximum allowed space dimen-
sion.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 257

10.26.2.11 Parma_Polyhedra_Library::Grid::Grid (const Polyhedron & ph, Complexity_Class
complexity = ANY_COMPLEXITY) [explicit]

Builds a grid from a polyhedron using algorithms whose complexity does not exceed the one specified by
complexity. If complexity is ANY_COMPLEXITY, then the grid built is the smallest one containing
ph.

The grid inherits the space dimension of polyhedron.

Parameters

ph The polyhedron.
complexity The complexity class.

Exceptions

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

10.26.2.12 Parma_Polyhedra_Library::Grid::Grid (const Grid & y, Complexity_Class
complexity = ANY_COMPLEXITY)

Ordinary copy constructor.

The complexity argument is ignored.

10.26.3 Member Function Documentation

10.26.3.1 bool Parma_Polyhedra_Library::Grid::is_topologically_closed () const

Returns true if and only if ∗this is a topologically closed subset of the vector space.

A grid is always topologically closed.

10.26.3.2 bool Parma_Polyhedra_Library::Grid::is_disjoint_from (const Grid & y) const

Returns true if and only if ∗this and y are disjoint.

Exceptions

std::invalid_argument Thrown if x and y are dimension-incompatible.

10.26.3.3 bool Parma_Polyhedra_Library::Grid::is_discrete () const

Returns true if and only if ∗this is discrete.

A grid is discrete if it can be defined by a generator system which contains only points and parameters.
This includes the empty grid and any grid in dimension zero.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 258

10.26.3.4 bool Parma_Polyhedra_Library::Grid::constrains (Variable var) const

Returns true if and only if var is constrained in ∗this.

Exceptions

std::invalid_argument Thrown if var is not a space dimension of ∗this.

10.26.3.5 bool Parma_Polyhedra_Library::Grid::bounds_from_above (const Linear_Expression
& expr) const [inline]

Returns true if and only if expr is bounded in ∗this.

This method is the same as bounds_from_below.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

10.26.3.6 bool Parma_Polyhedra_Library::Grid::bounds_from_below (const Linear_Expression
& expr) const [inline]

Returns true if and only if expr is bounded in ∗this.

This method is the same as bounds_from_above.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

10.26.3.7 bool Parma_Polyhedra_Library::Grid::maximize (const Linear_Expression & expr,
Coefficient & sup_n, Coefficient & sup_d, bool & maximum) const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value is computed.

Parameters

expr The linear expression to be maximized subject to ∗this;

sup_n The numerator of the supremum value;

sup_d The denominator of the supremum value;

maximum true if the supremum value can be reached in this. Always true when this bounds
expr. Present for interface compatibility with class Polyhedron, where closure points can result
in a value of false.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 259

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded by ∗this, false is returned and sup_n, sup_d and
maximum are left untouched.

10.26.3.8 bool Parma_Polyhedra_Library::Grid::maximize (const Linear_Expression & expr,
Coefficient & sup_n, Coefficient & sup_d, bool & maximum, Generator & point)
const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value and a point where expr reaches it are computed.

Parameters

expr The linear expression to be maximized subject to ∗this;
sup_n The numerator of the supremum value;
sup_d The denominator of the supremum value;
maximum true if the supremum value can be reached in this. Always true when this bounds

expr. Present for interface compatibility with class Polyhedron, where closure points can result
in a value of false;

point When maximization succeeds, will be assigned a point where expr reaches its supremum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded by ∗this, false is returned and sup_n, sup_d, maximum
and point are left untouched.

10.26.3.9 bool Parma_Polyhedra_Library::Grid::minimize (const Linear_Expression & expr,
Coefficient & inf_n, Coefficient & inf_d, bool & minimum) const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value is computed.

Parameters

expr The linear expression to be minimized subject to ∗this;
inf_n The numerator of the infimum value;
inf_d The denominator of the infimum value;
minimum true if the is the infimum value can be reached in this. Always true when this

bounds expr. Present for interface compatibility with class Polyhedron, where closure points
can result in a value of false.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from below, false is returned and inf_n, inf_d and
minimum are left untouched.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 260

10.26.3.10 bool Parma_Polyhedra_Library::Grid::minimize (const Linear_Expression & expr,
Coefficient & inf_n, Coefficient & inf_d, bool & minimum, Generator & point)
const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value and a point where expr reaches it are computed.

Parameters

expr The linear expression to be minimized subject to ∗this;

inf_n The numerator of the infimum value;

inf_d The denominator of the infimum value;

minimum true if the is the infimum value can be reached in this. Always true when this
bounds expr. Present for interface compatibility with class Polyhedron, where closure points
can result in a value of false;

point When minimization succeeds, will be assigned a point where expr reaches its infimum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from below, false is returned and inf_n, inf_d, minimum
and point are left untouched.

10.26.3.11 bool Parma_Polyhedra_Library::Grid::frequency (const Linear_Expression & expr,
Coefficient & freq_n, Coefficient & freq_d, Coefficient & val_n, Coefficient & val_d
) const

Returns true if and only if ∗this is not empty and frequency for ∗thiswith respect to expr is defined,
in which case the frequency and the value for expr that is closest to zero are computed.

Parameters

expr The linear expression for which the frequency is needed;

freq_n The numerator of the maximum frequency of expr;

freq_d The denominator of the maximum frequency of expr;

val_n The numerator of them value of expr at a point in the grid that is closest to zero;

val_d The denominator of a value of expr at a point in the grid that is closest to zero;

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or frequency is undefined with respect to expr, then false is returned and freq_n,
freq_d, val_n and val_d are left untouched.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 261

10.26.3.12 bool Parma_Polyhedra_Library::Grid::contains (const Grid & y) const

Returns true if and only if ∗this contains y.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.26.3.13 bool Parma_Polyhedra_Library::Grid::strictly_contains (const Grid & y) const
[inline]

Returns true if and only if ∗this strictly contains y.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.26.3.14 bool Parma_Polyhedra_Library::Grid::OK (bool check_not_empty = false) const

Checks if all the invariants are satisfied.

Returns

true if and only if ∗this satisfies all the invariants and either check_not_empty is false or
∗this is not empty.

Parameters

check_not_empty true if and only if, in addition to checking the invariants, ∗this must be checked
to be not empty.

The check is performed so as to intrude as little as possible. If the library has been compiled with run-
time assertions enabled, error messages are written on std::cerr in case invariants are violated. This is
useful for the purpose of debugging the library.

10.26.3.15 void Parma_Polyhedra_Library::Grid::add_congruence (const Congruence & cg)
[inline]

Adds a copy of congruence cg to ∗this.

Exceptions

std::invalid_argument Thrown if ∗this and congruence cg are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 262

10.26.3.16 void Parma_Polyhedra_Library::Grid::add_grid_generator (const Grid_Generator
& g)

Adds a copy of grid generator g to the system of generators of ∗this.

Exceptions

std::invalid_argument Thrown if ∗this and generator g are dimension-incompatible, or if ∗this
is an empty grid and g is not a point.

10.26.3.17 void Parma_Polyhedra_Library::Grid::add_congruences (const Congruence_System
& cgs) [inline]

Adds a copy of each congruence in cgs to ∗this.

Parameters

cgs Contains the congruences that will be added to the system of congruences of ∗this.

Exceptions

std::invalid_argument Thrown if ∗this and cgs are dimension-incompatible.

10.26.3.18 void Parma_Polyhedra_Library::Grid::add_recycled_congruences (
Congruence_System & cgs)

Adds the congruences in cgs to ∗this.

Parameters

cgs The congruence system to be added to ∗this. The congruences in cgs may be recycled.

Exceptions

std::invalid_argument Thrown if ∗this and cgs are dimension-incompatible.

Warning

The only assumption that can be made about cgs upon successful or exceptional return is that it can
be safely destroyed.

10.26.3.19 void Parma_Polyhedra_Library::Grid::add_constraint (const Constraint & c)
[inline]

Adds to ∗this a congruence equivalent to constraint c.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 263

Parameters

c The constraint to be added.

Exceptions

std::invalid_argument Thrown if ∗this and c are dimension-incompatible or if constraint c is not
optimally supported by the grid domain.

10.26.3.20 void Parma_Polyhedra_Library::Grid::add_constraints (const Constraint_System &
cs)

Adds to ∗this congruences equivalent to the constraints in cs.

Parameters

cs The constraints to be added.

Exceptions

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible or if cs contains a
constraint whcih is not optimally supported by the grid domain.

10.26.3.21 void Parma_Polyhedra_Library::Grid::add_recycled_constraints (Constraint_System
& cs) [inline]

Adds to ∗this congruences equivalent to the constraints in cs.

Parameters

cs The constraints to be added. They may be recycled.

Exceptions

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible or if cs contains a
constraint whcih is not optimally supported by the grid domain.

Warning

The only assumption that can be made about cs upon successful or exceptional return is that it can be
safely destroyed.

10.26.3.22 void Parma_Polyhedra_Library::Grid::refine_with_congruence (const Congruence &
cg) [inline]

Uses a copy of the congruence cg to refine ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 264

Parameters

cg The congruence used.

Exceptions

std::invalid_argument Thrown if ∗this and congruence cg are dimension-incompatible.

10.26.3.23 void Parma_Polyhedra_Library::Grid::refine_with_congruences (const
Congruence_System & cgs) [inline]

Uses a copy of the congruences in cgs to refine ∗this.

Parameters

cgs The congruences used.

Exceptions

std::invalid_argument Thrown if ∗this and cgs are dimension-incompatible.

10.26.3.24 void Parma_Polyhedra_Library::Grid::refine_with_constraint (const Constraint & c
)

Uses a copy of the constraint c to refine ∗this.

Parameters

c The constraint used. If it is not an equality, it will be ignored

Exceptions

std::invalid_argument Thrown if ∗this and c are dimension-incompatible.

10.26.3.25 void Parma_Polyhedra_Library::Grid::refine_with_constraints (const
Constraint_System & cs)

Uses a copy of the constraints in cs to refine ∗this.

Parameters

cs The constraints used. Constraints that are not equalities are ignored.

Exceptions

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 265

10.26.3.26 void Parma_Polyhedra_Library::Grid::add_grid_generators (const
Grid_Generator_System & gs)

Adds a copy of the generators in gs to the system of generators of ∗this.

Parameters

gs Contains the generators that will be added to the system of generators of ∗this.

Exceptions

std::invalid_argument Thrown if ∗this and gs are dimension-incompatible, or if ∗this is empty
and the system of generators gs is not empty, but has no points.

10.26.3.27 void Parma_Polyhedra_Library::Grid::add_recycled_grid_generators (
Grid_Generator_System & gs)

Adds the generators in gs to the system of generators of this.

Parameters

gs The generator system to be added to ∗this. The generators in gs may be recycled.

Exceptions

std::invalid_argument Thrown if ∗this and gs are dimension-incompatible.

Warning

The only assumption that can be made about gs upon successful or exceptional return is that it can be
safely destroyed.

10.26.3.28 void Parma_Polyhedra_Library::Grid::unconstrain (Variable var)

Computes the cylindrification of ∗this with respect to space dimension var, assigning the result to
∗this.

Parameters

var The space dimension that will be unconstrained.

Exceptions

std::invalid_argument Thrown if var is not a space dimension of ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 266

10.26.3.29 void Parma_Polyhedra_Library::Grid::unconstrain (const Variables_Set & vars)

Computes the cylindrification of ∗this with respect to the set of space dimensions vars, assigning the
result to ∗this.

Parameters

vars The set of space dimension that will be unconstrained.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with one of the Variable objects
contained in vars.

10.26.3.30 void Parma_Polyhedra_Library::Grid::intersection_assign (const Grid & y)

Assigns to ∗this the intersection of ∗this and y.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.26.3.31 void Parma_Polyhedra_Library::Grid::upper_bound_assign (const Grid & y)

Assigns to ∗this the least upper bound of ∗this and y.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.26.3.32 bool Parma_Polyhedra_Library::Grid::upper_bound_assign_if_exact (const Grid &
y)

If the upper bound of ∗this and y is exact it is assigned to this and true is returned, otherwise false
is returned.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 267

10.26.3.33 void Parma_Polyhedra_Library::Grid::difference_assign (const Grid & y)

Assigns to ∗this the grid-difference of ∗this and y.

The grid difference between grids x and y is the smallest grid containing all the points from x and y that
are only in x.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.26.3.34 bool Parma_Polyhedra_Library::Grid::simplify_using_context_assign (const Grid &
y)

Assigns to ∗this a meet-preserving simplification of ∗this with respect to y. If false is returned, then
the intersection is empty.

Exceptions

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

10.26.3.35 void Parma_Polyhedra_Library::Grid::affine_image (Variable var, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one())

Assigns to ∗this the affine image of this under the function mapping variable var to the affine expres-
sion specified by expr and denominator.

Parameters

var The variable to which the affine expression is assigned;
expr The numerator of the affine expression;
denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this.

10.26.3.36 void Parma_Polyhedra_Library::Grid::affine_preimage (Variable var, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one())

Assigns to ∗this the affine preimage of ∗this under the function mapping variable var to the affine
expression specified by expr and denominator.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 268

Parameters

var The variable to which the affine expression is substituted;

expr The numerator of the affine expression;

denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this.

10.26.3.37 void Parma_Polyhedra_Library::Grid::generalized_affine_image (
Variable var, Relation_Symbol relsym, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one(),
Coefficient_traits::const_reference modulus = Coefficient_zero())

Assigns to ∗this the image of ∗this with respect to the generalized affine relation var′ = expr
denominator

(mod modulus).

Parameters

var The left hand side variable of the generalized affine relation;

relsym The relation symbol where EQUAL is the symbol for a congruence relation;

expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression. Optional argument with an
automatic value of one;

modulus The modulus of the congruence lhs = rhs. A modulus of zero indicates lhs == rhs. Optional
argument with an automatic value of zero.

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of this.

10.26.3.38 void Parma_Polyhedra_Library::Grid::generalized_affine_preimage (
Variable var, Relation_Symbol relsym, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one(),
Coefficient_traits::const_reference modulus = Coefficient_zero())

Assigns to ∗this the preimage of ∗thiswith respect to the generalized affine relation var′ = expr
denominator

(mod modulus).

Parameters

var The left hand side variable of the generalized affine relation;

relsym The relation symbol where EQUAL is the symbol for a congruence relation;

expr The numerator of the right hand side affine expression;

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 269

denominator The denominator of the right hand side affine expression. Optional argument with an
automatic value of one;

modulus The modulus of the congruence lhs = rhs. A modulus of zero indicates lhs == rhs. Optional
argument with an automatic value of zero.

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of this.

10.26.3.39 void Parma_Polyhedra_Library::Grid::generalized_affine_image (const
Linear_Expression & lhs, Relation_Symbol relsym, const Linear_Expression & rhs,
Coefficient_traits::const_reference modulus = Coefficient_zero())

Assigns to ∗this the image of ∗this with respect to the generalized affine relation lhs′ = rhs
(mod modulus).

Parameters

lhs The left hand side affine expression.

relsym The relation symbol where EQUAL is the symbol for a congruence relation;

rhs The right hand side affine expression.

modulus The modulus of the congruence lhs = rhs. A modulus of zero indicates lhs == rhs. Optional
argument with an automatic value of zero.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with lhs or rhs.

10.26.3.40 void Parma_Polyhedra_Library::Grid::generalized_affine_preimage (const
Linear_Expression & lhs, Relation_Symbol relsym, const Linear_Expression & rhs,
Coefficient_traits::const_reference modulus = Coefficient_zero())

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation lhs′ = rhs
(mod modulus).

Parameters

lhs The left hand side affine expression;

relsym The relation symbol where EQUAL is the symbol for a congruence relation;

rhs The right hand side affine expression;

modulus The modulus of the congruence lhs = rhs. A modulus of zero indicates lhs == rhs. Optional
argument with an automatic value of zero.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with lhs or rhs.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 270

10.26.3.41 void Parma_Polyhedra_Library::Grid::bounded_affine_image (Variable var,
const Linear_Expression & lb_expr, const Linear_Expression & ub_expr,
Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the bounded affine relation lb_expr
denominator ≤ var′ ≤

ub_expr
denominator .

Parameters

var The variable updated by the affine relation;
lb_expr The numerator of the lower bounding affine expression;
ub_expr The numerator of the upper bounding affine expression;
denominator The (common) denominator for the lower and upper bounding affine expressions (op-

tional argument with default value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if lb_expr (resp., ub_expr) and
∗this are dimension-incompatible or if var is not a space dimension of ∗this.

10.26.3.42 void Parma_Polyhedra_Library::Grid::bounded_affine_preimage (Variable
var, const Linear_Expression & lb_expr, const Linear_Expression & ub_expr,
Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to ∗this the preimage of ∗thiswith respect to the bounded affine relation lb_expr
denominator ≤ var′ ≤

ub_expr
denominator .

Parameters

var The variable updated by the affine relation;
lb_expr The numerator of the lower bounding affine expression;
ub_expr The numerator of the upper bounding affine expression;
denominator The (common) denominator for the lower and upper bounding affine expressions (op-

tional argument with default value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if lb_expr (resp., ub_expr) and
∗this are dimension-incompatible or if var is not a space dimension of ∗this.

10.26.3.43 void Parma_Polyhedra_Library::Grid::time_elapse_assign (const Grid & y)

Assigns to ∗this the result of computing the time-elapse between ∗this and y.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 271

10.26.3.44 void Parma_Polyhedra_Library::Grid::wrap_assign (const Variables_Set & vars,
Bounded_Integer_Type_Width w, Bounded_Integer_Type_Representation r,
Bounded_Integer_Type_Overflow o, const Constraint_System ∗ pcs = 0, unsigned
complexity_threshold = 16, bool wrap_individually = true)

Wraps the specified dimensions of the vector space.

Parameters

vars The set of Variable objects corresponding to the space dimensions to be wrapped.

w The width of the bounded integer type corresponding to all the dimensions to be wrapped.

r The representation of the bounded integer type corresponding to all the dimensions to be wrapped.

o The overflow behavior of the bounded integer type corresponding to all the dimensions to be
wrapped.

pcs Possibly null pointer to a constraint system. This argument is for compatibility with wrap_assign()
for the other domains and only checked for dimension-compatibility.

complexity_threshold A precision parameter of the wrapping operator. This argument is for compat-
ibility with wrap_assign() for the other domains and is ignored.

wrap_individually true if the dimensions should be wrapped individually. As wrapping dimensions
collectively does not improve the precision, this argument is ignored.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with one of the Variable objects
contained in vars or with ∗pcs.

Warning

It is assumed that variables in Vars represent integers. Thus, where the extra cost is negligible, the
integrality of these variables is enforced; possibly causing a non-integral grid to become empty.

10.26.3.45 void Parma_Polyhedra_Library::Grid::drop_some_non_integer_points (
Complexity_Class complexity = ANY_COMPLEXITY)

Possibly tightens ∗this by dropping all points with non-integer coordinates.

Parameters

complexity This argument is ignored as the algorithm used has polynomial complexity.

10.26.3.46 void Parma_Polyhedra_Library::Grid::drop_some_non_integer_points (const
Variables_Set & vars, Complexity_Class complexity = ANY_COMPLEXITY)

Possibly tightens ∗this by dropping all points with non-integer coordinates for the space dimensions
corresponding to vars.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 272

Parameters

vars Points with non-integer coordinates for these variables/space-dimensions can be discarded.

complexity This argument is ignored as the algorithm used has polynomial complexity.

10.26.3.47 void Parma_Polyhedra_Library::Grid::congruence_widening_assign (const Grid &
y, unsigned ∗ tp = NULL)

Assigns to ∗this the result of computing the Grid widening between ∗this and y using congruence
systems.

Parameters

y A grid that must be contained in ∗this;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.26.3.48 void Parma_Polyhedra_Library::Grid::generator_widening_assign (const Grid & y,
unsigned ∗ tp = NULL)

Assigns to ∗this the result of computing the Grid widening between ∗this and y using generator sys-
tems.

Parameters

y A grid that must be contained in ∗this;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.26.3.49 void Parma_Polyhedra_Library::Grid::widening_assign (const Grid & y, unsigned ∗
tp = NULL)

Assigns to ∗this the result of computing the Grid widening between ∗this and y.

This widening uses either the congruence or generator systems depending on which of the systems describ-
ing x and y are up to date and minimized.

Parameters

y A grid that must be contained in ∗this;

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 273

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.26.3.50 void Parma_Polyhedra_Library::Grid::limited_congruence_extrapolation_assign (
const Grid & y, const Congruence_System & cgs, unsigned ∗ tp = NULL)

Improves the result of the congruence variant of Grid widening computation by also enforcing those con-
gruences in cgs that are satisfied by all the points of ∗this.

Parameters

y A grid that must be contained in ∗this;

cgs The system of congruences used to improve the widened grid;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this, y and cgs are dimension-incompatible.

10.26.3.51 void Parma_Polyhedra_Library::Grid::limited_generator_extrapolation_assign (
const Grid & y, const Congruence_System & cgs, unsigned ∗ tp = NULL)

Improves the result of the generator variant of the Grid widening computation by also enforcing those
congruences in cgs that are satisfied by all the points of ∗this.

Parameters

y A grid that must be contained in ∗this;

cgs The system of congruences used to improve the widened grid;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this, y and cgs are dimension-incompatible.

10.26.3.52 void Parma_Polyhedra_Library::Grid::limited_extrapolation_assign (const Grid & y,
const Congruence_System & cgs, unsigned ∗ tp = NULL)

Improves the result of the Grid widening computation by also enforcing those congruences in cgs that are
satisfied by all the points of ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 274

Parameters

y A grid that must be contained in ∗this;
cgs The system of congruences used to improve the widened grid;
tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when

applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this, y and cgs are dimension-incompatible.

10.26.3.53 void Parma_Polyhedra_Library::Grid::add_space_dimensions_and_embed (
dimension_type m)

Adds m new space dimensions and embeds the old grid in the new vector space.

Parameters

m The number of dimensions to add.

Exceptions

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension().

The new space dimensions will be those having the highest indexes in the new grid, which is characterized
by a system of congruences in which the variables which are the new dimensions can have any value. For
instance, when starting from the grid L ⊆ R2 and adding a third space dimension, the result will be the
grid {

(x, y, z)T ∈ R3
∣∣ (x, y)T ∈ L

}
.

10.26.3.54 void Parma_Polyhedra_Library::Grid::add_space_dimensions_and_project (
dimension_type m)

Adds m new space dimensions to the grid and does not embed it in the new vector space.

Parameters

m The number of space dimensions to add.

Exceptions

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension().

The new space dimensions will be those having the highest indexes in the new grid, which is characterized
by a system of congruences in which the variables running through the new dimensions are all constrained
to be equal to 0. For instance, when starting from the grid L ⊆ R2 and adding a third space dimension, the
result will be the grid {

(x, y, 0)T ∈ R3
∣∣ (x, y)T ∈ L

}
.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 275

10.26.3.55 void Parma_Polyhedra_Library::Grid::concatenate_assign (const Grid & y)

Assigns to ∗this the concatenation of ∗this and y, taken in this order.

Exceptions

std::length_error Thrown if the concatenation would cause the vector space to exceed dimension
max_space_dimension().

10.26.3.56 void Parma_Polyhedra_Library::Grid::remove_space_dimensions (const
Variables_Set & vars)

Removes all the specified dimensions from the vector space.

Parameters

vars The set of Variable objects corresponding to the space dimensions to be removed.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with one of the Variable objects
contained in vars.

10.26.3.57 void Parma_Polyhedra_Library::Grid::remove_higher_space_dimensions (
dimension_type new_dimension)

Removes the higher dimensions of the vector space so that the resulting space will have dimension new_-
dimension..

Exceptions

std::invalid_argument Thrown if new_dimensions is greater than the space dimension of ∗this.

10.26.3.58 template<typename Partial_Function > void Parma_Polyhedra_-
Library::Grid::map_space_dimensions (const Partial_Function & pfunc
)

Remaps the dimensions of the vector space according to a partial function.

If pfunc maps only some of the dimensions of ∗this then the rest will be projected away.

If the highest dimension mapped to by pfunc is higher than the highest dimension in ∗this then the
number of dimensions in this will be increased to the highest dimension mapped to by pfunc.

Parameters

pfunc The partial function specifying the destiny of each space dimension.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 276

The template type parameter Partial_Function must provide the following methods.

bool has_empty_codomain() const

returns true if and only if the represented partial function has an empty codomain (i.e., it is always
undefined). The has_empty_codomain() method will always be called before the methods below.
However, if has_empty_codomain() returns true, none of the functions below will be called.

dimension_type max_in_codomain() const

returns the maximum value that belongs to the codomain of the partial function. The max_in_-
codomain() method is called at most once.

bool maps(dimension_type i, dimension_type& j) const

Let f be the represented function and k be the value of i. If f is defined in k, then f(k) is assigned to
j and true is returned. If f is undefined in k, then false is returned. This method is called at most n
times, where n is the dimension of the vector space enclosing the grid.

The result is undefined if pfunc does not encode a partial function with the properties described in the
specification of the mapping operator.

10.26.3.59 void Parma_Polyhedra_Library::Grid::expand_space_dimension (Variable var,
dimension_type m)

Creates m copies of the space dimension corresponding to var.

Parameters

var The variable corresponding to the space dimension to be replicated;

m The number of replicas to be created.

Exceptions

std::invalid_argument Thrown if var does not correspond to a dimension of the vector space.

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension().

If ∗this has space dimension n, with n > 0, and var has space dimension k ≤ n, then the k-th space
dimension is expanded to m new space dimensions n, n+ 1, . . . , n+m− 1.

10.26.3.60 void Parma_Polyhedra_Library::Grid::fold_space_dimensions (const Variables_Set
& vars, Variable dest)

Folds the space dimensions in vars into dest.

Parameters

vars The set of Variable objects corresponding to the space dimensions to be folded;

dest The variable corresponding to the space dimension that is the destination of the folding operation.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.26 Parma_Polyhedra_Library::Grid Class Reference 277

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with dest or with one of the
Variable objects contained in vars. Also thrown if dest is contained in vars.

If ∗this has space dimension n, with n > 0, dest has space dimension k ≤ n, vars is a set of variables
whose maximum space dimension is also less than or equal to n, and dest is not a member of vars, then
the space dimensions corresponding to variables in vars are folded into the k-th space dimension.

10.26.3.61 int32_t Parma_Polyhedra_Library::Grid::hash_code () const [inline]

Returns a 32-bit hash code for ∗this.

If x and y are such that x == y, then x.hash_code() == y.hash_code().

10.26.4 Friends And Related Function Documentation

10.26.4.1 bool operator== (const Grid & x, const Grid & y) [friend]

Returns true if and only if x and y are the same grid.

Note that x and y may be dimension-incompatible grids: in those cases, the value false is returned.

10.26.4.2 std::ostream & operator<< (std::ostream & s, const Grid & gr) [related]

Output operator.

Writes a textual representation of gr on s: false is written if gr is an empty grid; true is written if gr
is a universe grid; a minimized system of congruences defining gr is written otherwise, all congruences in
one row separated by ", "s.

10.26.4.3 bool operator!= (const Grid & x, const Grid & y) [related]

Returns true if and only if x and y are different grids.

Note that x and y may be dimension-incompatible grids: in those cases, the value true is returned.

10.26.4.4 void swap (Parma_Polyhedra_Library::Grid & x, Parma_Polyhedra_Library::Grid
& y) [related]

Specializes std::swap.

The documentation for this class was generated from the following file:

• ppl.hh

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.27 Parma_Polyhedra_Library::Grid_Certificate Class Reference 278

10.27 Parma_Polyhedra_Library::Grid_Certificate Class Reference

The convergence certificate for the Grid widening operator.

#include <ppl.hh>

Classes

• struct Compare
A total ordering on Grid certificates.

Public Member Functions

• Grid_Certificate ()
Default constructor.

• Grid_Certificate (const Grid &gr)
Constructor: computes the certificate for gr.

• Grid_Certificate (const Grid_Certificate &y)
Copy constructor.

• ∼Grid_Certificate ()
Destructor.

• int compare (const Grid_Certificate &y) const
The comparison function for certificates.

• int compare (const Grid &gr) const
Compares ∗this with the certificate for grid gr.

10.27.1 Detailed Description

The convergence certificate for the Grid widening operator. Convergence certificates are used to instantiate
the BHZ03 framework so as to define widening operators for the finite powerset domain.

Note

Each convergence certificate has to be used together with a compatible widening operator. In particular,
Grid_Certificate can certify the Grid widening.

10.27.2 Member Function Documentation

10.27.2.1 int Parma_Polyhedra_Library::Grid_Certificate::compare (const Grid_Certificate & y
) const

The comparison function for certificates.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.28 Parma_Polyhedra_Library::Grid_Generator Class Reference 279

Returns

−1, 0 or 1 depending on whether ∗this is smaller than, equal to, or greater than y, respectively.

The documentation for this class was generated from the following file:

• ppl.hh

10.28 Parma_Polyhedra_Library::Grid_Generator Class Reference

A grid line, parameter or grid point.

#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Generator.

Public Types

• enum Type { LINE, PARAMETER, POINT }
The generator type.

Public Member Functions

• Grid_Generator (const Grid_Generator &g)
Ordinary copy constructor.

• ∼Grid_Generator ()
Destructor.

• Grid_Generator & operator= (const Grid_Generator &g)
Assignment operator.

• Grid_Generator & operator= (const Generator &g)
Assignment operator.

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• Type type () const
Returns the generator type of ∗this.

• bool is_line () const
Returns true if and only if ∗this is a line.

• bool is_parameter () const
Returns true if and only if ∗this is a parameter.

• bool is_line_or_parameter () const
Returns true if and only if ∗this is a line or a parameter.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.28 Parma_Polyhedra_Library::Grid_Generator Class Reference 280

• bool is_point () const
Returns true if and only if ∗this is a point.

• bool is_parameter_or_point () const
Returns true if and only if ∗this row represents a parameter or a point.

• Coefficient_traits::const_reference coefficient (Variable v) const
Returns the coefficient of v in ∗this.

• Coefficient_traits::const_reference divisor () const
Returns the divisor of ∗this.

• memory_size_type total_memory_in_bytes () const
Returns a lower bound to the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• bool is_equivalent_to (const Grid_Generator &y) const
Returns true if and only if ∗this and y are equivalent generators.

• bool is_equal_to (const Grid_Generator &y) const
Returns true if ∗this is exactly equal to y.

• bool is_equal_at_dimension (dimension_type dim, const Grid_Generator &gg) const
Returns true if ∗this is equal to gg in dimension dim.

• bool all_homogeneous_terms_are_zero () const
Returns true if and only if all the homogeneous terms of ∗this are 0.

• void ascii_dump () const
Writes to std::cerr an ASCII representation of ∗this.

• void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of ∗this.

• void print () const
Prints ∗this to std::cerr using operator<<.

• bool ascii_load (std::istream &s)
Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets ∗this
accordingly. Returns true if successful, false otherwise.

• bool OK () const
Checks if all the invariants are satisfied.

• void swap (Grid_Generator &y)
Swaps ∗this with y.

• void coefficient_swap (Grid_Generator &y)
Swaps ∗this with y, leaving ∗this with the original capacity.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.28 Parma_Polyhedra_Library::Grid_Generator Class Reference 281

Static Public Member Functions

• static Grid_Generator grid_line (const Linear_Expression &e)
Returns the line of direction e.

• static Grid_Generator parameter (const Linear_Expression &e=Linear_Expression::zero(),
Coefficient_traits::const_reference d=Coefficient_one())

Returns the parameter of direction e and size e/d.

• static Grid_Generator grid_point (const Linear_Expression &e=Linear_Expression::zero(),
Coefficient_traits::const_reference d=Coefficient_one())

Returns the point at e / d.

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a Grid_Generator can handle.

• static void initialize ()
Initializes the class.

• static void finalize ()
Finalizes the class.

• static const Grid_Generator & zero_dim_point ()
Returns the origin of the zero-dimensional space R0.

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &s, const Grid_Generator &g)
Output operator.

• void swap (Parma_Polyhedra_Library::Grid_Generator &x, Parma_Polyhedra_Library::Grid_-
Generator &y)

Specializes std::swap.

• bool operator== (const Grid_Generator &x, const Grid_Generator &y)
Returns true if and only if x is equivalent to y.

• bool operator!= (const Grid_Generator &x, const Grid_Generator &y)
Returns true if and only if x is not equivalent to y.

• std::ostream & operator<< (std::ostream &s, const Grid_Generator::Type &t)
Output operator.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.28 Parma_Polyhedra_Library::Grid_Generator Class Reference 282

10.28.1 Detailed Description

A grid line, parameter or grid point. An object of the class Grid_Generator is one of the following:

• a grid_line l = (a0, . . . , an−1)T;

• a parameter q = (a0
d , . . . ,

an−1
d)T;

• a grid_point p = (a0
d , . . . ,

an−1
d)T;

where n is the dimension of the space and, for grid_points and parameters, d > 0 is the divisor.

How to build a grid generator.

Each type of generator is built by applying the corresponding function (grid_line, parameter or
grid_point) to a linear expression; the space dimension of the generator is defined as the space di-
mension of the corresponding linear expression. Linear expressions used to define a generator should
be homogeneous (any constant term will be simply ignored). When defining grid points and pa-
rameters, an optional Coefficient argument can be used as a common divisor for all the coefficients
occurring in the provided linear expression; the default value for this argument is 1.

In all the following examples it is assumed that variables x, y and z are defined as follows:

Variable x(0);
Variable y(1);
Variable z(2);

Example 1

The following code builds a grid line with direction x− y − z and having space dimension 3:

Grid_Generator l = grid_line(x - y - z);

By definition, the origin of the space is not a line, so that the following code throws an exception:

Grid_Generator l = grid_line(0*x);

Example 2

The following code builds the parameter as the vector p = (1,−1,−1)T ∈ R3 which has the same
direction as the line in Example 1:

Grid_Generator q = parameter(x - y - z);

Note that, unlike lines, for parameters, the length as well as the direction of the vector represented by
the code is significant. Thus q is not the same as the parameter q1 defined by

Grid_Generator q1 = parameter(2x - 2y - 2z);

By definition, the origin of the space is not a parameter, so that the following code throws an exception:

Grid_Generator q = parameter(0*x);

Example 3

The following code builds the grid point p = (1, 0, 2)T ∈ R3:

Grid_Generator p = grid_point(1*x + 0*y + 2*z);

The same effect can be obtained by using the following code:

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.28 Parma_Polyhedra_Library::Grid_Generator Class Reference 283

Grid_Generator p = grid_point(x + 2*z);

Similarly, the origin 0 ∈ R3 can be defined using either one of the following lines of code:

Grid_Generator origin3 = grid_point(0*x + 0*y + 0*z);
Grid_Generator origin3_alt = grid_point(0*z);

Note however that the following code would have defined a different point, namely 0 ∈ R2:

Grid_Generator origin2 = grid_point(0*y);

The following two lines of code both define the only grid point having space dimension zero, namely
0 ∈ R0. In the second case we exploit the fact that the first argument of the function point is
optional.

Grid_Generator origin0 = Generator::zero_dim_point();
Grid_Generator origin0_alt = grid_point();

Example 4

The grid point p specified in Example 3 above can also be obtained with the following code, where we
provide a non-default value for the second argument of the function grid_point (the divisor):

Grid_Generator p = grid_point(2*x + 0*y + 4*z, 2);

Obviously, the divisor can be used to specify points having some non-integer (but rational) coordinates.
For instance, the grid point p1 = (−1.5, 3.2, 2.1)T ∈ R3 can be specified by the following code:

Grid_Generator p1 = grid_point(-15*x + 32*y + 21*z, 10);

If a zero divisor is provided, an exception is thrown.

Example 5

Parameters, like grid points can have a divisor. For instance, the parameter q = (1, 0, 2)T ∈ R3 can
be defined:

Grid_Generator q = parameter(2*x + 0*y + 4*z, 2);

Also, the divisor can be used to specify parameters having some non-integer (but rational) coordinates.
For instance, the parameter q = (−1.5, 3.2, 2.1)T ∈ R3 can be defined:

Grid_Generator q = parameter(-15*x + 32*y + 21*z, 10);

If a zero divisor is provided, an exception is thrown.

How to inspect a grid generator

Several methods are provided to examine a grid generator and extract all the encoded information: its
space dimension, its type and the value of its integer coefficients and the value of the denominator.

Example 6

The following code shows how it is possible to access each single coefficient of a grid generator. If g1
is a grid point having coordinates (a0, . . . , an−1)T, we construct the parameter g2 having coordinates
(a0, 2a1, . . . , (i+ 1)ai, . . . , nan−1)T.

if (g1.is_point()) {
cout << "Grid point g1: " << g1 << endl;
Linear_Expression e;
for (dimension_type i = g1.space_dimension(); i-- > 0;)

e += (i + 1) * g1.coefficient(Variable(i)) * Variable(i);
Grid_Generator g2 = parameter(e, g1.divisor());
cout << "Parameter g2: " << g2 << endl;

}
else

cout << "Grid Generator g1 is not a grid point." << endl;

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.28 Parma_Polyhedra_Library::Grid_Generator Class Reference 284

Therefore, for the grid point
Grid_Generator g1 = grid_point(2*x - y + 3*z, 2);

we would obtain the following output:
Grid point g1: p((2*A - B + 3*C)/2)
Parameter g2: parameter((2*A - 2*B + 9*C)/2)

When working with grid points and parameters, be careful not to confuse the notion of coefficient with
the notion of coordinate: these are equivalent only when the divisor is 1.

10.28.2 Member Enumeration Documentation

10.28.2.1 enum Parma_Polyhedra_Library::Grid_Generator::Type

The generator type.

Enumerator:

LINE The generator is a grid line.
PARAMETER The generator is a parameter.
POINT The generator is a grid point.

Reimplemented from Parma_Polyhedra_Library::Generator.

10.28.3 Member Function Documentation

10.28.3.1 Grid_Generator grid_line (const Linear_Expression & e) [inline, static]

Returns the line of direction e.

Shorthand for Grid_Generator Grid_Generator::grid_line(const Linear_Expression& e).

Exceptions

std::invalid_argument Thrown if the homogeneous part of e represents the origin of the vector space.

10.28.3.2 Grid_Generator parameter (const Linear_Expression & e =
Linear_Expression::zero(), Coefficient_traits::const_reference d =
Coefficient_one()) [inline, static]

Returns the parameter of direction e and size e/d.

Shorthand for Grid_Generator Grid_Generator::parameter(const Linear_Expression& e, Coefficient_-
traits::const_reference d).

Both e and d are optional arguments, with default values Linear_Expression::zero() and Coefficient_one(),
respectively.

Exceptions

std::invalid_argument Thrown if d is zero.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.28 Parma_Polyhedra_Library::Grid_Generator Class Reference 285

10.28.3.3 Grid_Generator grid_point (const Linear_Expression & e =
Linear_Expression::zero(), Coefficient_traits::const_reference d =
Coefficient_one()) [inline, static]

Returns the point at e / d.

Shorthand for Grid_Generator Grid_Generator::grid_point(const Linear_Expression& e, Coefficient_-
traits::const_reference d).

Both e and d are optional arguments, with default values Linear_Expression::zero() and Coefficient_one(),
respectively.

Exceptions

std::invalid_argument Thrown if d is zero.

10.28.3.4 Coefficient_traits::const_reference Parma_Polyhedra_Library::Grid_-
Generator::coefficient (Variable v) const [inline]

Returns the coefficient of v in ∗this.

Exceptions

std::invalid_argument Thrown if the index of v is greater than or equal to the space dimension of
∗this.

Reimplemented from Parma_Polyhedra_Library::Generator.

10.28.3.5 Coefficient_traits::const_reference Parma_Polyhedra_Library::Grid_-
Generator::divisor () const [inline]

Returns the divisor of ∗this.

Exceptions

std::invalid_argument Thrown if ∗this is a line.

Reimplemented from Parma_Polyhedra_Library::Generator.

10.28.3.6 bool Parma_Polyhedra_Library::Grid_Generator::is_equivalent_to (const
Grid_Generator & y) const

Returns true if and only if ∗this and y are equivalent generators.

Generators having different space dimensions are not equivalent.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.29 Parma_Polyhedra_Library::Grid_Generator_System Class Reference 286

10.28.3.7 void Parma_Polyhedra_Library::Grid_Generator::coefficient_swap (Grid_Generator
& y)

Swaps ∗this with y, leaving ∗this with the original capacity.

All elements up to and including the last element of the smaller of ∗this and y are swapped. The
parameter divisor element of y is swapped with the divisor element of ∗this.

10.28.4 Friends And Related Function Documentation

10.28.4.1 std::ostream & operator<< (std::ostream & s, const Grid_Generator & g)
[related]

Output operator.

10.28.4.2 void swap (Parma_Polyhedra_Library::Grid_Generator & x,
Parma_Polyhedra_Library::Grid_Generator & y) [related]

Specializes std::swap.

10.28.4.3 bool operator== (const Grid_Generator & x, const Grid_Generator & y)
[related]

Returns true if and only if x is equivalent to y.

10.28.4.4 bool operator!= (const Grid_Generator & x, const Grid_Generator & y)
[related]

Returns true if and only if x is not equivalent to y.

10.28.4.5 std::ostream & operator<< (std::ostream & s, const Grid_Generator::Type & t)
[related]

Output operator.

The documentation for this class was generated from the following file:

• ppl.hh

10.29 Parma_Polyhedra_Library::Grid_Generator_System Class Reference

A system of grid generators.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.29 Parma_Polyhedra_Library::Grid_Generator_System Class Reference 287

#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Generator_System.

Classes

• class const_iterator
An iterator over a system of grid generators.

Public Member Functions

• Grid_Generator_System ()
Default constructor: builds an empty system of generators.

• Grid_Generator_System (const Grid_Generator &g)
Builds the singleton system containing only generator g.

• Grid_Generator_System (dimension_type dim)
Builds an empty system of generators of dimension dim.

• Grid_Generator_System (const Grid_Generator_System &gs)
Ordinary copy constructor.

• ∼Grid_Generator_System ()
Destructor.

• Grid_Generator_System & operator= (const Grid_Generator_System &y)
Assignment operator.

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• void clear ()
Removes all the generators from the generator system and sets its space dimension to 0.

• void insert (const Grid_Generator &g)
Inserts into ∗this a copy of the generator g, increasing the number of space dimensions if needed.

• void recycling_insert (Grid_Generator &g)
Inserts into ∗this the generator g, increasing the number of space dimensions if needed.

• void recycling_insert (Grid_Generator_System &gs)
Inserts into ∗this the generators in gs, increasing the number of space dimensions if needed.

• bool empty () const
Returns true if and only if ∗this has no generators.

• const_iterator begin () const

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.29 Parma_Polyhedra_Library::Grid_Generator_System Class Reference 288

Returns the const_iterator pointing to the first generator, if this is not empty; otherwise, returns the past-
the-end const_iterator.

• const_iterator end () const
Returns the past-the-end const_iterator.

• dimension_type num_rows () const
Returns the number of rows (generators) in the system.

• dimension_type num_parameters () const
Returns the number of parameters in the system.

• dimension_type num_lines () const
Returns the number of lines in the system.

• bool has_points () const
Returns true if and only if ∗this contains one or more points.

• bool is_equal_to (const Grid_Generator_System &y) const
Returns true if ∗this is identical to y.

• bool OK () const
Checks if all the invariants are satisfied.

• void ascii_dump () const
Writes to std::cerr an ASCII representation of ∗this.

• void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of ∗this.

• void print () const
Prints ∗this to std::cerr using operator<<.

• bool ascii_load (std::istream &s)
Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets ∗this
accordingly. Returns true if successful, false otherwise.

• memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• void swap (Grid_Generator_System &y)
Swaps ∗this with y.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.29 Parma_Polyhedra_Library::Grid_Generator_System Class Reference 289

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a Grid_Generator_System can handle.

• static void initialize ()
Initializes the class.

• static void finalize ()
Finalizes the class.

• static const Grid_Generator_System & zero_dim_univ ()
Returns the singleton system containing only Grid_Generator::zero_dim_point().

Friends

• bool operator== (const Grid_Generator_System &x, const Grid_Generator_System &y)
Returns true if and only if x and y are identical.

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &s, const Grid_Generator_System &gs)
Output operator.

• void swap (Parma_Polyhedra_Library::Grid_Generator_System &x, Parma_Polyhedra_-
Library::Grid_Generator_System &y)

Specializes std::swap.

10.29.1 Detailed Description

A system of grid generators. An object of the class Grid_Generator_System is a system of grid generators,
i.e., a multiset of objects of the class Grid_Generator (lines, parameters and points). When inserting gener-
ators in a system, space dimensions are automatically adjusted so that all the generators in the system are
defined on the same vector space. A system of grid generators which is meant to define a non-empty grid
must include at least one point: the reason is that lines and parameters need a supporting point (lines only
specify directions while parameters only specify direction and distance.

In all the examples it is assumed that variables x and y are defined as follows:

Variable x(0);
Variable y(1);

Example 1

The following code defines the line having the same direction as the x axis (i.e., the first Cartesian
axis) in R2:

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.29 Parma_Polyhedra_Library::Grid_Generator_System Class Reference 290

Grid_Generator_System gs;
gs.insert(grid_line(x + 0*y));

As said above, this system of generators corresponds to an empty grid, because the line has no sup-
porting point. To define a system of generators that does correspond to the x axis, we can add the
following code which inserts the origin of the space as a point:

gs.insert(grid_point(0*x + 0*y));

Since space dimensions are automatically adjusted, the following code obtains the same effect:
gs.insert(grid_point(0*x));

In contrast, if we had added the following code, we would have defined a line parallel to the x axis
through the point (0, 1)T ∈ R2.

gs.insert(grid_point(0*x + 1*y));

Example 2

The following code builds a system of generators corresponding to the grid consisting of all the integral
points on the x axes; that is, all points satisfying the congruence relation{

(x, 0)T ∈ R2
∣∣ x (mod 1) 0

}
,

Grid_Generator_System gs;
gs.insert(parameter(x + 0*y));
gs.insert(grid_point(0*x + 0*y));

Example 3

The following code builds a system of generators having three points corresponding to a non-relational
grid consisting of all points whose coordinates are integer multiple of 3.

Grid_Generator_System gs;
gs.insert(grid_point(0*x + 0*y));
gs.insert(grid_point(0*x + 3*y));
gs.insert(grid_point(3*x + 0*y));

Example 4

By using parameters instead of two of the points we can define the same grid as that defined in the
previous example. Note that there has to be at least one point and, for this purpose, any point in the
grid could be considered. Thus the following code builds two identical grids from the grid generator
systems gs and gs1.

Grid_Generator_System gs;
gs.insert(grid_point(0*x + 0*y));
gs.insert(parameter(0*x + 3*y));
gs.insert(parameter(3*x + 0*y));
Grid_Generator_System gs1;
gs1.insert(grid_point(3*x + 3*y));
gs1.insert(parameter(0*x + 3*y));
gs1.insert(parameter(3*x + 0*y));

Example 5

The following code builds a system of generators having one point and a parameter corresponding to
all the integral points that lie on x+ y = 2 in R2

Grid_Generator_System gs;
gs.insert(grid_point(1*x + 1*y));
gs.insert(parameter(1*x - 1*y));

Note

After inserting a multiset of generators in a grid generator system, there are no guarantees that an exact
copy of them can be retrieved: in general, only an equivalent grid generator system will be available,
where original generators may have been reordered, removed (if they are duplicate or redundant), etc.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.29 Parma_Polyhedra_Library::Grid_Generator_System Class Reference 291

10.29.2 Member Function Documentation

10.29.2.1 void Parma_Polyhedra_Library::Grid_Generator_System::insert (const
Grid_Generator & g)

Inserts into ∗this a copy of the generator g, increasing the number of space dimensions if needed.

If g is an all-zero parameter then the only action is to ensure that the space dimension of ∗this is at least
the space dimension of g.

10.29.2.2 bool Parma_Polyhedra_Library::Grid_Generator_System::OK () const

Checks if all the invariants are satisfied.

Returns true if and only if ∗this is a valid Linear_System and each row in the system is a valid Grid_-
Generator.

Reimplemented from Parma_Polyhedra_Library::Generator_System.

10.29.2.3 bool Parma_Polyhedra_Library::Grid_Generator_System::ascii_load (std::istream &
s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets ∗this
accordingly. Returns true if successful, false otherwise.

Resizes the matrix of generators using the numbers of rows and columns read from s, then initializes the
coordinates of each generator and its type reading the contents from s.

Reimplemented from Parma_Polyhedra_Library::Generator_System.

10.29.3 Friends And Related Function Documentation

10.29.3.1 bool operator== (const Grid_Generator_System & x, const Grid_Generator_System
& y) [friend]

Returns true if and only if x and y are identical.

10.29.3.2 std::ostream & operator<< (std::ostream & s, const Grid_Generator_System & gs)
[related]

Output operator.

Writes false if gs is empty. Otherwise, writes on s the generators of gs, all in one row and separated
by ", ".

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.30 Parma_Polyhedra_Library::H79_Certificate Class Reference 292

10.29.3.3 void swap (Parma_Polyhedra_Library::Grid_Generator_System & x,
Parma_Polyhedra_Library::Grid_Generator_System & y) [related]

Specializes std::swap.

The documentation for this class was generated from the following file:

• ppl.hh

10.30 Parma_Polyhedra_Library::H79_Certificate Class Reference

A convergence certificate for the H79 widening operator.

#include <ppl.hh>

Classes

• struct Compare
A total ordering on H79 certificates.

Public Member Functions

• H79_Certificate ()
Default constructor.

• template<typename PH >

H79_Certificate (const PH &ph)
Constructor: computes the certificate for ph.

• H79_Certificate (const Polyhedron &ph)
Constructor: computes the certificate for ph.

• H79_Certificate (const H79_Certificate &y)
Copy constructor.

• ∼H79_Certificate ()
Destructor.

• int compare (const H79_Certificate &y) const
The comparison function for certificates.

• template<typename PH >

int compare (const PH &ph) const
Compares ∗this with the certificate for polyhedron ph.

• int compare (const Polyhedron &ph) const
Compares ∗this with the certificate for polyhedron ph.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.31 Parma_Polyhedra_Library::Interval< Boundary, Info > Class Template Reference 293

10.30.1 Detailed Description

A convergence certificate for the H79 widening operator. Convergence certificates are used to instantiate
the BHZ03 framework so as to define widening operators for the finite powerset domain.

Note

The convergence of the H79 widening can also be certified by BHRZ03_Certificate.

10.30.2 Member Function Documentation

10.30.2.1 int Parma_Polyhedra_Library::H79_Certificate::compare (const H79_Certificate & y
) const

The comparison function for certificates.

Returns

−1, 0 or 1 depending on whether ∗this is smaller than, equal to, or greater than y, respectively.

Compares ∗this with y, using a total ordering which is a refinement of the limited growth ordering
relation for the H79 widening.

The documentation for this class was generated from the following file:

• ppl.hh

10.31 Parma_Polyhedra_Library::Interval< Boundary, Info > Class Template
Reference

A generic, not necessarily closed, possibly restricted interval.

#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Interval_Base.

Public Member Functions

• void swap (Interval &y)
Swaps ∗this with y.

• void topological_closure_assign ()
Assigns to ∗this its topological closure.

• memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• Interval (const char ∗s)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.31 Parma_Polyhedra_Library::Interval< Boundary, Info > Class Template Reference 294

Builds the smallest interval containing the number whose textual representation is contained in s.

• template<typename From >

Enable_If< Is_Singleton< From >::value||Is_Interval< From >::value, I_Result >::type
difference_assign (const From &x)

Assigns to ∗this the smallest interval containing the set-theoretic difference of ∗this and x.

• template<typename From1 , typename From2 >

Enable_If<((Is_Singleton< From1 >::value||Is_Interval< From1 >::value)&&(Is_Singleton<
From2 >::value||Is_Interval< From2 >::value)), I_Result >::type difference_assign (const From1
&x, const From2 &y)

Assigns to ∗this the smallest interval containing the set-theoretic difference of x and y.

• template<typename From >

Enable_If< Is_Singleton< From >::value||Is_Interval< From >::value, I_Result >::type lower_-
approximation_difference_assign (const From &x)

Assigns to ∗this the largest interval contained in the set-theoretic difference of ∗this and x.

• template<typename From >

Enable_If< Is_Interval< From >::value, bool >::type simplify_using_context_assign (const From
&y)

Assigns to ∗this a meet-preserving simplification of ∗this with respect to y.

• template<typename From >

Enable_If< Is_Interval< From>::value, void>::type empty_intersection_assign (const From &y)
Assigns to ∗this an interval having empty intersection with y. The assigned interval should be as large as
possible.

• template<typename From >

Enable_If< Is_Singleton< From >::value||Is_Interval< From >::value, I_Result >::type refine_-
existential (Relation_Symbol rel, const From &x)

Refines to according to the existential relation rel with x.

• template<typename From >

Enable_If< Is_Singleton< From >::value||Is_Interval< From >::value, I_Result >::type refine_-
universal (Relation_Symbol rel, const From &x)

Refines to so that it satisfies the universal relation rel with x.

• template<typename From1 , typename From2 >

Enable_If<((Is_Singleton< From1 >::value||Is_Interval< From1 >::value)&&(Is_Singleton<
From2 >::value||Is_Interval< From2 >::value)), I_Result >::type mul_assign (const From1 &x,
const From2 &y)

• template<typename From1 , typename From2 >

Enable_If<((Is_Singleton< From1 >::value||Is_Interval< From1 >::value)&&(Is_Singleton<
From2 >::value||Is_Interval< From2 >::value)), I_Result >::type div_assign (const From1 &x,
const From2 &y)

Related Functions

(Note that these are not member functions.)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.31 Parma_Polyhedra_Library::Interval< Boundary, Info > Class Template Reference 295

• template<typename Boundary , typename Info >

void swap (Parma_Polyhedra_Library::Interval< Boundary, Info > &x, Parma_Polyhedra_-
Library::Interval< Boundary, Info > &y)

10.31.1 Detailed Description

template<typename Boundary, typename Info> class Parma_Polyhedra_Library::Interval<
Boundary, Info >

A generic, not necessarily closed, possibly restricted interval. The class template type parameter
Boundary represents the type of the interval boundaries, and can be chosen, among other possibilities,
within one of the following number families:

• a bounded precision native integer type (that is, from signed char to long long and from
int8_t to int64_t);

• a bounded precision floating point type (float, double or long double);

• an unbounded integer or rational type, as provided by the C++ interface of GMP (mpz_class or
mpq_class).

The class template type parameter Info allows to control a number of features of the class, among which:

• the ability to support open as well as closed boundaries;

• the ability to represent empty intervals in addition to nonempty ones;

• the ability to represent intervals of extended number families that contain positive and negative in-
finities;

• the ability to support (independently from the type of the boundaries) plain intervals of real numbers
and intervals subject to generic restrictions (e.g., intervals of integer numbers).

10.31.2 Member Function Documentation

10.31.2.1 template<typename Boundary , typename Info > template<typename From > Enable_-
If< Is_Interval< From >::value, bool >::type Parma_Polyhedra_Library::Interval<
Boundary, Info >::simplify_using_context_assign (const From & y)

Assigns to ∗this a meet-preserving simplification of ∗this with respect to y.

Returns

false if and only if the meet of ∗this and y is empty.

10.31.2.2 template<typename Boundary , typename Info > template<typename From > Enable_-
If< Is_Interval< From >::value, void >::type Parma_Polyhedra_Library::Interval<
Boundary, Info >::empty_intersection_assign (const From & y)

Assigns to ∗this an interval having empty intersection with y. The assigned interval should be as large
as possible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.31 Parma_Polyhedra_Library::Interval< Boundary, Info > Class Template Reference 296

Note

Depending on interval restrictions, there could be many maximal intervals all inconsistent with respect
to y.

10.31.2.3 template<typename To_Boundary , typename To_Info > template<typename
From > Enable_If< Is_Singleton< From >::value||Is_Interval< From >::value,
I_Result >::type Parma_Polyhedra_Library::Interval< To_Boundary, To_Info
>::refine_existential (Relation_Symbol rel, const From & x) [inline]

Refines to according to the existential relation rel with x.

The to interval is restricted to become, upon successful exit, the smallest interval of its type that contains
the set

{ a ∈ to | ∃b ∈ x . a rel b }.

Returns

???

10.31.2.4 template<typename To_Boundary , typename To_Info > template<typename
From > Enable_If< Is_Singleton< From >::value||Is_Interval< From >::value,
I_Result >::type Parma_Polyhedra_Library::Interval< To_Boundary, To_Info
>::refine_universal (Relation_Symbol rel, const From & x) [inline]

Refines to so that it satisfies the universal relation rel with x.

The to interval is restricted to become, upon successful exit, the smallest interval of its type that contains
the set

{ a ∈ to | ∀b ∈ x : a rel b }.

Returns

???

10.31.2.5 template<typename To_Boundary , typename To_Info > template<typename From1 ,
typename From2 > Enable_If<((Is_Singleton< From1 >::value||Is_Interval< From1
>::value)&&(Is_Singleton< From2 >::value||Is_Interval< From2 >::value)), I_Result
>::type Parma_Polyhedra_Library::Interval< To_Boundary, To_Info >::mul_assign (
const From1 & x, const From2 & y) [inline]

+---------+-----------+-----------+-----------------+ | ∗ | yl > 0 | yu < 0 | yl < 0, yu > 0 | +-----
----+-----------+-----------+-----------------+ | xl > 0 |xl∗yl,xu∗yu|xu∗yl,xl∗yu| xu∗yl,xu∗yu | +---------+-----
------+-----------+-----------------+ | xu < 0 |xl∗yu,xu∗yl|xu∗yu,xl∗yl| xl∗yu,xl∗yl | +---------+-----------+---
--------+-----------------+ |xl<0 xu>0|xl∗yu,xu∗yu|xu∗yl,xl∗yl|min(xl∗yu,xu∗yl),| | | | |max(xl∗yl,xu∗yu) |
+---------+-----------+-----------+-----------------+

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.32 Parma_Polyhedra_Library::Is_Checked< T > Struct Template Reference 297

10.31.2.6 template<typename To_Boundary , typename To_Info > template<typename From1 ,
typename From2 > Enable_If<((Is_Singleton< From1 >::value||Is_Interval< From1
>::value)&&(Is_Singleton< From2 >::value||Is_Interval< From2 >::value)), I_Result
>::type Parma_Polyhedra_Library::Interval< To_Boundary, To_Info >::div_assign (
const From1 & x, const From2 & y) [inline]

+-----------+-----------+-----------+ | / | yu < 0 | yl > 0 | +-----------+-----------+-----------+
| xu<=0 |xu/yl,xl/yu|xl/yl,xu/yu| +-----------+-----------+-----------+ |xl<=0 xu>=0|xu/yu,xl/yu|xl/yl,xu/yl|
+-----------+-----------+-----------+ | xl>=0 |xu/yu,xl/yl|xl/yu,xu/yl| +-----------+-----------+-----------+

10.31.3 Friends And Related Function Documentation

10.31.3.1 template<typename Boundary , typename Info > void swap (Parma_Polyhedra_-
Library::Interval< Boundary, Info > & x, Parma_Polyhedra_Library::Interval<
Boundary, Info > & y) [related]

The documentation for this class was generated from the following file:

• ppl.hh

10.32 Parma_Polyhedra_Library::Is_Checked< T > Struct Template Reference

Inherits Parma_Polyhedra_Library::False.

10.32.1 Detailed Description

template<typename T> struct Parma_Polyhedra_Library::Is_Checked< T >

The documentation for this struct was generated from the following file:

• ppl.hh

10.33 Parma_Polyhedra_Library::Is_Checked< Checked_Number< T, P > >
Struct Template Reference

Inherits Parma_Polyhedra_Library::True.

10.33.1 Detailed Description

template<typename T, typename P> struct Parma_Polyhedra_Library::Is_Checked< Checked_-
Number< T, P > >

The documentation for this struct was generated from the following file:

• ppl.hh

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.34 Parma_Polyhedra_Library::Is_Native_Or_Checked< T > Struct Template Reference 298

10.34 Parma_Polyhedra_Library::Is_Native_Or_Checked< T > Struct Template
Reference

Inherits Parma_Polyhedra_Library::Bool< Is_Native< T >::value||Is_Checked< T >::value >.

Inherited by Parma_Polyhedra_Library::Is_Singleton< T, Enable >.

10.34.1 Detailed Description

template<typename T> struct Parma_Polyhedra_Library::Is_Native_Or_Checked< T >

The documentation for this struct was generated from the following file:

• ppl.hh

10.35 Parma_Polyhedra_Library::Linear_Expression Class Reference

A linear expression.

#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Linear_Row.

Inherited by Parma_Polyhedra_Library::PIP_Tree_Node::Artificial_Parameter.

Public Member Functions

• Linear_Expression ()
Default constructor: returns a copy of Linear_Expression::zero().

• Linear_Expression (const Linear_Expression &e)
Ordinary copy constructor.

• ∼Linear_Expression ()
Destructor.

• Linear_Expression (Coefficient_traits::const_reference n)
Builds the linear expression corresponding to the inhomogeneous term n.

• Linear_Expression (Variable v)
Builds the linear expression corresponding to the variable v.

• Linear_Expression (const Constraint &c)
Builds the linear expression corresponding to constraint c.

• Linear_Expression (const Generator &g)
Builds the linear expression corresponding to generator g (for points and closure points, the divisor is not
copied).

• Linear_Expression (const Grid_Generator &g)
Builds the linear expression corresponding to grid generator g (for points, parameters and lines the divisor
is not copied).

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.35 Parma_Polyhedra_Library::Linear_Expression Class Reference 299

• Linear_Expression (const Congruence &cg)
Builds the linear expression corresponding to congruence cg.

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• Coefficient_traits::const_reference coefficient (Variable v) const
Returns the coefficient of v in ∗this.

• Coefficient_traits::const_reference inhomogeneous_term () const
Returns the inhomogeneous term of ∗this.

• bool is_zero () const
Returns true if and only if ∗this is 0.

• bool all_homogeneous_terms_are_zero () const
Returns true if and only if all the homogeneous terms of ∗this are 0.

• memory_size_type total_memory_in_bytes () const
Returns a lower bound to the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• void ascii_dump () const
Writes to std::cerr an ASCII representation of ∗this.

• void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of ∗this.

• void print () const
Prints ∗this to std::cerr using operator<<.

• bool ascii_load (std::istream &s)
Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets ∗this
accordingly. Returns true if successful, false otherwise.

• bool OK () const
Checks if all the invariants are satisfied.

• void swap (Linear_Expression &y)
Swaps ∗this with y.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a Linear_Expression can handle.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.35 Parma_Polyhedra_Library::Linear_Expression Class Reference 300

• static void initialize ()
Initializes the class.

• static void finalize ()
Finalizes the class.

• static const Linear_Expression & zero ()
Returns the (zero-dimension space) constant 0.

Friends

• Linear_Expression operator+ (const Linear_Expression &e1, const Linear_Expression &e2)
Returns the linear expression e1 + e2.

• Linear_Expression operator+ (Coefficient_traits::const_reference n, const Linear_Expression &e)
Returns the linear expression n + e.

• Linear_Expression operator+ (const Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the linear expression e + n.

• Linear_Expression operator+ (Variable v, const Linear_Expression &e)
Returns the linear expression v + e.

• Linear_Expression operator+ (Variable v, Variable w)
Returns the linear expression v + w.

• Linear_Expression operator- (const Linear_Expression &e)
Returns the linear expression - e.

• Linear_Expression operator- (const Linear_Expression &e1, const Linear_Expression &e2)
Returns the linear expression e1 - e2.

• Linear_Expression operator- (Variable v, Variable w)
Returns the linear expression v - w.

• Linear_Expression operator- (Coefficient_traits::const_reference n, const Linear_Expression &e)
Returns the linear expression n - e.

• Linear_Expression operator- (const Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the linear expression e - n.

• Linear_Expression operator- (Variable v, const Linear_Expression &e)
Returns the linear expression v - e.

• Linear_Expression operator- (const Linear_Expression &e, Variable v)
Returns the linear expression e - v.

• Linear_Expression operator∗ (Coefficient_traits::const_reference n, const Linear_Expression &e)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.35 Parma_Polyhedra_Library::Linear_Expression Class Reference 301

Returns the linear expression n ∗ e.

• Linear_Expression operator∗ (const Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the linear expression e ∗ n.

• Linear_Expression & operator+= (Linear_Expression &e1, const Linear_Expression &e2)
Returns the linear expression e1 + e2 and assigns it to e1.

• Linear_Expression & operator+= (Linear_Expression &e, Variable v)
Returns the linear expression e + v and assigns it to e.

• Linear_Expression & operator+= (Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the linear expression e + n and assigns it to e.

• Linear_Expression & operator-= (Linear_Expression &e1, const Linear_Expression &e2)
Returns the linear expression e1 - e2 and assigns it to e1.

• Linear_Expression & operator-= (Linear_Expression &e, Variable v)
Returns the linear expression e - v and assigns it to e.

• Linear_Expression & operator-= (Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the linear expression e - n and assigns it to e.

• Linear_Expression & operator∗= (Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the linear expression n ∗ e and assigns it to e.

• Linear_Expression & add_mul_assign (Linear_Expression &e, Coefficient_traits::const_reference n,
Variable v)

Returns the linear expression e + n ∗ v and assigns it to e.

• Linear_Expression & sub_mul_assign (Linear_Expression &e, Coefficient_traits::const_reference n,
Variable v)

Returns the linear expression e - n ∗ v and assigns it to e.

Related Functions

(Note that these are not member functions.)

• Linear_Expression operator+ (const Linear_Expression &e, Variable v)
Returns the linear expression e + v.

• Linear_Expression operator+ (const Linear_Expression &e)
Returns the linear expression e.

• std::ostream & operator<< (std::ostream &s, const Linear_Expression &e)
Output operator.

• void swap (Parma_Polyhedra_Library::Linear_Expression &x, Parma_Polyhedra_Library::Linear_-
Expression &y)

Specializes std::swap.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.35 Parma_Polyhedra_Library::Linear_Expression Class Reference 302

10.35.1 Detailed Description

A linear expression. An object of the class Linear_Expression represents the linear expression

n−1∑
i=0

aixi + b

where n is the dimension of the vector space, each ai is the integer coefficient of the i-th variable xi and b
is the integer for the inhomogeneous term.

How to build a linear expression.

Linear expressions are the basic blocks for defining both constraints (i.e., linear equalities or inequalities)
and generators (i.e., lines, rays, points and closure points). A full set of functions is defined to provide a
convenient interface for building complex linear expressions starting from simpler ones and from objects
of the classes Variable and Coefficient: available operators include unary negation, binary addition and
subtraction, as well as multiplication by a Coefficient. The space dimension of a linear expression is defined
as the maximum space dimension of the arguments used to build it: in particular, the space dimension of a
Variable x is defined as x.id()+1, whereas all the objects of the class Coefficient have space dimension
zero.

Example

The following code builds the linear expression 4x− 2y − z + 14, having space dimension 3:

Linear_Expression e = 4*x - 2*y - z + 14;

Another way to build the same linear expression is:

Linear_Expression e1 = 4*x;
Linear_Expression e2 = 2*y;
Linear_Expression e3 = z;
Linear_Expression e = Linear_Expression(14);
e += e1 - e2 - e3;

Note that e1, e2 and e3 have space dimension 1, 2 and 3, respectively; also, in the fourth line of code,
e is created with space dimension zero and then extended to space dimension 3 in the fifth line.

10.35.2 Constructor & Destructor Documentation

10.35.2.1 Parma_Polyhedra_Library::Linear_Expression::Linear_Expression (Variable v)

Builds the linear expression corresponding to the variable v.

Exceptions

std::length_error Thrown if the space dimension of v exceeds Linear_Expression::max_-
space_dimension().

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.35 Parma_Polyhedra_Library::Linear_Expression Class Reference 303

10.35.2.2 Parma_Polyhedra_Library::Linear_Expression::Linear_Expression (const Constraint
& c) [explicit]

Builds the linear expression corresponding to constraint c.

Given the constraint c =
(∑n−1

i=0 aixi + b ./ 0
)
, where ./ ∈ {=,≥, >}, this builds the linear expression∑n−1

i=0 aixi + b. If c is an inequality (resp., equality) constraint, then the built linear expression is unique
up to a positive (resp., non-zero) factor.

10.35.2.3 Parma_Polyhedra_Library::Linear_Expression::Linear_Expression (const Generator
& g) [explicit]

Builds the linear expression corresponding to generator g (for points and closure points, the divisor is not
copied).

Given the generator g = (a0
d , . . . ,

an−1
d)T (where, for lines and rays, we have d = 1), this builds the linear

expression
∑n−1
i=0 aixi. The inhomogeneous term of the linear expression will always be 0. If g is a ray,

point or closure point (resp., a line), then the linear expression is unique up to a positive (resp., non-zero)
factor.

10.35.2.4 Parma_Polyhedra_Library::Linear_Expression::Linear_Expression (const
Grid_Generator & g) [explicit]

Builds the linear expression corresponding to grid generator g (for points, parameters and lines the divisor
is not copied).

Given the grid generator g = (a0
d , . . . ,

an−1
d)T this builds the linear expression

∑n−1
i=0 aixi. The inhomo-

geneous term of the linear expression is always 0.

10.35.2.5 Parma_Polyhedra_Library::Linear_Expression::Linear_Expression (const
Congruence & cg) [explicit]

Builds the linear expression corresponding to congruence cg.

Given the congruence cg =
(∑n−1

i=0 aixi+b = 0 (mod m)
)
, this builds the linear expression

∑n−1
i=0 aixi+

b.

10.35.3 Friends And Related Function Documentation

10.35.3.1 Linear_Expression operator+ (const Linear_Expression & e1, const
Linear_Expression & e2) [friend]

Returns the linear expression e1 + e2.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.35 Parma_Polyhedra_Library::Linear_Expression Class Reference 304

10.35.3.2 Linear_Expression operator+ (Coefficient_traits::const_reference n, const
Linear_Expression & e) [friend]

Returns the linear expression n + e.

10.35.3.3 Linear_Expression operator+ (const Linear_Expression & e,
Coefficient_traits::const_reference n) [friend]

Returns the linear expression e + n.

10.35.3.4 Linear_Expression operator+ (Variable v, const Linear_Expression & e)
[friend]

Returns the linear expression v + e.

10.35.3.5 Linear_Expression operator+ (Variable v, Variable w) [friend]

Returns the linear expression v + w.

10.35.3.6 Linear_Expression operator- (const Linear_Expression & e) [friend]

Returns the linear expression - e.

10.35.3.7 Linear_Expression operator- (const Linear_Expression & e1, const Linear_Expression
& e2) [friend]

Returns the linear expression e1 - e2.

10.35.3.8 Linear_Expression operator- (Variable v, Variable w) [friend]

Returns the linear expression v - w.

10.35.3.9 Linear_Expression operator- (Coefficient_traits::const_reference n, const
Linear_Expression & e) [friend]

Returns the linear expression n - e.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.35 Parma_Polyhedra_Library::Linear_Expression Class Reference 305

10.35.3.10 Linear_Expression operator- (const Linear_Expression & e,
Coefficient_traits::const_reference n) [friend]

Returns the linear expression e - n.

10.35.3.11 Linear_Expression operator- (Variable v, const Linear_Expression & e)
[friend]

Returns the linear expression v - e.

10.35.3.12 Linear_Expression operator- (const Linear_Expression & e, Variable v)
[friend]

Returns the linear expression e - v.

10.35.3.13 Linear_Expression operator∗ (Coefficient_traits::const_reference n, const
Linear_Expression & e) [friend]

Returns the linear expression n ∗ e.

10.35.3.14 Linear_Expression operator∗ (const Linear_Expression & e,
Coefficient_traits::const_reference n) [friend]

Returns the linear expression e ∗ n.

10.35.3.15 Linear_Expression & operator+= (Linear_Expression & e1, const Linear_Expression
& e2) [friend]

Returns the linear expression e1 + e2 and assigns it to e1.

10.35.3.16 Linear_Expression & operator+= (Linear_Expression & e, Variable v) [friend]

Returns the linear expression e + v and assigns it to e.

Exceptions

std::length_error Thrown if the space dimension of v exceeds Linear_Expression::max_-
space_dimension().

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.35 Parma_Polyhedra_Library::Linear_Expression Class Reference 306

10.35.3.17 Linear_Expression & operator+= (Linear_Expression & e,
Coefficient_traits::const_reference n) [friend]

Returns the linear expression e + n and assigns it to e.

10.35.3.18 Linear_Expression & operator-= (Linear_Expression & e1, const Linear_Expression
& e2) [friend]

Returns the linear expression e1 - e2 and assigns it to e1.

10.35.3.19 Linear_Expression & operator-= (Linear_Expression & e, Variable v) [friend]

Returns the linear expression e - v and assigns it to e.

Exceptions

std::length_error Thrown if the space dimension of v exceeds Linear_Expression::max_-
space_dimension().

10.35.3.20 Linear_Expression & operator-= (Linear_Expression & e,
Coefficient_traits::const_reference n) [friend]

Returns the linear expression e - n and assigns it to e.

10.35.3.21 Linear_Expression & operator∗= (Linear_Expression & e,
Coefficient_traits::const_reference n) [friend]

Returns the linear expression n ∗ e and assigns it to e.

10.35.3.22 Linear_Expression & add_mul_assign (Linear_Expression & e,
Coefficient_traits::const_reference n, Variable v) [friend]

Returns the linear expression e + n ∗ v and assigns it to e.

10.35.3.23 Linear_Expression & sub_mul_assign (Linear_Expression & e,
Coefficient_traits::const_reference n, Variable v) [friend]

Returns the linear expression e - n ∗ v and assigns it to e.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.36 Parma_Polyhedra_Library::MIP_Problem Class Reference 307

10.35.3.24 Linear_Expression operator+ (const Linear_Expression & e, Variable v)
[related]

Returns the linear expression e + v.

10.35.3.25 Linear_Expression operator+ (const Linear_Expression & e) [related]

Returns the linear expression e.

10.35.3.26 std::ostream & operator<< (std::ostream & s, const Linear_Expression & e)
[related]

Output operator.

10.35.3.27 void swap (Parma_Polyhedra_Library::Linear_Expression & x,
Parma_Polyhedra_Library::Linear_Expression & y) [related]

Specializes std::swap.

The documentation for this class was generated from the following file:

• ppl.hh

10.36 Parma_Polyhedra_Library::MIP_Problem Class Reference

A Mixed Integer (linear) Programming problem.

#include <ppl.hh>

Public Types

• enum Control_Parameter_Name { PRICING }
Names of MIP problems’ control parameters.

• enum Control_Parameter_Value { PRICING_STEEPEST_EDGE_FLOAT, PRICING_-
STEEPEST_EDGE_EXACT, PRICING_TEXTBOOK }

Possible values for MIP problem’s control parameters.

• typedef Constraint_Sequence::const_iterator const_iterator
A type alias for the read-only iterator on the constraints defining the feasible region.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.36 Parma_Polyhedra_Library::MIP_Problem Class Reference 308

Public Member Functions

• MIP_Problem (dimension_type dim=0)
Builds a trivial MIP problem.

• template<typename In >

MIP_Problem (dimension_type dim, In first, In last, const Variables_Set &int_vars, const Linear_-
Expression &obj=Linear_Expression::zero(), Optimization_Mode mode=MAXIMIZATION)

Builds an MIP problem having space dimension dim from the sequence of constraints in the range
[first, last), the objective function obj and optimization mode mode; those dimensions whose indices
occur in int_vars are constrained to take an integer value.

• template<typename In >

MIP_Problem (dimension_type dim, In first, In last, const Linear_Expression &obj=Linear_-
Expression::zero(), Optimization_Mode mode=MAXIMIZATION)

Builds an MIP problem having space dimension dim from the sequence of constraints in the range
[first, last), the objective function obj and optimization mode mode.

• MIP_Problem (dimension_type dim, const Constraint_System &cs, const Linear_Expression
&obj=Linear_Expression::zero(), Optimization_Mode mode=MAXIMIZATION)

Builds an MIP problem having space dimension dim from the constraint system cs, the objective function
obj and optimization mode mode.

• MIP_Problem (const MIP_Problem &y)
Ordinary copy constructor.

• ∼MIP_Problem ()
Destructor.

• MIP_Problem & operator= (const MIP_Problem &y)
Assignment operator.

• dimension_type space_dimension () const
Returns the space dimension of the MIP problem.

• const Variables_Set & integer_space_dimensions () const
Returns a set containing all the variables’ indexes constrained to be integral.

• const_iterator constraints_begin () const
Returns a read-only iterator to the first constraint defining the feasible region.

• const_iterator constraints_end () const
Returns a past-the-end read-only iterator to the sequence of constraints defining the feasible region.

• const Linear_Expression & objective_function () const
Returns the objective function.

• Optimization_Mode optimization_mode () const
Returns the optimization mode.

• void clear ()

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.36 Parma_Polyhedra_Library::MIP_Problem Class Reference 309

Resets ∗this to be equal to the trivial MIP problem.

• void add_space_dimensions_and_embed (dimension_type m)
Adds m new space dimensions and embeds the old MIP problem in the new vector space.

• void add_to_integer_space_dimensions (const Variables_Set &i_vars)
Sets the variables whose indexes are in set i_vars to be integer space dimensions.

• void add_constraint (const Constraint &c)
Adds a copy of constraint c to the MIP problem.

• void add_constraints (const Constraint_System &cs)
Adds a copy of the constraints in cs to the MIP problem.

• void set_objective_function (const Linear_Expression &obj)
Sets the objective function to obj.

• void set_optimization_mode (Optimization_Mode mode)
Sets the optimization mode to mode.

• bool is_satisfiable () const
Checks satisfiability of ∗this.

• MIP_Problem_Status solve () const
Optimizes the MIP problem.

• void evaluate_objective_function (const Generator &evaluating_point, Coefficient &num, Coeffi-
cient &den) const

Sets num and den so that num
den

is the result of evaluating the objective function on evaluating_point.

• const Generator & feasible_point () const
Returns a feasible point for ∗this, if it exists.

• const Generator & optimizing_point () const
Returns an optimal point for ∗this, if it exists.

• void optimal_value (Coefficient &num, Coefficient &den) const
Sets num and den so that num

den
is the solution of the optimization problem.

• bool OK () const
Checks if all the invariants are satisfied.

• void ascii_dump () const
Writes to std::cerr an ASCII representation of ∗this.

• void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of ∗this.

• void print () const
Prints ∗this to std::cerr using operator<<.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.36 Parma_Polyhedra_Library::MIP_Problem Class Reference 310

• bool ascii_load (std::istream &s)
Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets ∗this
accordingly. Returns true if successful, false otherwise.

• memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• void swap (MIP_Problem &y)
Swaps ∗this with y.

• Control_Parameter_Value get_control_parameter (Control_Parameter_Name name) const
Returns the value of the control parameter name.

• void set_control_parameter (Control_Parameter_Value value)
Sets control parameter value.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension an MIP_Problem can handle.

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &s, const MIP_Problem &lp)
Output operator.

• void swap (Parma_Polyhedra_Library::MIP_Problem &x, Parma_Polyhedra_Library::MIP_-
Problem &y)

Specializes std::swap.

10.36.1 Detailed Description

A Mixed Integer (linear) Programming problem. An object of this class encodes a mixed integer (linear)
programming problem. The MIP problem is specified by providing:

• the dimension of the vector space;

• the feasible region, by means of a finite set of linear equality and non-strict inequality constraints;

• the subset of the unknown variables that range over the integers (the other variables implicitly ranging
over the reals);

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.36 Parma_Polyhedra_Library::MIP_Problem Class Reference 311

• the objective function, described by a Linear_Expression;

• the optimization mode (either maximization or minimization).

The class provides support for the (incremental) solution of the MIP problem based on variations of the
revised simplex method and on branch-and-bound techniques. The result of the resolution process is ex-
pressed in terms of an enumeration, encoding the feasibility and the unboundedness of the optimization
problem. The class supports simple feasibility tests (i.e., no optimization), as well as the extraction of an
optimal (resp., feasible) point, provided the MIP_Problem is optimizable (resp., feasible).

By exploiting the incremental nature of the solver, it is possible to reuse part of the computational work
already done when solving variants of a given MIP_Problem: currently, incremental resolution supports the
addition of space dimensions, the addition of constraints, the change of objective function and the change
of optimization mode.

10.36.2 Member Enumeration Documentation

10.36.2.1 enum Parma_Polyhedra_Library::MIP_Problem::Control_Parameter_Name

Names of MIP problems’ control parameters.

Enumerator:

PRICING The pricing rule.

10.36.2.2 enum Parma_Polyhedra_Library::MIP_Problem::Control_Parameter_Value

Possible values for MIP problem’s control parameters.

Enumerator:

PRICING_STEEPEST_EDGE_FLOAT Steepest edge pricing method, using floating points (de-
fault).

PRICING_STEEPEST_EDGE_EXACT Steepest edge pricing method, using Coefficient.

PRICING_TEXTBOOK Textbook pricing method.

10.36.3 Constructor & Destructor Documentation

10.36.3.1 Parma_Polyhedra_Library::MIP_Problem::MIP_Problem (dimension_type dim = 0)
[explicit]

Builds a trivial MIP problem.

A trivial MIP problem requires to maximize the objective function 0 on a vector space under no constraints
at all: the origin of the vector space is an optimal solution.

Parameters

dim The dimension of the vector space enclosing ∗this (optional argument with default value 0).

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.36 Parma_Polyhedra_Library::MIP_Problem Class Reference 312

Exceptions

std::length_error Thrown if dim exceeds max_space_dimension().

10.36.3.2 template<typename In > Parma_Polyhedra_Library::MIP_Problem::MIP_Problem
(dimension_type dim, In first, In last, const Variables_Set & int_vars, const
Linear_Expression & obj = Linear_Expression::zero(), Optimization_Mode
mode = MAXIMIZATION)

Builds an MIP problem having space dimension dim from the sequence of constraints in the range
[first, last), the objective function obj and optimization mode mode; those dimensions whose indices
occur in int_vars are constrained to take an integer value.

Parameters

dim The dimension of the vector space enclosing ∗this.

first An input iterator to the start of the sequence of constraints.

last A past-the-end input iterator to the sequence of constraints.

int_vars The set of variables’ indexes that are constrained to take integer values.

obj The objective function (optional argument with default value 0).

mode The optimization mode (optional argument with default value MAXIMIZATION).

Exceptions

std::length_error Thrown if dim exceeds max_space_dimension().

std::invalid_argument Thrown if a constraint in the sequence is a strict inequality, if the space di-
mension of a constraint (resp., of the objective function or of the integer variables) or the space
dimension of the integer variable set is strictly greater than dim.

10.36.3.3 template<typename In > Parma_Polyhedra_Library::MIP_Problem::MIP_Problem
(dimension_type dim, In first, In last, const Linear_Expression & obj =
Linear_Expression::zero(), Optimization_Mode mode = MAXIMIZATION)

Builds an MIP problem having space dimension dim from the sequence of constraints in the range
[first, last), the objective function obj and optimization mode mode.

Parameters

dim The dimension of the vector space enclosing ∗this.

first An input iterator to the start of the sequence of constraints.

last A past-the-end input iterator to the sequence of constraints.

obj The objective function (optional argument with default value 0).

mode The optimization mode (optional argument with default value MAXIMIZATION).

Exceptions

std::length_error Thrown if dim exceeds max_space_dimension().

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.36 Parma_Polyhedra_Library::MIP_Problem Class Reference 313

std::invalid_argument Thrown if a constraint in the sequence is a strict inequality or if the space
dimension of a constraint (resp., of the objective function or of the integer variables) is strictly
greater than dim.

10.36.3.4 Parma_Polyhedra_Library::MIP_Problem::MIP_Problem (dimension_type
dim, const Constraint_System & cs, const Linear_Expression & obj =
Linear_Expression::zero(), Optimization_Mode mode = MAXIMIZATION)

Builds an MIP problem having space dimension dim from the constraint system cs, the objective function
obj and optimization mode mode.

Parameters

dim The dimension of the vector space enclosing ∗this.

cs The constraint system defining the feasible region.

obj The objective function (optional argument with default value 0).

mode The optimization mode (optional argument with default value MAXIMIZATION).

Exceptions

std::length_error Thrown if dim exceeds max_space_dimension().

std::invalid_argument Thrown if the constraint system contains any strict inequality or if the space
dimension of the constraint system (resp., the objective function) is strictly greater than dim.

10.36.4 Member Function Documentation

10.36.4.1 void Parma_Polyhedra_Library::MIP_Problem::clear () [inline]

Resets ∗this to be equal to the trivial MIP problem.

The space dimension is reset to 0.

10.36.4.2 void Parma_Polyhedra_Library::MIP_Problem::add_space_dimensions_and_embed (
dimension_type m)

Adds m new space dimensions and embeds the old MIP problem in the new vector space.

Parameters

m The number of dimensions to add.

Exceptions

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension().

The new space dimensions will be those having the highest indexes in the new MIP problem; they are
initially unconstrained.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.36 Parma_Polyhedra_Library::MIP_Problem Class Reference 314

10.36.4.3 void Parma_Polyhedra_Library::MIP_Problem::add_to_integer_space_dimensions (
const Variables_Set & i_vars)

Sets the variables whose indexes are in set i_vars to be integer space dimensions.

Exceptions

std::invalid_argument Thrown if some index in i_vars does not correspond to a space dimension
in ∗this.

10.36.4.4 void Parma_Polyhedra_Library::MIP_Problem::add_constraint (const Constraint & c
)

Adds a copy of constraint c to the MIP problem.

Exceptions

std::invalid_argument Thrown if the constraint c is a strict inequality or if its space dimension is
strictly greater than the space dimension of ∗this.

10.36.4.5 void Parma_Polyhedra_Library::MIP_Problem::add_constraints (const
Constraint_System & cs)

Adds a copy of the constraints in cs to the MIP problem.

Exceptions

std::invalid_argument Thrown if the constraint system cs contains any strict inequality or if its space
dimension is strictly greater than the space dimension of ∗this.

10.36.4.6 void Parma_Polyhedra_Library::MIP_Problem::set_objective_function (const
Linear_Expression & obj)

Sets the objective function to obj.

Exceptions

std::invalid_argument Thrown if the space dimension of obj is strictly greater than the space dimen-
sion of ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.36 Parma_Polyhedra_Library::MIP_Problem Class Reference 315

10.36.4.7 bool Parma_Polyhedra_Library::MIP_Problem::is_satisfiable () const

Checks satisfiability of ∗this.

Returns

true if and only if the MIP problem is satisfiable.

10.36.4.8 MIP_Problem_Status Parma_Polyhedra_Library::MIP_Problem::solve () const

Optimizes the MIP problem.

Returns

An MIP_Problem_Status flag indicating the outcome of the optimization attempt (unfeasible, un-
bounded or optimized problem).

10.36.4.9 void Parma_Polyhedra_Library::MIP_Problem::evaluate_objective_function (const
Generator & evaluating_point, Coefficient & num, Coefficient & den) const

Sets num and den so that numden is the result of evaluating the objective function on evaluating_point.

Parameters

evaluating_point The point on which the objective function will be evaluated.

num On exit will contain the numerator of the evaluated value.

den On exit will contain the denominator of the evaluated value.

Exceptions

std::invalid_argument Thrown if ∗this and evaluating_point are dimension-incompatible or
if the generator evaluating_point is not a point.

10.36.4.10 const Generator& Parma_Polyhedra_Library::MIP_Problem::feasible_point ()
const

Returns a feasible point for ∗this, if it exists.

Exceptions

std::domain_error Thrown if the MIP problem is not satisfiable.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.37 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 316

10.36.4.11 const Generator& Parma_Polyhedra_Library::MIP_Problem::optimizing_point ()
const

Returns an optimal point for ∗this, if it exists.

Exceptions

std::domain_error Thrown if ∗this doesn’t not have an optimizing point, i.e., if the MIP problem is
unbounded or not satisfiable.

10.36.4.12 void Parma_Polyhedra_Library::MIP_Problem::optimal_value (Coefficient & num,
Coefficient & den) const [inline]

Sets num and den so that numden is the solution of the optimization problem.

Exceptions

std::domain_error Thrown if ∗this doesn’t not have an optimizing point, i.e., if the MIP problem is
unbounded or not satisfiable.

10.36.5 Friends And Related Function Documentation

10.36.5.1 std::ostream & operator<< (std::ostream & s, const MIP_Problem & lp)
[related]

Output operator.

10.36.5.2 void swap (Parma_Polyhedra_Library::MIP_Problem & x,
Parma_Polyhedra_Library::MIP_Problem & y) [related]

Specializes std::swap.

The documentation for this class was generated from the following file:

• ppl.hh

10.37 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference

A not necessarily closed convex polyhedron.

#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.37 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 317

Public Member Functions

• NNC_Polyhedron (dimension_type num_dimensions=0, Degenerate_Element kind=UNIVERSE)
Builds either the universe or the empty NNC polyhedron.

• NNC_Polyhedron (const Constraint_System &cs)
Builds an NNC polyhedron from a system of constraints.

• NNC_Polyhedron (Constraint_System &cs, Recycle_Input dummy)
Builds an NNC polyhedron recycling a system of constraints.

• NNC_Polyhedron (const Generator_System &gs)
Builds an NNC polyhedron from a system of generators.

• NNC_Polyhedron (Generator_System &gs, Recycle_Input dummy)
Builds an NNC polyhedron recycling a system of generators.

• NNC_Polyhedron (const Congruence_System &cgs)
Builds an NNC polyhedron from a system of congruences.

• NNC_Polyhedron (Congruence_System &cgs, Recycle_Input dummy)
Builds an NNC polyhedron recycling a system of congruences.

• NNC_Polyhedron (const C_Polyhedron &y, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds an NNC polyhedron from the C polyhedron y.

• template<typename Interval >

NNC_Polyhedron (const Box< Interval > &box, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds an NNC polyhedron out of a box.

• NNC_Polyhedron (const Grid &grid, Complexity_Class complexity=ANY_COMPLEXITY)
Builds an NNC polyhedron out of a grid.

• template<typename U >

NNC_Polyhedron (const BD_Shape< U > &bd, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a NNC polyhedron out of a BD shape.

• template<typename U >

NNC_Polyhedron (const Octagonal_Shape< U > &os, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a NNC polyhedron out of an octagonal shape.

• NNC_Polyhedron (const NNC_Polyhedron &y, Complexity_Class complexity=ANY_-
COMPLEXITY)

Ordinary copy constructor.

• NNC_Polyhedron & operator= (const NNC_Polyhedron &y)
The assignment operator. (∗this and y can be dimension-incompatible.).

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.37 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 318

• NNC_Polyhedron & operator= (const C_Polyhedron &y)
Assigns to ∗this the C polyhedron y.

• ∼NNC_Polyhedron ()
Destructor.

• bool poly_hull_assign_if_exact (const NNC_Polyhedron &y)
If the poly-hull of ∗this and y is exact it is assigned to ∗this and true is returned, otherwise false
is returned.

• bool upper_bound_assign_if_exact (const NNC_Polyhedron &y)
Same as poly_hull_assign_if_exact(y).

10.37.1 Detailed Description

A not necessarily closed convex polyhedron. An object of the class NNC_Polyhedron represents a not
necessarily closed (NNC) convex polyhedron in the vector space Rn.

Note

Since NNC polyhedra are a generalization of closed polyhedra, any object of the class C_Polyhedron
can be (explicitly) converted into an object of the class NNC_Polyhedron. The reason for defining
two different classes is that objects of the class C_Polyhedron are characterized by a more efficient
implementation, requiring less time and memory resources.

10.37.2 Constructor & Destructor Documentation

10.37.2.1 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (dimension_type
num_dimensions = 0, Degenerate_Element kind = UNIVERSE) [inline,
explicit]

Builds either the universe or the empty NNC polyhedron.

Parameters

num_dimensions The number of dimensions of the vector space enclosing the NNC polyhedron;

kind Specifies whether a universe or an empty NNC polyhedron should be built.

Exceptions

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

Both parameters are optional: by default, a 0-dimension space universe NNC polyhedron is built.

10.37.2.2 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (const
Constraint_System & cs) [inline, explicit]

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.37 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 319

Builds an NNC polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters

cs The system of constraints defining the polyhedron.

10.37.2.3 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (Constraint_System
& cs, Recycle_Input dummy) [inline]

Builds an NNC polyhedron recycling a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters

cs The system of constraints defining the polyhedron. It is not declared const because its data-
structures may be recycled to build the polyhedron.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

10.37.2.4 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (const
Generator_System & gs) [inline, explicit]

Builds an NNC polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters

gs The system of generators defining the polyhedron.

Exceptions

std::invalid_argument Thrown if the system of generators is not empty but has no points.

10.37.2.5 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (Generator_System
& gs, Recycle_Input dummy) [inline]

Builds an NNC polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters

gs The system of generators defining the polyhedron. It is not declared const because its data-
structures may be recycled to build the polyhedron.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.37 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 320

Exceptions

std::invalid_argument Thrown if the system of generators is not empty but has no points.

10.37.2.6 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (const
Congruence_System & cgs) [explicit]

Builds an NNC polyhedron from a system of congruences.

The polyhedron inherits the space dimension of the congruence system.

Parameters

cgs The system of congruences defining the polyhedron. It is not declared const because its data-
structures may be recycled to build the polyhedron.

10.37.2.7 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (
Congruence_System & cgs, Recycle_Input dummy)

Builds an NNC polyhedron recycling a system of congruences.

The polyhedron inherits the space dimension of the congruence system.

Parameters

cgs The system of congruences defining the polyhedron. It is not declared const because its data-
structures may be recycled to build the polyhedron.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

10.37.2.8 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (const C_Polyhedron
& y, Complexity_Class complexity = ANY_COMPLEXITY) [explicit]

Builds an NNC polyhedron from the C polyhedron y.

Parameters

y The C polyhedron to be used;

complexity This argument is ignored.

10.37.2.9 template<typename Interval > Parma_Polyhedra_Library::NNC_Polyhedron::NNC_-
Polyhedron (const Box< Interval > & box, Complexity_Class complexity =
ANY_COMPLEXITY) [inline, explicit]

Builds an NNC polyhedron out of a box.

The polyhedron inherits the space dimension of the box and is the most precise that includes the box.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.37 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 321

Parameters

box The box representing the polyhedron to be built;
complexity This argument is ignored as the algorithm used has polynomial complexity.

Exceptions

std::length_error Thrown if the space dimension of box exceeds the maximum allowed space di-
mension.

10.37.2.10 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (const Grid & grid,
Complexity_Class complexity = ANY_COMPLEXITY) [explicit]

Builds an NNC polyhedron out of a grid.

The polyhedron inherits the space dimension of the grid and is the most precise that includes the grid.

Parameters

grid The grid used to build the polyhedron.
complexity This argument is ignored as the algorithm used has polynomial complexity.

10.37.2.11 template<typename U > Parma_Polyhedra_Library::NNC_Polyhedron::NNC_-
Polyhedron (const BD_Shape< U > & bd, Complexity_Class complexity =
ANY_COMPLEXITY) [inline, explicit]

Builds a NNC polyhedron out of a BD shape.

The polyhedron inherits the space dimension of the BD shape and is the most precise that includes the BD
shape.

Parameters

bd The BD shape used to build the polyhedron.
complexity This argument is ignored as the algorithm used has polynomial complexity.

10.37.2.12 template<typename U > Parma_Polyhedra_Library::NNC_Polyhedron::NNC_-
Polyhedron (const Octagonal_Shape< U > & os, Complexity_Class complexity =
ANY_COMPLEXITY) [inline, explicit]

Builds a NNC polyhedron out of an octagonal shape.

The polyhedron inherits the space dimension of the octagonal shape and is the most precise that includes
the octagonal shape.

Parameters

os The octagonal shape used to build the polyhedron.
complexity This argument is ignored as the algorithm used has polynomial complexity.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.38 Parma_Polyhedra_Library::PIP_Solution_Node::No_Constraints Struct Reference 322

10.37.3 Member Function Documentation

10.37.3.1 bool Parma_Polyhedra_Library::NNC_Polyhedron::poly_hull_assign_if_exact (const
NNC_Polyhedron & y)

If the poly-hull of ∗this and y is exact it is assigned to ∗this and true is returned, otherwise false
is returned.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

The documentation for this class was generated from the following file:

• ppl.hh

10.38 Parma_Polyhedra_Library::PIP_Solution_Node::No_Constraints Struct
Reference

A tag type to select the alternative copy constructor.

#include <ppl.hh>

10.38.1 Detailed Description

A tag type to select the alternative copy constructor.

The documentation for this struct was generated from the following file:

• ppl.hh

10.39 Parma_Polyhedra_Library::No_Reduction< D1, D2 > Class Template Ref-
erence

This class provides the reduction method for the Direct_Product domain.

#include <ppl.hh>

Public Member Functions

• No_Reduction ()
Default constructor.

• void product_reduce (D1 &d1, D2 &d2)
The null reduction operator.

• ∼No_Reduction ()
Destructor.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 323

10.39.1 Detailed Description

template<typename D1, typename D2> class Parma_Polyhedra_Library::No_Reduction< D1, D2
>

This class provides the reduction method for the Direct_Product domain. The reduction classes are used
to instantiate the Partially_Reduced_Product domain template parameter R. This class does no reduction at
all.

10.39.2 Member Function Documentation

10.39.2.1 template<typename D1 , typename D2 > void Parma_Polyhedra_-
Library::No_Reduction< D1, D2 >::product_reduce (D1 & d1, D2 & d2
)

The null reduction operator.

The parameters d1 and d2 are ignored.

The documentation for this class was generated from the following file:

• ppl.hh

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Refer-
ence

An octagonal shape.

#include <ppl.hh>

Public Types

• typedef T coefficient_type_base
The numeric base type upon which OSs are built.

• typedef N coefficient_type
The (extended) numeric type of the inhomogeneous term of the inequalities defining an OS.

Public Member Functions

• void ascii_dump () const
Writes to std::cerr an ASCII representation of ∗this.

• void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of ∗this.

• void print () const
Prints ∗this to std::cerr using operator<<.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 324

• bool ascii_load (std::istream &s)
Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets ∗this
accordingly. Returns true if successful, false otherwise.

• memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• int32_t hash_code () const
Returns a 32-bit hash code for ∗this.

Constructors, Assignment, Swap and Destructor

• Octagonal_Shape (dimension_type num_dimensions=0, Degenerate_Element
kind=UNIVERSE)

Builds an universe or empty OS of the specified space dimension.

• Octagonal_Shape (const Octagonal_Shape &x, Complexity_Class complexity=ANY_-
COMPLEXITY)

Ordinary copy constructor.

• template<typename U >

Octagonal_Shape (const Octagonal_Shape< U > &y, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a conservative, upward approximation of y.

• Octagonal_Shape (const Constraint_System &cs)
Builds an OS from the system of constraints cs.

• Octagonal_Shape (const Congruence_System &cgs)
Builds an OS from a system of congruences.

• Octagonal_Shape (const Generator_System &gs)
Builds an OS from the system of generators gs.

• Octagonal_Shape (const Polyhedron &ph, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds an OS from the polyhedron ph.

• template<typename Interval >

Octagonal_Shape (const Box< Interval > &box, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds an OS out of a box.

• Octagonal_Shape (const Grid &grid, Complexity_Class complexity=ANY_COMPLEXITY)
Builds an OS that approximates a grid.

• template<typename U >

Octagonal_Shape (const BD_Shape< U > &bd, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds an OS from a BD shape.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 325

• Octagonal_Shape & operator= (const Octagonal_Shape &y)
The assignment operator. (∗this and y can be dimension-incompatible.).

• void swap (Octagonal_Shape &y)
Swaps ∗this with octagon y. (∗this and y can be dimension-incompatible.).

• ∼Octagonal_Shape ()
Destructor.

Member Functions that Do Not Modify the Octagonal_Shape

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• dimension_type affine_dimension () const
Returns 0, if ∗this is empty; otherwise, returns the affine dimension of ∗this.

• Constraint_System constraints () const
Returns the system of constraints defining ∗this.

• Constraint_System minimized_constraints () const
Returns a minimized system of constraints defining ∗this.

• Congruence_System congruences () const
Returns a system of (equality) congruences satisfied by ∗this.

• Congruence_System minimized_congruences () const
Returns a minimal system of (equality) congruences satisfied by ∗this with the same affine dimension
as ∗this.

• bool contains (const Octagonal_Shape &y) const
Returns true if and only if ∗this contains y.

• bool strictly_contains (const Octagonal_Shape &y) const
Returns true if and only if ∗this strictly contains y.

• bool is_disjoint_from (const Octagonal_Shape &y) const
Returns true if and only if ∗this and y are disjoint.

• Poly_Con_Relation relation_with (const Constraint &c) const
Returns the relations holding between ∗this and the constraint c.

• Poly_Con_Relation relation_with (const Congruence &cg) const
Returns the relations holding between ∗this and the congruence cg.

• Poly_Gen_Relation relation_with (const Generator &g) const
Returns the relations holding between ∗this and the generator g.

• bool is_empty () const
Returns true if and only if ∗this is an empty OS.

• bool is_universe () const

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 326

Returns true if and only if ∗this is a universe OS.

• bool is_discrete () const
Returns true if and only if ∗this is discrete.

• bool is_bounded () const
Returns true if and only if ∗this is a bounded OS.

• bool is_topologically_closed () const
Returns true if and only if ∗this is a topologically closed subset of the vector space.

• bool contains_integer_point () const
Returns true if and only if ∗this contains (at least) an integer point.

• bool constrains (Variable var) const
Returns true if and only if var is constrained in ∗this.

• bool bounds_from_above (const Linear_Expression &expr) const
Returns true if and only if expr is bounded from above in ∗this.

• bool bounds_from_below (const Linear_Expression &expr) const
Returns true if and only if expr is bounded from below in ∗this.

• bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum) const

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value is computed.

• bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum, Generator &g) const

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value and a point where expr reaches it are computed.

• bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum) const

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value is computed.

• bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum, Generator &g) const

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value and a point where expr reaches it are computed.

• bool frequency (const Linear_Expression &expr, Coefficient &freq_n, Coefficient &freq_d, Co-
efficient &val_n, Coefficient &val_d) const

Returns true if and only if there exist a unique value val such that ∗this saturates the equality expr
= val.

• bool OK () const
Checks if all the invariants are satisfied.

Space-Dimension Preserving Member Functions that May Modify the Octagonal_Shape

• void add_constraint (const Constraint &c)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 327

Adds a copy of constraint c to the system of constraints defining ∗this.

• void add_constraints (const Constraint_System &cs)
Adds the constraints in cs to the system of constraints defining ∗this.

• void add_recycled_constraints (Constraint_System &cs)
Adds the constraints in cs to the system of constraints of ∗this.

• void add_congruence (const Congruence &cg)
Adds to ∗this a constraint equivalent to the congruence cg.

• void add_congruences (const Congruence_System &cgs)
Adds to ∗this constraints equivalent to the congruences in cgs.

• void add_recycled_congruences (Congruence_System &cgs)
Adds to ∗this constraints equivalent to the congruences in cgs.

• void refine_with_constraint (const Constraint &c)
Uses a copy of constraint c to refine the system of octagonal constraints defining ∗this.

• void refine_with_congruence (const Congruence &cg)
Uses a copy of congruence cg to refine the system of octagonal constraints of ∗this.

• void refine_with_constraints (const Constraint_System &cs)
Uses a copy of the constraints in cs to refine the system of octagonal constraints defining ∗this.

• void refine_with_congruences (const Congruence_System &cgs)
Uses a copy of the congruences in cgs to refine the system of octagonal constraints defining ∗this.

• void unconstrain (Variable var)
Computes the cylindrification of ∗this with respect to space dimension var, assigning the result to
∗this.

• void unconstrain (const Variables_Set &vars)
Computes the cylindrification of ∗this with respect to the set of space dimensions vars, assigning the
result to ∗this.

• void intersection_assign (const Octagonal_Shape &y)
Assigns to ∗this the intersection of ∗this and y.

• void upper_bound_assign (const Octagonal_Shape &y)
Assigns to ∗this the smallest OS that contains the convex union of ∗this and y.

• bool upper_bound_assign_if_exact (const Octagonal_Shape &y)
If the upper bound of ∗this and y is exact, it is assigned to ∗this and true is returned, otherwise
false is returned.

• bool integer_upper_bound_assign_if_exact (const Octagonal_Shape &y)
If the integer upper bound of ∗this and y is exact, it is assigned to ∗this and true is returned;
otherwise false is returned.

• void difference_assign (const Octagonal_Shape &y)
Assigns to ∗this the smallest octagon containing the set difference of ∗this and y.

• bool simplify_using_context_assign (const Octagonal_Shape &y)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 328

Assigns to ∗this a meet-preserving simplification of ∗this with respect to y. If false is returned,
then the intersection is empty.

• void affine_image (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to ∗this the affine image of ∗this under the function mapping variable var into the affine
expression specified by expr and denominator.

• void affine_preimage (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to ∗this the affine preimage of ∗this under the function mapping variable var into the affine
expression specified by expr and denominator.

• void generalized_affine_image (Variable var, Relation_Symbol relsym, const Linear_Expression
&expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the generalized affine transfer function var′ ./
expr

denominator
, where ./ is the relation symbol encoded by relsym.

• void generalized_affine_image (const Linear_Expression &lhs, Relation_Symbol relsym, const
Linear_Expression &rhs)

Assigns to ∗this the image of ∗this with respect to the generalized affine transfer function lhs′ ./ rhs,
where ./ is the relation symbol encoded by relsym.

• void bounded_affine_image (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the bounded affine relation lb_expr
denominator

≤ var′ ≤
ub_expr

denominator
.

• void generalized_affine_preimage (Variable var, Relation_Symbol relsym, const Linear_-
Expression &expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the affine relation var′ ./ expr
denominator

, where
./ is the relation symbol encoded by relsym.

• void generalized_affine_preimage (const Linear_Expression &lhs, Relation_Symbol relsym,
const Linear_Expression &rhs)

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation lhs′ ./ rhs,
where ./ is the relation symbol encoded by relsym.

• void bounded_affine_preimage (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the bounded affine relation lb_expr
denominator

≤
var′ ≤ ub_expr

denominator
.

• void time_elapse_assign (const Octagonal_Shape &y)
Assigns to ∗this the result of computing the time-elapse between ∗this and y.

• void wrap_assign (const Variables_Set &vars, Bounded_Integer_Type_Width w, Bounded_-
Integer_Type_Representation r, Bounded_Integer_Type_Overflow o, const Constraint_System
∗pcs=0, unsigned complexity_threshold=16, bool wrap_individually=true)

Wraps the specified dimensions of the vector space.

• void drop_some_non_integer_points (Complexity_Class complexity=ANY_COMPLEXITY)
Possibly tightens ∗this by dropping some points with non-integer coordinates.

• void drop_some_non_integer_points (const Variables_Set &vars, Complexity_Class
complexity=ANY_COMPLEXITY)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 329

Possibly tightens ∗this by dropping some points with non-integer coordinates for the space dimensions
corresponding to vars.

• void topological_closure_assign ()
Assigns to ∗this its topological closure.

• void CC76_extrapolation_assign (const Octagonal_Shape &y, unsigned ∗tp=0)
Assigns to ∗this the result of computing the CC76-extrapolation between ∗this and y.

• template<typename Iterator >

void CC76_extrapolation_assign (const Octagonal_Shape &y, Iterator first, Iterator last, unsigned
∗tp=0)

Assigns to ∗this the result of computing the CC76-extrapolation between ∗this and y.

• void BHMZ05_widening_assign (const Octagonal_Shape &y, unsigned ∗tp=0)
Assigns to ∗this the result of computing the BHMZ05-widening between ∗this and y.

• void widening_assign (const Octagonal_Shape &y, unsigned ∗tp=0)
Same as BHMZ05_widening_assign(y, tp).

• void limited_BHMZ05_extrapolation_assign (const Octagonal_Shape &y, const Constraint_-
System &cs, unsigned ∗tp=0)

Improves the result of the BHMZ05-widening computation by also enforcing those constraints in cs that
are satisfied by all the points of ∗this.

• void CC76_narrowing_assign (const Octagonal_Shape &y)
Restores from y the constraints of ∗this, lost by CC76-extrapolation applications.

• void limited_CC76_extrapolation_assign (const Octagonal_Shape &y, const Constraint_System
&cs, unsigned ∗tp=0)

Improves the result of the CC76-extrapolation computation by also enforcing those constraints in cs
that are satisfied by all the points of ∗this.

Member Functions that May Modify the Dimension of the Vector Space

• void add_space_dimensions_and_embed (dimension_type m)
Adds m new dimensions and embeds the old OS into the new space.

• void add_space_dimensions_and_project (dimension_type m)
Adds m new dimensions to the OS and does not embed it in the new space.

• void concatenate_assign (const Octagonal_Shape &y)
Assigns to ∗this the concatenation of ∗this and y, taken in this order.

• void remove_space_dimensions (const Variables_Set &vars)
Removes all the specified dimensions.

• void remove_higher_space_dimensions (dimension_type new_dimension)
Removes the higher dimensions so that the resulting space will have dimension new_dimension.

• template<typename Partial_Function >

void map_space_dimensions (const Partial_Function &pfunc)
Remaps the dimensions of the vector space according to a partial function.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 330

• void expand_space_dimension (Variable var, dimension_type m)
Creates m copies of the space dimension corresponding to var.

• void fold_space_dimensions (const Variables_Set &vars, Variable dest)
Folds the space dimensions in vars into dest.

• template<typename Interval_Info >

void refine_fp_interval_abstract_store (Box< Interval< T, Interval_Info > > &store) const
Refines store with the constraints defining ∗this.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension that an OS can handle.

• static bool can_recycle_constraint_systems ()
Returns false indicating that this domain cannot recycle constraints.

• static bool can_recycle_congruence_systems ()
Returns false indicating that this domain cannot recycle congruences.

Friends

• bool operator== (const Octagonal_Shape< T > &x, const Octagonal_Shape< T > &y)
Returns true if and only if x and y are the same octagon.

Related Functions

(Note that these are not member functions.)

• template<typename T >

std::ostream & operator<< (std::ostream &s, const Octagonal_Shape< T > &oct)
Output operator.

• template<typename T >

bool operator!= (const Octagonal_Shape< T > &x, const Octagonal_Shape< T > &y)
Returns true if and only if x and y are different shapes.

• template<typename To , typename T >

bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Octagonal_Shape< T > &x, const Octagonal_Shape< T > &y, Rounding_Dir dir)

Computes the rectilinear (or Manhattan) distance between x and y.

• template<typename Temp , typename To , typename T >

bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Octagonal_Shape< T > &x, const Octagonal_Shape< T > &y, Rounding_Dir dir, Temp &tmp0,
Temp &tmp1, Temp &tmp2)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 331

Computes the rectilinear (or Manhattan) distance between x and y.

• template<typename To , typename T >

bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Octagonal_Shape< T > &x, const Octagonal_Shape< T > &y, Rounding_Dir dir)

Computes the euclidean distance between x and y.

• template<typename Temp , typename To , typename T >

bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Octagonal_Shape< T > &x, const Octagonal_Shape< T > &y, Rounding_Dir dir, Temp &tmp0,
Temp &tmp1, Temp &tmp2)

Computes the euclidean distance between x and y.

• template<typename To , typename T >

bool l_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Octagonal_Shape< T > &x, const Octagonal_Shape< T > &y, Rounding_Dir dir)

Computes the L∞ distance between x and y.

• template<typename Temp , typename To , typename T >

bool l_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Octagonal_Shape< T > &x, const Octagonal_Shape< T > &y, Rounding_Dir dir, Temp &tmp0,
Temp &tmp1, Temp &tmp2)

Computes the L∞ distance between x and y.

• template<typename T >

void swap (Parma_Polyhedra_Library::Octagonal_Shape< T > &x, Parma_Polyhedra_-
Library::Octagonal_Shape< T > &y)

Specializes std::swap.

10.40.1 Detailed Description

template<typename T> class Parma_Polyhedra_Library::Octagonal_Shape< T >

An octagonal shape. The class template Octagonal_Shape<T> allows for the efficient representation of
a restricted kind of topologically closed convex polyhedra called octagonal shapes (OSs, for short). The
name comes from the fact that, in a vector space of dimension 2, bounded OSs are polygons with at most
eight sides. The closed affine half-spaces that characterize the OS can be expressed by constraints of the
form

axi + bxj ≤ k

where a, b ∈ {−1, 0, 1} and k is a rational number, which are called octagonal constraints.

Based on the class template type parameter T, a family of extended numbers is built and used to approxi-
mate the inhomogeneous term of octagonal constraints. These extended numbers provide a representation
for the value +∞, as well as rounding-aware implementations for several arithmetic functions. The value
of the type parameter T may be one of the following:

• a bounded precision integer type (e.g., int32_t or int64_t);

• a bounded precision floating point type (e.g., float or double);

• an unbounded integer or rational type, as provided by GMP (i.e., mpz_class or mpq_class).

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 332

The user interface for OSs is meant to be as similar as possible to the one developed for the polyhedron
class C_Polyhedron.

The OS domain optimally supports:

• tautological and inconsistent constraints and congruences;

• octagonal constraints;

• non-proper congruences (i.e., equalities) that are expressible as octagonal constraints.

Depending on the method, using a constraint or congruence that is not optimally supported by the domain
will either raise an exception or result in a (possibly non-optimal) upward approximation.

A constraint is octagonal if it has the form

±aixi ± ajxj ./ b

where ./ ∈ {≤,=,≥} and ai, aj , b are integer coefficients such that ai = 0, or aj = 0, or ai = aj .
The user is warned that the above octagonal Constraint object will be mapped into a correct and optimal
approximation that, depending on the expressive power of the chosen template argument T, may loose
some precision. Also note that strict constraints are not octagonal.

For instance, a Constraint object encoding 3x+ 3y ≤ 1 will be approximated by:

• x+ y ≤ 1, if T is a (bounded or unbounded) integer type;

• x+ y ≤ 1
3 , if T is the unbounded rational type mpq_class;

• x+ y ≤ k, where k > 1
3 , if T is a floating point type (having no exact representation for 1

3).

On the other hand, depending from the context, a Constraint object encoding 3x − y ≤ 1 will be either
upward approximated (e.g., by safely ignoring it) or it will cause an exception.

In the following examples it is assumed that the type argument T is one of the possible instances listed
above and that variables x, y and z are defined (where they are used) as follows:

Variable x(0);
Variable y(1);
Variable z(2);

Example 1

The following code builds an OS corresponding to a cube in R3, given as a system of constraints:
Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 3);
cs.insert(y >= 0);
cs.insert(y <= 3);
cs.insert(z >= 0);
cs.insert(z <= 3);
Octagonal_Shape<T> oct(cs);

In contrast, the following code will raise an exception, since constraints 7, 8, and 9 are not octagonal:
Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 3);
cs.insert(y >= 0);
cs.insert(y <= 3);
cs.insert(z >= 0);
cs.insert(z <= 3);
cs.insert(x - 3*y <= 5); // (7)
cs.insert(x - y + z <= 5); // (8)
cs.insert(x + y + z <= 5); // (9)
Octagonal_Shape<T> oct(cs);

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 333

10.40.2 Constructor & Destructor Documentation

10.40.2.1 template<typename T > Parma_Polyhedra_Library::Octagonal_Shape< T
>::Octagonal_Shape (dimension_type num_dimensions = 0, Degenerate_Element
kind = UNIVERSE) [inline, explicit]

Builds an universe or empty OS of the specified space dimension.

Parameters

num_dimensions The number of dimensions of the vector space enclosing the OS;

kind Specifies whether the universe or the empty OS has to be built.

10.40.2.2 template<typename T > Parma_Polyhedra_Library::Octagonal_Shape< T
>::Octagonal_Shape (const Octagonal_Shape< T > & x, Complexity_Class
complexity = ANY_COMPLEXITY) [inline]

Ordinary copy constructor.

The complexity argument is ignored.

10.40.2.3 template<typename T > template<typename U > Parma_Polyhedra_-
Library::Octagonal_Shape< T >::Octagonal_Shape (const Octagonal_Shape< U > &
y, Complexity_Class complexity = ANY_COMPLEXITY) [inline, explicit]

Builds a conservative, upward approximation of y.

The complexity argument is ignored.

10.40.2.4 template<typename T > Parma_Polyhedra_Library::Octagonal_Shape< T
>::Octagonal_Shape (const Constraint_System & cs) [inline, explicit]

Builds an OS from the system of constraints cs.

The OS inherits the space dimension of cs.

Parameters

cs A system of octagonal constraints.

Exceptions

std::invalid_argument Thrown if cs contains a constraint which is not optimally supported by the
Octagonal shape domain.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 334

10.40.2.5 template<typename T > Parma_Polyhedra_Library::Octagonal_Shape< T
>::Octagonal_Shape (const Congruence_System & cgs) [inline, explicit]

Builds an OS from a system of congruences.

The OS inherits the space dimension of cgs

Parameters

cgs A system of congruences.

Exceptions

std::invalid_argument Thrown if cgs contains a congruence which is not optimally supported by the
Octagonal shape domain.

10.40.2.6 template<typename T > Parma_Polyhedra_Library::Octagonal_Shape< T
>::Octagonal_Shape (const Generator_System & gs) [explicit]

Builds an OS from the system of generators gs.

Builds the smallest OS containing the polyhedron defined by gs. The OS inherits the space dimension of
gs.

Exceptions

std::invalid_argument Thrown if the system of generators is not empty but has no points.

10.40.2.7 template<typename T > Parma_Polyhedra_Library::Octagonal_Shape< T
>::Octagonal_Shape (const Polyhedron & ph, Complexity_Class complexity =
ANY_COMPLEXITY) [explicit]

Builds an OS from the polyhedron ph.

Builds an OS containing ph using algorithms whose complexity does not exceed the one specified by
complexity. If complexity is ANY_COMPLEXITY, then the OS built is the smallest one containing
ph.

10.40.2.8 template<typename T > template<typename Interval > Parma_Polyhedra_-
Library::Octagonal_Shape< T >::Octagonal_Shape (const Box< Interval > & box,
Complexity_Class complexity = ANY_COMPLEXITY) [inline, explicit]

Builds an OS out of a box.

The OS inherits the space dimension of the box. The built OS is the most precise OS that includes the box.

Parameters

box The box representing the OS to be built.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 335

complexity This argument is ignored as the algorithm used has polynomial complexity.

Exceptions

std::length_error Thrown if the space dimension of box exceeds the maximum allowed space di-
mension.

10.40.2.9 template<typename T > Parma_Polyhedra_Library::Octagonal_Shape< T
>::Octagonal_Shape (const Grid & grid, Complexity_Class complexity =
ANY_COMPLEXITY) [inline, explicit]

Builds an OS that approximates a grid.

The OS inherits the space dimension of the grid. The built OS is the most precise OS that includes the grid.

Parameters

grid The grid used to build the OS.
complexity This argument is ignored as the algorithm used has polynomial complexity.

Exceptions

std::length_error Thrown if the space dimension of grid exceeds the maximum allowed space di-
mension.

10.40.2.10 template<typename T > template<typename U > Parma_Polyhedra_-
Library::Octagonal_Shape< T >::Octagonal_Shape (const BD_Shape< U > & bd,
Complexity_Class complexity = ANY_COMPLEXITY) [inline, explicit]

Builds an OS from a BD shape.

The OS inherits the space dimension of the BD shape. The built OS is the most precise OS that includes
the BD shape.

Parameters

bd The BD shape used to build the OS.
complexity This argument is ignored as the algorithm used has polynomial complexity.

Exceptions

std::length_error Thrown if the space dimension of bd exceeds the maximum allowed space dimen-
sion.

10.40.3 Member Function Documentation

10.40.3.1 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::contains (const Octagonal_Shape< T > & y) const

Returns true if and only if ∗this contains y.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 336

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.40.3.2 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::strictly_contains (const Octagonal_Shape< T > & y) const [inline]

Returns true if and only if ∗this strictly contains y.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.40.3.3 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::is_disjoint_from (const Octagonal_Shape< T > & y) const

Returns true if and only if ∗this and y are disjoint.

Exceptions

std::invalid_argument Thrown if x and y are topology-incompatible or dimension-incompatible.

10.40.3.4 template<typename T > Poly_Con_Relation Parma_Polyhedra_-
Library::Octagonal_Shape< T >::relation_with (const Constraint & c)
const

Returns the relations holding between ∗this and the constraint c.

Exceptions

std::invalid_argument Thrown if ∗this and constraint c are dimension-incompatible.

10.40.3.5 template<typename T > Poly_Con_Relation Parma_Polyhedra_-
Library::Octagonal_Shape< T >::relation_with (const Congruence & cg)
const

Returns the relations holding between ∗this and the congruence cg.

Exceptions

std::invalid_argument Thrown if ∗this and cg are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 337

10.40.3.6 template<typename T > Poly_Gen_Relation Parma_Polyhedra_-
Library::Octagonal_Shape< T >::relation_with (const Generator & g)
const

Returns the relations holding between ∗this and the generator g.

Exceptions

std::invalid_argument Thrown if ∗this and generator g are dimension-incompatible.

10.40.3.7 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::constrains (Variable var) const

Returns true if and only if var is constrained in ∗this.

Exceptions

std::invalid_argument Thrown if var is not a space dimension of ∗this.

10.40.3.8 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::bounds_from_above (const Linear_Expression & expr) const [inline]

Returns true if and only if expr is bounded from above in ∗this.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

10.40.3.9 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::bounds_from_below (const Linear_Expression & expr) const [inline]

Returns true if and only if expr is bounded from below in ∗this.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

10.40.3.10 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::maximize (const Linear_Expression & expr, Coefficient & sup_n, Coefficient &
sup_d, bool & maximum) const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value is computed.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 338

Parameters

expr The linear expression to be maximized subject to ∗this;

sup_n The numerator of the supremum value;

sup_d The denominator of the supremum value;

maximum true if and only if the supremum is also the maximum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from above, false is returned and sup_n, sup_d and
maximum are left untouched.

10.40.3.11 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::maximize (const Linear_Expression & expr, Coefficient & sup_n, Coefficient &
sup_d, bool & maximum, Generator & g) const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value and a point where expr reaches it are computed.

Parameters

expr The linear expression to be maximized subject to ∗this;

sup_n The numerator of the supremum value;

sup_d The denominator of the supremum value;

maximum true if and only if the supremum is also the maximum value;

g When maximization succeeds, will be assigned the point or closure point where expr reaches its
supremum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from above, false is returned and sup_n, sup_d, maximum
and g are left untouched.

10.40.3.12 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::minimize (const Linear_Expression & expr, Coefficient & inf_n, Coefficient &
inf_d, bool & minimum) const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value is computed.

Parameters

expr The linear expression to be minimized subject to ∗this;

inf_n The numerator of the infimum value;

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 339

inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from below, false is returned and inf_n, inf_d and
minimum are left untouched.

10.40.3.13 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::minimize (const Linear_Expression & expr, Coefficient & inf_n, Coefficient &
inf_d, bool & minimum, Generator & g) const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value and a point where expr reaches it are computed.

Parameters

expr The linear expression to be minimized subject to ∗this;

inf_n The numerator of the infimum value;

inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value;

g When minimization succeeds, will be assigned a point or closure point where expr reaches its
infimum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from below, false is returned and inf_n, inf_d, minimum
and g are left untouched.

10.40.3.14 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::frequency (const Linear_Expression & expr, Coefficient & freq_n, Coefficient &
freq_d, Coefficient & val_n, Coefficient & val_d) const

Returns true if and only if there exist a unique value val such that ∗this saturates the equality expr
= val.

Parameters

expr The linear expression for which the frequency is needed;

freq_n If true is returned, the value is set to 0; Present for interface compatibility with class Grid,
where the frequency can have a non-zero value;

freq_d If true is returned, the value is set to 1;

val_n The numerator of val;

val_d The denominator of val;

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 340

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If false is returned, then freq_n, freq_d, val_n and val_d are left untouched.

10.40.3.15 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::add_constraint (const Constraint & c)

Adds a copy of constraint c to the system of constraints defining ∗this.

Parameters

c The constraint to be added.

Exceptions

std::invalid_argument Thrown if ∗this and constraint c are dimension-incompatible, or c is not
optimally supported by the OS domain.

10.40.3.16 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::add_constraints (const Constraint_System & cs) [inline]

Adds the constraints in cs to the system of constraints defining ∗this.

Parameters

cs The constraints that will be added.

Exceptions

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible, or cs contains a con-
straint which is not optimally supported by the OS domain.

10.40.3.17 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::add_recycled_constraints (Constraint_System & cs) [inline]

Adds the constraints in cs to the system of constraints of ∗this.

Parameters

cs The constraint system to be added to ∗this. The constraints in cs may be recycled.

Exceptions

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible, or cs contains a con-
straint which is not optimally supported by the OS domain.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 341

Warning

The only assumption that can be made on cs upon successful or exceptional return is that it can be
safely destroyed.

10.40.3.18 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::add_congruence (const Congruence & cg)

Adds to ∗this a constraint equivalent to the congruence cg.

Parameters

cg The congruence to be added.

Exceptions

std::invalid_argument Thrown if ∗this and congruence cg are dimension-incompatible, or cg is
not optimally supported by the OS domain.

10.40.3.19 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::add_congruences (const Congruence_System & cgs) [inline]

Adds to ∗this constraints equivalent to the congruences in cgs.

Parameters

cgs The congruences to be added.

Exceptions

std::invalid_argument Thrown if ∗this and cgs are dimension-incompatible, or cgs contains a
congruence which is not optimally supported by the OS domain.

10.40.3.20 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::add_recycled_congruences (Congruence_System & cgs) [inline]

Adds to ∗this constraints equivalent to the congruences in cgs.

Parameters

cgs The congruence system to be added to ∗this. The congruences in cgs may be recycled.

Exceptions

std::invalid_argument Thrown if ∗this and cgs are dimension-incompatible, or cgs contains a
congruence which is not optimally supported by the OS domain.

Warning

The only assumption that can be made on cgs upon successful or exceptional return is that it can be
safely destroyed.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 342

10.40.3.21 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::refine_with_constraint (const Constraint & c) [inline]

Uses a copy of constraint c to refine the system of octagonal constraints defining ∗this.

Parameters

c The constraint. If it is not a octagonal constraint, it will be ignored.

Exceptions

std::invalid_argument Thrown if ∗this and constraint c are dimension-incompatible.

10.40.3.22 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::refine_with_congruence (const Congruence & cg) [inline]

Uses a copy of congruence cg to refine the system of octagonal constraints of ∗this.

Parameters

cg The congruence. If it is not a octagonal equality, it will be ignored.

Exceptions

std::invalid_argument Thrown if ∗this and congruence cg are dimension-incompatible.

10.40.3.23 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::refine_with_constraints (const Constraint_System & cs) [inline]

Uses a copy of the constraints in cs to refine the system of octagonal constraints defining ∗this.

Parameters

cs The constraint system to be used. Constraints that are not octagonal are ignored.

Exceptions

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible.

10.40.3.24 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::refine_with_congruences (const Congruence_System & cgs)

Uses a copy of the congruences in cgs to refine the system of octagonal constraints defining ∗this.

Parameters

cgs The congruence system to be used. Congruences that are not octagonal equalities are ignored.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 343

Exceptions

std::invalid_argument Thrown if ∗this and cgs are dimension-incompatible.

10.40.3.25 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::unconstrain (Variable var)

Computes the cylindrification of ∗this with respect to space dimension var, assigning the result to
∗this.

Parameters

var The space dimension that will be unconstrained.

Exceptions

std::invalid_argument Thrown if var is not a space dimension of ∗this.

10.40.3.26 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::unconstrain (const Variables_Set & vars)

Computes the cylindrification of ∗this with respect to the set of space dimensions vars, assigning the
result to ∗this.

Parameters

vars The set of space dimension that will be unconstrained.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with one of the Variable objects
contained in vars.

10.40.3.27 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::intersection_assign (const Octagonal_Shape< T > & y)

Assigns to ∗this the intersection of ∗this and y.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.40.3.28 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::upper_bound_assign (const Octagonal_Shape< T > & y)

Assigns to ∗this the smallest OS that contains the convex union of ∗this and y.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 344

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.40.3.29 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::upper_bound_assign_if_exact (const Octagonal_Shape< T > & y)

If the upper bound of ∗this and y is exact, it is assigned to ∗this and true is returned, otherwise
false is returned.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

Implementation is based on Theorem 6.3 of [BHZ09b].

10.40.3.30 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::integer_upper_bound_assign_if_exact (const Octagonal_Shape< T > & y)

If the integer upper bound of ∗this and y is exact, it is assigned to ∗this and true is returned; otherwise
false is returned.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

Note

This operator is only available when the class template parameter T is bound to an integer datatype.
The integer upper bound of two rational OS is the smallest rational OS containing all the integral points
in the two arguments. In general, the result is not an upper bound for the two input arguments, as it
may cut away non-integral portions of the two rational shapes.

Implementation is based on Theorem 6.8 of [BHZ09b].

10.40.3.31 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::difference_assign (const Octagonal_Shape< T > & y)

Assigns to ∗this the smallest octagon containing the set difference of ∗this and y.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 345

10.40.3.32 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::simplify_using_context_assign (const Octagonal_Shape< T > & y)

Assigns to ∗this a meet-preserving simplification of ∗this with respect to y. If false is returned, then
the intersection is empty.

Exceptions

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

10.40.3.33 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape<
T >::affine_image (Variable var, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to ∗this the affine image of ∗this under the function mapping variable var into the affine
expression specified by expr and denominator.

Parameters

var The variable to which the affine expression is assigned.

expr The numerator of the affine expression.

denominator The denominator of the affine expression.

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a dimension of ∗this.

10.40.3.34 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape<
T >::affine_preimage (Variable var, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to ∗this the affine preimage of ∗this under the function mapping variable var into the affine
expression specified by expr and denominator.

Parameters

var The variable to which the affine expression is substituted.

expr The numerator of the affine expression.

denominator The denominator of the affine expression.

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a dimension of ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 346

10.40.3.35 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::generalized_affine_image (Variable var, Relation_Symbol relsym, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the generalized affine transfer function var′ ./
expr

denominator , where ./ is the relation symbol encoded by relsym.

Parameters

var The left hand side variable of the generalized affine transfer function.

relsym The relation symbol.

expr The numerator of the right hand side affine expression.

denominator The denominator of the right hand side affine expression.

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a dimension of ∗this or if relsym is a strict relation symbol.

10.40.3.36 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::generalized_affine_image (const Linear_Expression & lhs, Relation_Symbol
relsym, const Linear_Expression & rhs)

Assigns to ∗this the image of ∗this with respect to the generalized affine transfer function lhs′ ./ rhs,
where ./ is the relation symbol encoded by relsym.

Parameters

lhs The left hand side affine expression.

relsym The relation symbol.

rhs The right hand side affine expression.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with lhs or rhs or if relsym
is a strict relation symbol.

10.40.3.37 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::bounded_affine_image (Variable var, const Linear_Expression & lb_expr, const
Linear_Expression & ub_expr, Coefficient_traits::const_reference denominator =
Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the bounded affine relation lb_expr
denominator ≤ var′ ≤

ub_expr
denominator .

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 347

Parameters

var The variable updated by the affine relation;
lb_expr The numerator of the lower bounding affine expression;
ub_expr The numerator of the upper bounding affine expression;
denominator The (common) denominator for the lower and upper bounding affine expressions (op-

tional argument with default value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if lb_expr (resp., ub_expr) and
∗this are dimension-incompatible or if var is not a space dimension of ∗this.

10.40.3.38 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::generalized_affine_preimage (Variable var, Relation_Symbol relsym, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the affine relation var′ ./ expr
denominator , where ./

is the relation symbol encoded by relsym.

Parameters

var The left hand side variable of the generalized affine transfer function.
relsym The relation symbol.
expr The numerator of the right hand side affine expression.
denominator The denominator of the right hand side affine expression.

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a dimension of ∗this or if relsym is a strict relation symbol.

10.40.3.39 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::generalized_affine_preimage (const Linear_Expression & lhs, Relation_Symbol
relsym, const Linear_Expression & rhs)

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation lhs′ ./ rhs, where
./ is the relation symbol encoded by relsym.

Parameters

lhs The left hand side affine expression;
relsym The relation symbol;
rhs The right hand side affine expression.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with lhs or rhs or if relsym
is a strict relation symbol.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 348

10.40.3.40 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::bounded_affine_preimage (Variable var, const Linear_Expression & lb_expr,
const Linear_Expression & ub_expr, Coefficient_traits::const_reference denominator
= Coefficient_one())

Assigns to ∗this the preimage of ∗thiswith respect to the bounded affine relation lb_expr
denominator ≤ var′ ≤

ub_expr
denominator .

Parameters

var The variable updated by the affine relation;

lb_expr The numerator of the lower bounding affine expression;

ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if lb_expr (resp., ub_expr) and
∗this are dimension-incompatible or if var is not a space dimension of ∗this.

10.40.3.41 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::time_elapse_assign (const Octagonal_Shape< T > & y) [inline]

Assigns to ∗this the result of computing the time-elapse between ∗this and y.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.40.3.42 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::wrap_assign (const Variables_Set & vars, Bounded_Integer_Type_Width w,
Bounded_Integer_Type_Representation r, Bounded_Integer_Type_Overflow o,
const Constraint_System ∗ pcs = 0, unsigned complexity_threshold = 16, bool
wrap_individually = true)

Wraps the specified dimensions of the vector space.

Parameters

vars The set of Variable objects corresponding to the space dimensions to be wrapped.

w The width of the bounded integer type corresponding to all the dimensions to be wrapped.

r The representation of the bounded integer type corresponding to all the dimensions to be wrapped.

o The overflow behavior of the bounded integer type corresponding to all the dimensions to be
wrapped.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 349

pcs Possibly null pointer to a constraint system whose variables are contained in vars. If ∗pcs
depends on variables not in vars, the behavior is undefined. When non-null, the pointed-to
constraint system is assumed to represent the conditional or looping construct guard with respect
to which wrapping is performed. Since wrapping requires the computation of upper bounds
and due to non-distributivity of constraint refinement over upper bounds, passing a constraint
system in this way can be more precise than refining the result of the wrapping operation with
the constraints in ∗pcs.

complexity_threshold A precision parameter of the wrapping operator: higher values result in possi-
bly improved precision.

wrap_individually true if the dimensions should be wrapped individually (something that results in
much greater efficiency to the detriment of precision).

Exceptions

std::invalid_argument Thrown if ∗pcs is dimension-incompatible with vars, or if ∗this is
dimension-incompatible vars or with ∗pcs.

10.40.3.43 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape<
T >::drop_some_non_integer_points (Complexity_Class complexity =
ANY_COMPLEXITY)

Possibly tightens ∗this by dropping some points with non-integer coordinates.

Parameters

complexity The maximal complexity of any algorithms used.

Note

Currently there is no optimality guarantee, not even if complexity is ANY_COMPLEXITY.

10.40.3.44 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::drop_some_non_integer_points (const Variables_Set & vars, Complexity_Class
complexity = ANY_COMPLEXITY)

Possibly tightens ∗this by dropping some points with non-integer coordinates for the space dimensions
corresponding to vars.

Parameters

vars Points with non-integer coordinates for these variables/space-dimensions can be discarded.

complexity The maximal complexity of any algorithms used.

Note

Currently there is no optimality guarantee, not even if complexity is ANY_COMPLEXITY.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 350

10.40.3.45 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::CC76_extrapolation_assign (const Octagonal_Shape< T > & y, unsigned ∗ tp = 0
) [inline]

Assigns to ∗this the result of computing the CC76-extrapolation between ∗this and y.

Parameters

y An OS that must be contained in ∗this.
tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when

applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.40.3.46 template<typename T > template<typename Iterator > void
Parma_Polyhedra_Library::Octagonal_Shape< T >::CC76_extrapolation_assign (
const Octagonal_Shape< T > & y, Iterator first, Iterator last, unsigned ∗ tp = 0)

Assigns to ∗this the result of computing the CC76-extrapolation between ∗this and y.

Parameters

y An OS that must be contained in ∗this.
first An iterator that points to the first stop_point.
last An iterator that points to the last stop_point.
tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when

applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.40.3.47 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::BHMZ05_widening_assign (const Octagonal_Shape< T > & y, unsigned ∗ tp = 0
)

Assigns to ∗this the result of computing the BHMZ05-widening between ∗this and y.

Parameters

y An OS that must be contained in ∗this.
tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when

applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 351

10.40.3.48 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::limited_BHMZ05_extrapolation_assign (const Octagonal_Shape< T > & y, const
Constraint_System & cs, unsigned ∗ tp = 0)

Improves the result of the BHMZ05-widening computation by also enforcing those constraints in cs that
are satisfied by all the points of ∗this.

Parameters

y An OS that must be contained in ∗this.
cs The system of constraints used to improve the widened OS.
tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when

applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this, y and cs are dimension-incompatible or if there is in cs a
strict inequality.

10.40.3.49 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::CC76_narrowing_assign (const Octagonal_Shape< T > & y)

Restores from y the constraints of ∗this, lost by CC76-extrapolation applications.

Parameters

y An OS that must contain ∗this.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.40.3.50 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::limited_CC76_extrapolation_assign (const Octagonal_Shape< T > & y, const
Constraint_System & cs, unsigned ∗ tp = 0)

Improves the result of the CC76-extrapolation computation by also enforcing those constraints in cs that
are satisfied by all the points of ∗this.

Parameters

y An OS that must be contained in ∗this.
cs The system of constraints used to improve the widened OS.
tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when

applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this, y and cs are dimension-incompatible or if cs contains a
strict inequality.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 352

10.40.3.51 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::add_space_dimensions_and_embed (dimension_type m)

Adds m new dimensions and embeds the old OS into the new space.

Parameters

m The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new OS, which is characterized by a
system of constraints in which the variables running through the new dimensions are not constrained. For
instance, when starting from the OS O ⊆ R2 and adding a third dimension, the result will be the OS{

(x, y, z)T ∈ R3
∣∣ (x, y)T ∈ O

}
.

10.40.3.52 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::add_space_dimensions_and_project (dimension_type m)

Adds m new dimensions to the OS and does not embed it in the new space.

Parameters

m The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new OS, which is characterized by a
system of constraints in which the variables running through the new dimensions are all constrained to be
equal to 0. For instance, when starting from the OS O ⊆ R2 and adding a third dimension, the result will
be the OS {

(x, y, 0)T ∈ R3
∣∣ (x, y)T ∈ O

}
.

10.40.3.53 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::concatenate_assign (const Octagonal_Shape< T > & y)

Assigns to ∗this the concatenation of ∗this and y, taken in this order.

Exceptions

std::length_error Thrown if the concatenation would cause the vector space to exceed dimension
max_space_dimension().

10.40.3.54 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::remove_space_dimensions (const Variables_Set & vars)

Removes all the specified dimensions.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 353

Parameters

vars The set of Variable objects corresponding to the dimensions to be removed.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with one of the Variable objects
contained in vars.

10.40.3.55 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::remove_higher_space_dimensions (dimension_type new_dimension) [inline]

Removes the higher dimensions so that the resulting space will have dimension new_dimension.

Exceptions

std::invalid_argument Thrown if new_dimension is greater than the space dimension of ∗this.

10.40.3.56 template<typename T > template<typename Partial_Function > void
Parma_Polyhedra_Library::Octagonal_Shape< T >::map_space_dimensions (const
Partial_Function & pfunc)

Remaps the dimensions of the vector space according to a partial function.

Parameters

pfunc The partial function specifying the destiny of each dimension.

The template type parameter Partial_Function must provide the following methods.

bool has_empty_codomain() const

returns true if and only if the represented partial function has an empty codomain (i.e., it is always
undefined). The has_empty_codomain() method will always be called before the methods below.
However, if has_empty_codomain() returns true, none of the functions below will be called.

dimension_type max_in_codomain() const

returns the maximum value that belongs to the codomain of the partial function.

bool maps(dimension_type i, dimension_type& j) const

Let f be the represented function and k be the value of i. If f is defined in k, then f(k) is assigned to j
and true is returned. If f is undefined in k, then false is returned.

The result is undefined if pfunc does not encode a partial function with the properties described in the
specification of the mapping operator.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 354

10.40.3.57 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::expand_space_dimension (Variable var, dimension_type m)

Creates m copies of the space dimension corresponding to var.

Parameters

var The variable corresponding to the space dimension to be replicated;

m The number of replicas to be created.

Exceptions

std::invalid_argument Thrown if var does not correspond to a dimension of the vector space.

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension().

If ∗this has space dimension n, with n > 0, and var has space dimension k ≤ n, then the k-th space
dimension is expanded to m new space dimensions n, n+ 1, . . . , n+m− 1.

10.40.3.58 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::fold_space_dimensions (const Variables_Set & vars, Variable dest)

Folds the space dimensions in vars into dest.

Parameters

vars The set of Variable objects corresponding to the space dimensions to be folded;

dest The variable corresponding to the space dimension that is the destination of the folding operation.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with dest or with one of the
Variable objects contained in vars. Also thrown if dest is contained in vars.

If ∗this has space dimension n, with n > 0, dest has space dimension k ≤ n, vars is a set of variables
whose maximum space dimension is also less than or equal to n, and dest is not a member of vars, then
the space dimensions corresponding to variables in vars are folded into the k-th space dimension.

10.40.3.59 template<typename T > template<typename Interval_Info > void Parma_-
Polyhedra_Library::Octagonal_Shape< T >::refine_fp_interval_abstract_store (
Box< Interval< T, Interval_Info > > & store) const

Refines store with the constraints defining ∗this.

Parameters

store The interval floating point abstract store to refine.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 355

10.40.3.60 template<typename T > int32_t Parma_Polyhedra_Library::Octagonal_Shape< T
>::hash_code () const [inline]

Returns a 32-bit hash code for ∗this.

If x and y are such that x == y, then x.hash_code() == y.hash_code().

10.40.4 Friends And Related Function Documentation

10.40.4.1 template<typename T > bool operator== (const Octagonal_Shape< T > & x, const
Octagonal_Shape< T > & y) [friend]

Returns true if and only if x and y are the same octagon.

Note that x and y may be dimension-incompatible shapes: in this case, the value false is returned.

10.40.4.2 template<typename T > std::ostream & operator<< (std::ostream & s, const
Octagonal_Shape< T > & x) [related]

Output operator.

Writes a textual representation of oct on s: false is written if oct is an empty polyhedron; true
is written if oct is a universe polyhedron; a system of constraints defining oct is written otherwise, all
constraints separated by ", ".

10.40.4.3 template<typename T > bool operator!= (const Octagonal_Shape< T > & x, const
Octagonal_Shape< T > & y) [related]

Returns true if and only if x and y are different shapes.

Note that x and y may be dimension-incompatible shapes: in this case, the value true is returned.

10.40.4.4 template<typename To , typename T > bool rectilinear_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const Octagonal_Shape< T
> & x, const Octagonal_Shape< T > & y, Rounding_Dir dir) [related]

Computes the rectilinear (or Manhattan) distance between x and y.

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<To, Extended_Number_-
Policy>.

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns false otherwise.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.40 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 356

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-
Policy>.

10.40.4.5 template<typename Temp , typename To , typename T > bool
rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > & r,
const Octagonal_Shape< T > & x, const Octagonal_Shape< T > & y, Rounding_Dir
dir, Temp & tmp0, Temp & tmp1, Temp & tmp2) [related]

Computes the rectilinear (or Manhattan) distance between x and y.

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmp0, tmp1 and tmp2.

10.40.4.6 template<typename To , typename T > bool euclidean_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const Octagonal_Shape< T
> & x, const Octagonal_Shape< T > & y, Rounding_Dir dir) [related]

Computes the euclidean distance between x and y.

If the euclidean distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<To, Extended_Number_-
Policy>.

If the euclidean distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-
Policy>.

10.40.4.7 template<typename Temp , typename To , typename T > bool euclidean_distance_assign
(Checked_Number< To, Extended_Number_Policy > & r, const Octagonal_Shape< T
> & x, const Octagonal_Shape< T > & y, Rounding_Dir dir, Temp & tmp0, Temp &
tmp1, Temp & tmp2) [related]

Computes the euclidean distance between x and y.

If the euclidean distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmp0, tmp1 and tmp2.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 357

10.40.4.8 template<typename To , typename T > bool l_infinity_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const Octagonal_Shape< T
> & x, const Octagonal_Shape< T > & y, Rounding_Dir dir) [related]

Computes the L∞ distance between x and y.

If the L∞ distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<To, Extended_Number_-
Policy>.

If the L∞ distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-
Policy>.

10.40.4.9 template<typename Temp , typename To , typename T > bool l_infinity_distance_assign
(Checked_Number< To, Extended_Number_Policy > & r, const Octagonal_Shape< T
> & x, const Octagonal_Shape< T > & y, Rounding_Dir dir, Temp & tmp0, Temp &
tmp1, Temp & tmp2) [related]

Computes the L∞ distance between x and y.

If the L∞ distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmp0, tmp1 and tmp2.

10.40.4.10 template<typename T > void swap (Parma_Polyhedra_Library::Octagonal_Shape<
T > & x, Parma_Polyhedra_Library::Octagonal_Shape< T > & y) [related]

Specializes std::swap.

The documentation for this class was generated from the following file:

• ppl.hh

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R >
Class Template Reference

The partially reduced product of two abstractions.

#include <ppl.hh>

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 358

Public Member Functions

• Partially_Reduced_Product (dimension_type num_dimensions=0, Degenerate_Element
kind=UNIVERSE)

Builds an object having the specified properties.

• Partially_Reduced_Product (const Congruence_System &cgs)
Builds a pair, copying a system of congruences.

• Partially_Reduced_Product (Congruence_System &cgs)
Builds a pair, recycling a system of congruences.

• Partially_Reduced_Product (const Constraint_System &cs)
Builds a pair, copying a system of constraints.

• Partially_Reduced_Product (Constraint_System &cs)
Builds a pair, recycling a system of constraints.

• Partially_Reduced_Product (const C_Polyhedron &ph, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a product, from a C polyhedron.

• Partially_Reduced_Product (const NNC_Polyhedron &ph, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a product, from an NNC polyhedron.

• Partially_Reduced_Product (const Grid &gr, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a product, from a grid.

• template<typename Interval >

Partially_Reduced_Product (const Box< Interval > &box, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a product out of a box.

• template<typename U >

Partially_Reduced_Product (const BD_Shape< U > &bd, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a product out of a BD shape.

• template<typename U >

Partially_Reduced_Product (const Octagonal_Shape< U > &os, Complexity_Class
complexity=ANY_COMPLEXITY)

Builds a product out of an octagonal shape.

• Partially_Reduced_Product (const Partially_Reduced_Product &y, Complexity_Class
complexity=ANY_COMPLEXITY)

Ordinary copy constructor.

• template<typename E1 , typename E2 , typename S >

Partially_Reduced_Product (const Partially_Reduced_Product< E1, E2, S > &y, Complexity_Class
complexity=ANY_COMPLEXITY)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 359

Builds a conservative, upward approximation of y.

• Partially_Reduced_Product & operator= (const Partially_Reduced_Product &y)
The assignment operator. (∗this and y can be dimension-incompatible.).

• bool reduce () const
Reduce.

Member Functions that Do Not Modify the Partially_Reduced_Product

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• dimension_type affine_dimension () const
Returns the minimum affine dimension (see also grid affine dimension) of the components of ∗this.

• const D1 & domain1 () const
Returns a constant reference to the first of the pair.

• const D2 & domain2 () const
Returns a constant reference to the second of the pair.

• Constraint_System constraints () const
Returns a system of constraints which approximates ∗this.

• Constraint_System minimized_constraints () const
Returns a system of constraints which approximates ∗this, in reduced form.

• Congruence_System congruences () const
Returns a system of congruences which approximates ∗this.

• Congruence_System minimized_congruences () const
Returns a system of congruences which approximates ∗this, in reduced form.

• Poly_Con_Relation relation_with (const Constraint &c) const
Returns the relations holding between ∗this and c.

• Poly_Con_Relation relation_with (const Congruence &cg) const
Returns the relations holding between ∗this and cg.

• Poly_Gen_Relation relation_with (const Generator &g) const
Returns the relations holding between ∗this and g.

• bool is_empty () const
Returns true if and only if either of the components of ∗this are empty.

• bool is_universe () const
Returns true if and only if both of the components of ∗this are the universe.

• bool is_topologically_closed () const
Returns true if and only if both of the components of ∗this are topologically closed subsets of the
vector space.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 360

• bool is_disjoint_from (const Partially_Reduced_Product &y) const
Returns true if and only if ∗this and y are componentwise disjoint.

• bool is_discrete () const
Returns true if and only if a component of ∗this is discrete.

• bool is_bounded () const
Returns true if and only if a component of ∗this is bounded.

• bool constrains (Variable var) const
Returns true if and only if var is constrained in ∗this.

• bool bounds_from_above (const Linear_Expression &expr) const
Returns true if and only if expr is bounded in ∗this.

• bool bounds_from_below (const Linear_Expression &expr) const
Returns true if and only if expr is bounded in ∗this.

• bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum) const

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value is computed.

• bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum, Generator &point) const

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value and a point where expr reaches it are computed.

• bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum) const

Returns true if and only if ∗this is not empty and expr is bounded from below i ∗this, in which
case the infimum value is computed.

• bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum, Generator &point) const

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value and a point where expr reaches it are computed.

• bool contains (const Partially_Reduced_Product &y) const
Returns true if and only if each component of ∗this contains the corresponding component of y.

• bool strictly_contains (const Partially_Reduced_Product &y) const
Returns true if and only if each component of ∗this strictly contains the corresponding component
of y.

• bool OK () const
Checks if all the invariants are satisfied.

Space Dimension Preserving Member Functions that May Modify the Partially_Reduced_-
Product

• void add_constraint (const Constraint &c)
Adds constraint c to ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 361

• void refine_with_constraint (const Constraint &c)
Use the constraint c to refine ∗this.

• void add_congruence (const Congruence &cg)
Adds a copy of congruence cg to ∗this.

• void refine_with_congruence (const Congruence &cg)
Use the congruence cg to refine ∗this.

• void add_congruences (const Congruence_System &cgs)
Adds a copy of the congruences in cgs to ∗this.

• void refine_with_congruences (const Congruence_System &cgs)
Use the congruences in cgs to refine ∗this.

• void add_recycled_congruences (Congruence_System &cgs)
Adds the congruences in cgs to ∗this.

• void add_constraints (const Constraint_System &cs)
Adds a copy of the constraint system in cs to ∗this.

• void refine_with_constraints (const Constraint_System &cs)
Use the constraints in cs to refine ∗this.

• void add_recycled_constraints (Constraint_System &cs)
Adds the constraint system in cs to ∗this.

• void unconstrain (Variable var)
Computes the cylindrification of ∗this with respect to space dimension var, assigning the result to
∗this.

• void unconstrain (const Variables_Set &vars)
Computes the cylindrification of ∗this with respect to the set of space dimensions vars, assigning the
result to ∗this.

• void intersection_assign (const Partially_Reduced_Product &y)
Assigns to ∗this the componentwise intersection of ∗this and y.

• void upper_bound_assign (const Partially_Reduced_Product &y)
Assigns to ∗this an upper bound of ∗this and y computed on the corresponding components.

• bool upper_bound_assign_if_exact (const Partially_Reduced_Product &y)
Assigns to ∗this an upper bound of ∗this and y computed on the corresponding components. If it is
exact on each of the components of ∗this, true is returned, otherwise false is returned.

• void difference_assign (const Partially_Reduced_Product &y)
Assigns to ∗this an approximation of the set-theoretic difference of ∗this and y.

• void affine_image (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to ∗this the affine image of this under the function mapping variable var to the affine
expression specified by expr and denominator.

• void affine_preimage (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 362

Assigns to ∗this the affine preimage of ∗this under the function mapping variable var to the affine
expression specified by expr and denominator.

• void generalized_affine_image (Variable var, Relation_Symbol relsym, const Linear_Expression
&expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the generalized affine relation var′ ./ expr
denominator

,
where ./ is the relation symbol encoded by relsym (see also generalized affine relation.).

• void generalized_affine_preimage (Variable var, Relation_Symbol relsym, const Linear_-
Expression &expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation var′ ./
expr

denominator
, where ./ is the relation symbol encoded by relsym. (see also generalized affine rela-

tion.).

• void generalized_affine_image (const Linear_Expression &lhs, Relation_Symbol relsym, const
Linear_Expression &rhs)

Assigns to ∗this the image of ∗this with respect to the generalized affine relation lhs′ ./ rhs, where
./ is the relation symbol encoded by relsym. (see also generalized affine relation.).

• void generalized_affine_preimage (const Linear_Expression &lhs, Relation_Symbol relsym,
const Linear_Expression &rhs)

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation lhs′ ./ rhs,
where ./ is the relation symbol encoded by relsym. (see also generalized affine relation.).

• void bounded_affine_image (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the bounded affine relation lb_expr
denominator

≤ var′ ≤
ub_expr

denominator
.

• void bounded_affine_preimage (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the bounded affine relation lb_expr
denominator

≤
var′ ≤ ub_expr

denominator
.

• void time_elapse_assign (const Partially_Reduced_Product &y)
Assigns to ∗this the result of computing the time-elapse between ∗this and y. (See also time-elapse.).

• void topological_closure_assign ()
Assigns to ∗this its topological closure.

• void widening_assign (const Partially_Reduced_Product &y, unsigned ∗tp=NULL)
Assigns to ∗this the result of computing the "widening" between ∗this and y.

• void drop_some_non_integer_points (Complexity_Class complexity=ANY_COMPLEXITY)
Possibly tightens ∗this by dropping some points with non-integer coordinates.

• void drop_some_non_integer_points (const Variables_Set &vars, Complexity_Class
complexity=ANY_COMPLEXITY)

Possibly tightens ∗this by dropping some points with non-integer coordinates for the space dimensions
corresponding to vars.

Member Functions that May Modify the Dimension of the Vector Space

• void add_space_dimensions_and_embed (dimension_type m)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 363

Adds m new space dimensions and embeds the components of ∗this in the new vector space.

• void add_space_dimensions_and_project (dimension_type m)
Adds m new space dimensions and does not embed the components in the new vector space.

• void concatenate_assign (const Partially_Reduced_Product &y)
Assigns to the first (resp., second) component of ∗this the "concatenation" of the first (resp., second)
components of ∗this and y, taken in this order. See also Concatenating Polyhedra.

• void remove_space_dimensions (const Variables_Set &vars)
Removes all the specified dimensions from the vector space.

• void remove_higher_space_dimensions (dimension_type new_dimension)
Removes the higher dimensions of the vector space so that the resulting space will have dimension
new_dimension.

• template<typename Partial_Function >

void map_space_dimensions (const Partial_Function &pfunc)
Remaps the dimensions of the vector space according to a partial function.

• void expand_space_dimension (Variable var, dimension_type m)
Creates m copies of the space dimension corresponding to var.

• void fold_space_dimensions (const Variables_Set &vars, Variable dest)
Folds the space dimensions in vars into dest.

Miscellaneous Member Functions

• ∼Partially_Reduced_Product ()
Destructor.

• void swap (Partially_Reduced_Product &y)
Swaps ∗this with product y. (∗this and y can be dimension-incompatible.).

• void ascii_dump () const
Writes to std::cerr an ASCII representation of ∗this.

• void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of ∗this.

• void print () const
Prints ∗this to std::cerr using operator<<.

• bool ascii_load (std::istream &s)
Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets
∗this accordingly. Returns true if successful, false otherwise.

• memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• int32_t hash_code () const
Returns a 32-bit hash code for ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 364

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension this product can handle.

Protected Types

• typedef D1 Domain1
The type of the first component.

• typedef D2 Domain2
The type of the second component.

Protected Member Functions

• void clear_reduced_flag () const
Clears the reduced flag.

• void set_reduced_flag () const
Sets the reduced flag.

• bool is_reduced () const
Return true if and only if the reduced flag is set.

Protected Attributes

• D1 d1
The first component.

• D2 d2
The second component.

• bool reduced
Flag to record whether the components are reduced with respect to each other and the reduction class.

Friends

• bool operator== (const Partially_Reduced_Product< D1, D2, R > &x, const Partially_Reduced_-
Product< D1, D2, R > &y)

Returns true if and only if the components of x and y are pairwise equal.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 365

Related Functions

(Note that these are not member functions.)

• template<typename D1 , typename D2 , typename R >

std::ostream & operator<< (std::ostream &s, const Partially_Reduced_Product< D1, D2, R >
&dp)

Output operator.

• template<typename D1 , typename D2 , typename R >

bool operator!= (const Partially_Reduced_Product< D1, D2, R > &x, const Partially_Reduced_-
Product< D1, D2, R > &y)

Returns true if and only if the components of x and y are not pairwise equal.

• template<typename D1 , typename D2 , typename R >

void swap (Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > &x, Parma_-
Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > &y)

Specializes std::swap.

10.41.1 Detailed Description

template<typename D1, typename D2, typename R> class Parma_Polyhedra_Library::Partially_-
Reduced_Product< D1, D2, R >

The partially reduced product of two abstractions.

Warning

At present, the supported instantiations for the two domain templates D1 and D2 are the simple
pointset domains: C_Polyhedron, NNC_Polyhedron, Grid, Octagonal_Shape<T>, BD_-
Shape<T>, Box<T>.

An object of the class Partially_Reduced_Product<D1, D2, R> represents the (partially re-
duced) product of two pointset domains D1 and D2 where the form of any reduction is defined by the
reduction class R.

SupposeD1 andD2 are two abstract domains with concretization functions: γ1 : D1 → Rn and γ2 : D2 →
Rn, respectively.

The partially reduced product D = D1 ×D2, for any reduction class R, has a concretization γ : D → Rn
where, if d = (d1, d2) ∈ D

γ(d) = γ1(d1) ∩ γ2(d2).

The operations are defined to be the result of applying the corresponding operations on each of the compo-
nents provided the product is already reduced by the reduction method defined by R. In particular, if R is
the No_Reduction<D1, D2> class, then the class Partially_Reduced_Product<D1, D2,
R> domain is the direct product as defined in [CC79].

How the results on the components are interpreted and combined depend on the specific test. For example,
the test for emptiness will first make sure the product is reduced (using the reduction method provided by
R if it is not already known to be reduced) and then test if either component is empty; thus, if R defines no
reduction between its components and d = (G,P) ∈ (G × P) is a direct product in one dimension where
G denotes the set of numbers that are integral multiples of 3 while P denotes the set of numbers between

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 366

1 and 2, then an operation that tests for emptiness should return false. However, the test for the universe
returns true if and only if the test is_universe() on both components returns true.

In all the examples it is assumed that the template R is the No_Reduction<D1, D2> class and
that variables x and y are defined (where they are used) as follows:

Variable x(0);
Variable y(1);

Example 1

The following code builds a direct product of a Grid and NNC Polyhedron, corresponding to the
positive even integer pairs in R2, given as a system of congruences:

Congruence_System cgs;
cgs.insert((x %= 0) / 2);
cgs.insert((y %= 0) / 2);
Partially_Reduced_Product<Grid, NNC_Polyhedron, No_Reduction<D1, D2> >

dp(cgs);
dp.add_constraint(x >= 0);
dp.add_constraint(y >= 0);

Example 2

The following code builds the same product in R2:
Partially_Reduced_Product<Grid, NNC_Polyhedron, No_Reduction<D1, D2> > dp(2);
dp.add_constraint(x >= 0);
dp.add_constraint(y >= 0);
dp.add_congruence((x %= 0) / 2);
dp.add_congruence((y %= 0) / 2);

Example 3

The following code will write "dp is empty":
Partially_Reduced_Product<Grid, NNC_Polyhedron, No_Reduction<D1, D2> > dp(1);
dp.add_congruence((x %= 0) / 2);
dp.add_congruence((x %= 1) / 2);
if (dp.is_empty())

cout << "dp is empty." << endl;
else

cout << "dp is not empty." << endl;

Example 4

The following code will write "dp is not empty":
Partially_Reduced_Product<Grid, NNC_Polyhedron, No_Reduction<D1, D2> > dp(1);
dp.add_congruence((x %= 0) / 2);
dp.add_constraint(x >= 1);
dp.add_constraint(x <= 1);
if (dp.is_empty())

cout << "dp is empty." << endl;
else

cout << "dp is not empty." << endl;

10.41.2 Constructor & Destructor Documentation

10.41.2.1 template<typename D1 , typename D2 , typename R > Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::Partially_Reduced_Product (
dimension_type num_dimensions = 0, Degenerate_Element kind = UNIVERSE)
[inline, explicit]

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 367

Builds an object having the specified properties.

Parameters

num_dimensions The number of dimensions of the vector space enclosing the pair;
kind Specifies whether a universe or an empty pair has to be built.

Exceptions

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

10.41.2.2 template<typename D1 , typename D2 , typename R > Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::Partially_Reduced_Product (
const Congruence_System & cgs) [inline, explicit]

Builds a pair, copying a system of congruences.

The pair inherits the space dimension of the congruence system.

Parameters

cgs The system of congruences to be approximated by the pair.

Exceptions

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

10.41.2.3 template<typename D1 , typename D2 , typename R > Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::Partially_Reduced_Product (
Congruence_System & cgs) [inline, explicit]

Builds a pair, recycling a system of congruences.

The pair inherits the space dimension of the congruence system.

Parameters

cgs The system of congruences to be approximates by the pair. Its data-structures may be recycled to
build the pair.

Exceptions

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

10.41.2.4 template<typename D1 , typename D2 , typename R > Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::Partially_Reduced_Product (
const Constraint_System & cs) [inline, explicit]

Builds a pair, copying a system of constraints.

The pair inherits the space dimension of the constraint system.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 368

Parameters

cs The system of constraints to be approximated by the pair.

Exceptions

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

10.41.2.5 template<typename D1 , typename D2 , typename R > Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::Partially_Reduced_Product (
Constraint_System & cs) [inline, explicit]

Builds a pair, recycling a system of constraints.

The pair inherits the space dimension of the constraint system.

Parameters

cs The system of constraints to be approximated by the pair.

Exceptions

std::length_error Thrown if the space dimension of cs exceeds the maximum allowed space dimen-
sion.

10.41.2.6 template<typename D1 , typename D2 , typename R > Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::Partially_Reduced_Product (
const C_Polyhedron & ph, Complexity_Class complexity = ANY_COMPLEXITY)
[inline, explicit]

Builds a product, from a C polyhedron.

Builds a product containing ph using algorithms whose complexity does not exceed the one specified
by complexity. If complexity is ANY_COMPLEXITY, then the built product is the smallest one
containing ph. The product inherits the space dimension of the polyhedron.

Parameters

ph The polyhedron to be approximated by the product.
complexity The complexity that will not be exceeded.

Exceptions

std::length_error Thrown if the space dimension of ph exceeds the maximum allowed space dimen-
sion.

10.41.2.7 template<typename D1 , typename D2 , typename R > Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::Partially_Reduced_Product (
const NNC_Polyhedron & ph, Complexity_Class complexity = ANY_COMPLEXITY)
[inline, explicit]

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 369

Builds a product, from an NNC polyhedron.

Builds a product containing ph using algorithms whose complexity does not exceed the one specified
by complexity. If complexity is ANY_COMPLEXITY, then the built product is the smallest one
containing ph. The product inherits the space dimension of the polyhedron.

Parameters

ph The polyhedron to be approximated by the product.
complexity The complexity that will not be exceeded.

Exceptions

std::length_error Thrown if the space dimension of ph exceeds the maximum allowed space dimen-
sion.

10.41.2.8 template<typename D1 , typename D2 , typename R > Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::Partially_Reduced_Product (
const Grid & gr, Complexity_Class complexity = ANY_COMPLEXITY) [inline,
explicit]

Builds a product, from a grid.

Builds a product containing gr. The product inherits the space dimension of the grid.

Parameters

gr The grid to be approximated by the product.
complexity The complexity is ignored.

Exceptions

std::length_error Thrown if the space dimension of gr exceeds the maximum allowed space dimen-
sion.

10.41.2.9 template<typename D1 , typename D2 , typename R > template<typename
Interval > Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R
>::Partially_Reduced_Product (const Box< Interval > & box, Complexity_Class
complexity = ANY_COMPLEXITY) [inline]

Builds a product out of a box.

Builds a product containing box. The product inherits the space dimension of the box.

Parameters

box The box representing the pair to be built.
complexity The complexity is ignored.

Exceptions

std::length_error Thrown if the space dimension of box exceeds the maximum allowed space di-
mension.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 370

10.41.2.10 template<typename D1 , typename D2 , typename R > template<typename
U > Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R
>::Partially_Reduced_Product (const BD_Shape< U > & bd, Complexity_Class
complexity = ANY_COMPLEXITY) [inline]

Builds a product out of a BD shape.

Builds a product containing bd. The product inherits the space dimension of the BD shape.

Parameters

bd The BD shape representing the product to be built.

complexity The complexity is ignored.

Exceptions

std::length_error Thrown if the space dimension of bd exceeds the maximum allowed space dimen-
sion.

10.41.2.11 template<typename D1 , typename D2 , typename R > template<typename
U > Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R
>::Partially_Reduced_Product (const Octagonal_Shape< U > & os,
Complexity_Class complexity = ANY_COMPLEXITY) [inline]

Builds a product out of an octagonal shape.

Builds a product containing os. The product inherits the space dimension of the octagonal shape.

Parameters

os The octagonal shape representing the product to be built.

complexity The complexity is ignored.

Exceptions

std::length_error Thrown if the space dimension of os exceeds the maximum allowed space dimen-
sion.

10.41.2.12 template<typename D1 , typename D2 , typename R > template<typename
E1 , typename E2 , typename S > Parma_Polyhedra_Library::Partially_-
Reduced_Product< D1, D2, R >::Partially_Reduced_Product (const
Partially_Reduced_Product< E1, E2, S > & y, Complexity_Class complexity =
ANY_COMPLEXITY) [inline, explicit]

Builds a conservative, upward approximation of y.

The complexity argument is ignored.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 371

10.41.3 Member Function Documentation

10.41.3.1 template<typename D1 , typename D2 , typename R > bool Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::is_disjoint_from (const
Partially_Reduced_Product< D1, D2, R > & y) const [inline]

Returns true if and only if ∗this and y are componentwise disjoint.

Exceptions

std::invalid_argument Thrown if x and y are dimension-incompatible.

10.41.3.2 template<typename D1 , typename D2 , typename R > bool Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::constrains (Variable var) const
[inline]

Returns true if and only if var is constrained in ∗this.

Exceptions

std::invalid_argument Thrown if var is not a space dimension of ∗this.

10.41.3.3 template<typename D1 , typename D2 , typename R > bool Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::bounds_from_above (const
Linear_Expression & expr) const [inline]

Returns true if and only if expr is bounded in ∗this.

This method is the same as bounds_from_below.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

10.41.3.4 template<typename D1 , typename D2 , typename R > bool Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::bounds_from_below (const
Linear_Expression & expr) const [inline]

Returns true if and only if expr is bounded in ∗this.

This method is the same as bounds_from_above.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 372

10.41.3.5 template<typename D1 , typename D2 , typename R > bool Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::maximize (const
Linear_Expression & expr, Coefficient & sup_n, Coefficient & sup_d, bool &
maximum) const

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value is computed.

Parameters

expr The linear expression to be maximized subject to ∗this;

sup_n The numerator of the supremum value;

sup_d The denominator of the supremum value;

maximum true if the supremum value can be reached in this.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded by ∗this, false is returned and sup_n, sup_d and
maximum are left untouched.

10.41.3.6 template<typename D1 , typename D2 , typename R > bool Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::maximize (const
Linear_Expression & expr, Coefficient & sup_n, Coefficient & sup_d, bool &
maximum, Generator & point) const

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value and a point where expr reaches it are computed.

Parameters

expr The linear expression to be maximized subject to ∗this;

sup_n The numerator of the supremum value;

sup_d The denominator of the supremum value;

maximum true if the supremum value can be reached in this.

point When maximization succeeds, will be assigned a generator point where expr reaches its supre-
mum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded by ∗this, false is returned and sup_n, sup_d, maximum
and point are left untouched.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 373

10.41.3.7 template<typename D1 , typename D2 , typename R > bool Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::minimize (const
Linear_Expression & expr, Coefficient & inf_n, Coefficient & inf_d, bool & minimum
) const

Returns true if and only if ∗this is not empty and expr is bounded from below i ∗this, in which case
the infimum value is computed.

Parameters

expr The linear expression to be minimized subject to ∗this;

inf_n The numerator of the infimum value;

inf_d The denominator of the infimum value;

minimum true if the infimum value can be reached in this.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from below, false is returned and inf_n, inf_d and
minimum are left untouched.

10.41.3.8 template<typename D1 , typename D2 , typename R > bool Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::minimize (const
Linear_Expression & expr, Coefficient & inf_n, Coefficient & inf_d, bool &
minimum, Generator & point) const

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value and a point where expr reaches it are computed.

Parameters

expr The linear expression to be minimized subject to ∗this;

inf_n The numerator of the infimum value;

inf_d The denominator of the infimum value;

minimum true if the infimum value can be reached in this.

point When minimization succeeds, will be assigned a generator point where expr reaches its infi-
mum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from below, false is returned and inf_n, inf_d, minimum
and point are left untouched.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 374

10.41.3.9 template<typename D1 , typename D2 , typename R > bool Parma_-
Polyhedra_Library::Partially_Reduced_Product< D1, D2, R >::contains (const
Partially_Reduced_Product< D1, D2, R > & y) const [inline]

Returns true if and only if each component of ∗this contains the corresponding component of y.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.41.3.10 template<typename D1 , typename D2 , typename R > bool Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::strictly_contains (const
Partially_Reduced_Product< D1, D2, R > & y) const [inline]

Returns true if and only if each component of ∗this strictly contains the corresponding component of
y.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.41.3.11 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::add_constraint (const
Constraint & c) [inline]

Adds constraint c to ∗this.

Exceptions

std::invalid_argument Thrown if ∗this and c are dimension-incompatible.

10.41.3.12 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::refine_with_constraint (const
Constraint & c) [inline]

Use the constraint c to refine ∗this.

Parameters

c The constraint to be used for refinement.

Exceptions

std::invalid_argument Thrown if ∗this and c are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 375

10.41.3.13 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::add_congruence (const
Congruence & cg) [inline]

Adds a copy of congruence cg to ∗this.

Exceptions

std::invalid_argument Thrown if ∗this and congruence cg are dimension-incompatible.

10.41.3.14 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::refine_with_congruence (const
Congruence & cg) [inline]

Use the congruence cg to refine ∗this.

Parameters

cg The congruence to be used for refinement.

Exceptions

std::invalid_argument Thrown if ∗this and cg are dimension-incompatible.

10.41.3.15 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::add_congruences (const
Congruence_System & cgs) [inline]

Adds a copy of the congruences in cgs to ∗this.

Parameters

cgs The congruence system to be added.

Exceptions

std::invalid_argument Thrown if ∗this and cgs are dimension-incompatible.

10.41.3.16 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::refine_with_congruences (const
Congruence_System & cgs) [inline]

Use the congruences in cgs to refine ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 376

Parameters

cgs The congruences to be used for refinement.

Exceptions

std::invalid_argument Thrown if ∗this and cgs are dimension-incompatible.

10.41.3.17 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::add_recycled_congruences (
Congruence_System & cgs)

Adds the congruences in cgs to ∗this.

Parameters

cgs The congruence system to be added that may be recycled.

Exceptions

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible.

Warning

The only assumption that can be made about cgs upon successful or exceptional return is that it can
be safely destroyed.

10.41.3.18 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::add_constraints (const
Constraint_System & cs) [inline]

Adds a copy of the constraint system in cs to ∗this.

Parameters

cs The constraint system to be added.

Exceptions

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible.

10.41.3.19 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::refine_with_constraints (const
Constraint_System & cs) [inline]

Use the constraints in cs to refine ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 377

Parameters

cs The constraints to be used for refinement.

Exceptions

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible.

10.41.3.20 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::add_recycled_constraints (
Constraint_System & cs)

Adds the constraint system in cs to ∗this.

Parameters

cs The constraint system to be added that may be recycled.

Exceptions

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible.

Warning

The only assumption that can be made about cs upon successful or exceptional return is that it can be
safely destroyed.

10.41.3.21 template<typename D1 , typename D2 , typename R > void
Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R >::unconstrain (
Variable var) [inline]

Computes the cylindrification of ∗this with respect to space dimension var, assigning the result to
∗this.

Parameters

var The space dimension that will be unconstrained.

Exceptions

std::invalid_argument Thrown if var is not a space dimension of ∗this.

10.41.3.22 template<typename D1 , typename D2 , typename R > void
Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R >::unconstrain (
const Variables_Set & vars) [inline]

Computes the cylindrification of ∗this with respect to the set of space dimensions vars, assigning the
result to ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 378

Parameters

vars The set of space dimension that will be unconstrained.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with one of the Variable objects
contained in vars.

10.41.3.23 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::intersection_assign (const
Partially_Reduced_Product< D1, D2, R > & y) [inline]

Assigns to ∗this the componentwise intersection of ∗this and y.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.41.3.24 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::upper_bound_assign (const
Partially_Reduced_Product< D1, D2, R > & y) [inline]

Assigns to ∗this an upper bound of ∗this and y computed on the corresponding components.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.41.3.25 template<typename D1 , typename D2 , typename R > bool Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::upper_bound_assign_if_exact (
const Partially_Reduced_Product< D1, D2, R > & y) [inline]

Assigns to ∗this an upper bound of ∗this and y computed on the corresponding components. If it is
exact on each of the components of ∗this, true is returned, otherwise false is returned.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.41.3.26 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::difference_assign (const
Partially_Reduced_Product< D1, D2, R > & y) [inline]

Assigns to ∗this an approximation of the set-theoretic difference of ∗this and y.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 379

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.41.3.27 template<typename D1 , typename D2 , typename R > void
Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R >::affine_image (
Variable var, const Linear_Expression & expr, Coefficient_traits::const_reference
denominator = Coefficient_one()) [inline]

Assigns to ∗this the affine image of this under the function mapping variable var to the affine expres-
sion specified by expr and denominator.

Parameters

var The variable to which the affine expression is assigned;
expr The numerator of the affine expression;
denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this.

10.41.3.28 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::affine_preimage (Variable var,
const Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one()) [inline]

Assigns to ∗this the affine preimage of ∗this under the function mapping variable var to the affine
expression specified by expr and denominator.

Parameters

var The variable to which the affine expression is substituted;
expr The numerator of the affine expression;
denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this.

10.41.3.29 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::generalized_affine_image
(Variable var, Relation_Symbol relsym, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one())
[inline]

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 380

Assigns to ∗this the image of ∗this with respect to the generalized affine relation var′ ./ expr
denominator ,

where ./ is the relation symbol encoded by relsym (see also generalized affine relation.).

Parameters

var The left hand side variable of the generalized affine relation;

relsym The relation symbol;

expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression (optional argument with default
value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this or if ∗this is a C_Polyhedron
and relsym is a strict relation symbol.

10.41.3.30 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::generalized_affine_preimage
(Variable var, Relation_Symbol relsym, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one())
[inline]

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation var′ ./
expr

denominator , where ./ is the relation symbol encoded by relsym. (see also generalized affine relation.).

Parameters

var The left hand side variable of the generalized affine relation;

relsym The relation symbol;

expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression (optional argument with default
value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this or if ∗this is a C_Polyhedron
and relsym is a strict relation symbol.

10.41.3.31 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::generalized_affine_image (const
Linear_Expression & lhs, Relation_Symbol relsym, const Linear_Expression & rhs)
[inline]

Assigns to ∗this the image of ∗this with respect to the generalized affine relation lhs′ ./ rhs, where ./
is the relation symbol encoded by relsym. (see also generalized affine relation.).

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 381

Parameters

lhs The left hand side affine expression;

relsym The relation symbol;

rhs The right hand side affine expression.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with lhs or rhs or if ∗this is
a C_Polyhedron and relsym is a strict relation symbol.

10.41.3.32 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::generalized_affine_preimage (
const Linear_Expression & lhs, Relation_Symbol relsym, const Linear_Expression &
rhs) [inline]

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation lhs′ ./ rhs, where
./ is the relation symbol encoded by relsym. (see also generalized affine relation.).

Parameters

lhs The left hand side affine expression;

relsym The relation symbol;

rhs The right hand side affine expression.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with lhs or rhs or if ∗this is
a C_Polyhedron and relsym is a strict relation symbol.

10.41.3.33 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::bounded_affine_image (
Variable var, const Linear_Expression & lb_expr, const Linear_Expression &
ub_expr, Coefficient_traits::const_reference denominator = Coefficient_one())
[inline]

Assigns to ∗this the image of ∗this with respect to the bounded affine relation lb_expr
denominator ≤ var′ ≤

ub_expr
denominator .

Parameters

var The variable updated by the affine relation;

lb_expr The numerator of the lower bounding affine expression;

ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 382

Exceptions

std::invalid_argument Thrown if denominator is zero or if lb_expr (resp., ub_expr) and
∗this are dimension-incompatible or if var is not a space dimension of ∗this.

10.41.3.34 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::bounded_affine_preimage
(Variable var, const Linear_Expression & lb_expr, const Linear_Expression &
ub_expr, Coefficient_traits::const_reference denominator = Coefficient_one())
[inline]

Assigns to ∗this the preimage of ∗thiswith respect to the bounded affine relation lb_expr
denominator ≤ var′ ≤

ub_expr
denominator .

Parameters

var The variable updated by the affine relation;

lb_expr The numerator of the lower bounding affine expression;

ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if lb_expr (resp., ub_expr) and
∗this are dimension-incompatible or if var is not a space dimension of ∗this.

10.41.3.35 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::time_elapse_assign (const
Partially_Reduced_Product< D1, D2, R > & y) [inline]

Assigns to ∗this the result of computing the time-elapse between ∗this and y. (See also time-elapse.).

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.41.3.36 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::widening_assign (const
Partially_Reduced_Product< D1, D2, R > & y, unsigned ∗ tp = NULL) [inline]

Assigns to ∗this the result of computing the "widening" between ∗this and y.

This widening uses either the congruence or generator systems depending on which of the systems describ-
ing x and y are up to date and minimized.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 383

Parameters

y A product that must be contained in ∗this;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.41.3.37 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::drop_some_non_integer_points (
Complexity_Class complexity = ANY_COMPLEXITY) [inline]

Possibly tightens ∗this by dropping some points with non-integer coordinates.

Parameters

complexity The maximal complexity of any algorithms used.

Note

Currently there is no optimality guarantee, not even if complexity is ANY_COMPLEXITY.

10.41.3.38 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::drop_some_non_integer_points (
const Variables_Set & vars, Complexity_Class complexity = ANY_COMPLEXITY)
[inline]

Possibly tightens ∗this by dropping some points with non-integer coordinates for the space dimensions
corresponding to vars.

Parameters

vars Points with non-integer coordinates for these variables/space-dimensions can be discarded.

complexity The maximal complexity of any algorithms used.

Note

Currently there is no optimality guarantee, not even if complexity is ANY_COMPLEXITY.

10.41.3.39 template<typename D1 , typename D2 , typename R > void
Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R
>::add_space_dimensions_and_embed (dimension_type m) [inline]

Adds m new space dimensions and embeds the components of ∗this in the new vector space.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 384

Parameters

m The number of dimensions to add.

Exceptions

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension().

10.41.3.40 template<typename D1 , typename D2 , typename R > void
Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R
>::add_space_dimensions_and_project (dimension_type m) [inline]

Adds m new space dimensions and does not embed the components in the new vector space.

Parameters

m The number of space dimensions to add.

Exceptions

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension().

10.41.3.41 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::concatenate_assign (const
Partially_Reduced_Product< D1, D2, R > & y) [inline]

Assigns to the first (resp., second) component of ∗this the "concatenation" of the first (resp., second)
components of ∗this and y, taken in this order. See also Concatenating Polyhedra.

Exceptions

std::length_error Thrown if the concatenation would cause the vector space to exceed dimension
max_space_dimension().

10.41.3.42 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::remove_space_dimensions (
const Variables_Set & vars) [inline]

Removes all the specified dimensions from the vector space.

Parameters

vars The set of Variable objects corresponding to the space dimensions to be removed.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with one of the Variable objects
contained in vars.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 385

10.41.3.43 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R>::remove_higher_space_dimensions
(dimension_type new_dimension) [inline]

Removes the higher dimensions of the vector space so that the resulting space will have dimension new_-
dimension.

Exceptions

std::invalid_argument Thrown if new_dimensions is greater than the space dimension of ∗this.

10.41.3.44 template<typename D1 , typename D2 , typename R > template<typename
Partial_Function > void Parma_Polyhedra_Library::Partially_Reduced_Product<
D1, D2, R >::map_space_dimensions (const Partial_Function & pfunc) [inline]

Remaps the dimensions of the vector space according to a partial function.

If pfunc maps only some of the dimensions of ∗this then the rest will be projected away.

If the highest dimension mapped to by pfunc is higher than the highest dimension in ∗this then the
number of dimensions in this will be increased to the highest dimension mapped to by pfunc.

Parameters

pfunc The partial function specifying the destiny of each space dimension.

The template class Partial_Function must provide the following methods.

bool has_empty_codomain() const

returns true if and only if the represented partial function has an empty codomain (i.e., it is always
undefined). The has_empty_codomain() method will always be called before the methods below.
However, if has_empty_codomain() returns true, none of the functions below will be called.

dimension_type max_in_codomain() const

returns the maximum value that belongs to the codomain of the partial function. The max_in_-
codomain() method is called at most once.

bool maps(dimension_type i, dimension_type& j) const

Let f be the represented function and k be the value of i. If f is defined in k, then f(k) is assigned to
j and true is returned. If f is undefined in k, then false is returned. This method is called at most n
times, where n is the dimension of the vector space enclosing ∗this.

The result is undefined if pfunc does not encode a partial function with the properties described in speci-
fication of the mapping operator.

10.41.3.45 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::expand_space_dimension (
Variable var, dimension_type m) [inline]

Creates m copies of the space dimension corresponding to var.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.41 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 386

Parameters

var The variable corresponding to the space dimension to be replicated;
m The number of replicas to be created.

Exceptions

std::invalid_argument Thrown if var does not correspond to a dimension of the vector space.
std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed

dimension max_space_dimension().

If ∗this has space dimension n, with n > 0, and var has space dimension k ≤ n, then the k-th space
dimension is expanded to m new space dimensions n, n+ 1, . . . , n+m− 1.

10.41.3.46 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::fold_space_dimensions (const
Variables_Set & vars, Variable dest) [inline]

Folds the space dimensions in vars into dest.

Parameters

vars The set of Variable objects corresponding to the space dimensions to be folded;
dest The variable corresponding to the space dimension that is the destination of the folding operation.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with dest or with one of the
Variable objects contained in vars. Also thrown if dest is contained in vars.

If ∗this has space dimension n, with n > 0, dest has space dimension k ≤ n, vars is a set of variables
whose maximum space dimension is also less than or equal to n, and dest is not a member of vars, then
the space dimensions corresponding to variables in vars are folded into the k-th space dimension.

10.41.3.47 template<typename D1 , typename D2 , typename R > int32_t
Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R >::hash_code (
) const [inline]

Returns a 32-bit hash code for ∗this.

If x and y are such that x == y, then x.hash_code() == y.hash_code().

10.41.4 Friends And Related Function Documentation

10.41.4.1 template<typename D1 , typename D2 , typename R > bool operator== (const
Partially_Reduced_Product< D1, D2, R > & x, const Partially_Reduced_Product< D1,
D2, R > & y) [friend]

Returns true if and only if the components of x and y are pairwise equal.

Note that x and y may be dimension-incompatible: in those cases, the value false is returned.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.42 Parma_Polyhedra_Library::PIP_Decision_Node Class Reference 387

10.41.4.2 template<typename D1 , typename D2 , typename R > std::ostream & operator<<
(std::ostream & s, const Partially_Reduced_Product< D1, D2, R > & pd)
[related]

Output operator.

Writes a textual representation of dp on s.

10.41.4.3 template<typename D1 , typename D2 , typename R > bool operator!= (const
Partially_Reduced_Product< D1, D2, R > & x, const Partially_Reduced_Product< D1,
D2, R > & y) [related]

Returns true if and only if the components of x and y are not pairwise equal.

Note that x and y may be dimension-incompatible: in those cases, the value true is returned.

10.41.4.4 template<typename D1 , typename D2 , typename R > void swap (
Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > & x,
Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > & y)
[related]

Specializes std::swap.

The documentation for this class was generated from the following file:

• ppl.hh

10.42 Parma_Polyhedra_Library::PIP_Decision_Node Class Reference

A tree node representing a decision in the space of solutions.

#include <ppl.hh>

Inherits Parma_Polyhedra_Library::PIP_Tree_Node.

Public Member Functions

• virtual PIP_Tree_Node ∗ clone () const
Returns a pointer to a dynamically-allocated copy of ∗this.

• virtual ∼PIP_Decision_Node ()
Destructor.

• virtual bool OK () const
Returns true if and only if ∗this is well formed.

• virtual const PIP_Decision_Node ∗ as_decision () const
Returns this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.42 Parma_Polyhedra_Library::PIP_Decision_Node Class Reference 388

• const PIP_Tree_Node ∗ child_node (bool b) const
Returns a const pointer to the b (true or false) branch of ∗this.

• PIP_Tree_Node ∗ child_node (bool b)
Returns a pointer to the b (true or false) branch of ∗this.

• void ascii_dump (std::ostream &s) const
Dumps to s an ASCII representation of ∗this.

• bool ascii_load (std::istream &s)
Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets ∗this
accordingly. Returns true if successful, false otherwise.

• virtual memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• virtual memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

Protected Member Functions

• PIP_Decision_Node (const PIP_Decision_Node &y)
Copy constructor.

• virtual void update_tableau (const PIP_Problem &pip, dimension_type external_space_dim,
dimension_type first_pending_constraint, const Constraint_Sequence &input_cs, const Variables_-
Set ¶meters)

Implements pure virtual method PIP_Tree_Node::update_tableau.

• virtual PIP_Tree_Node ∗ solve (const PIP_Problem &pip, bool check_feasible_context, const Matrix
&context, const Variables_Set ¶ms, dimension_type space_dim)

Implements pure virtual method PIP_Tree_Node::solve.

• virtual void print_tree (std::ostream &s, unsigned indent, const std::vector< bool > &pip_dim_is_-
param, dimension_type first_art_dim) const

Prints on s the tree rooted in ∗this.

10.42.1 Detailed Description

A tree node representing a decision in the space of solutions.

The documentation for this class was generated from the following file:

• ppl.hh

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.43 Parma_Polyhedra_Library::PIP_Problem Class Reference 389

10.43 Parma_Polyhedra_Library::PIP_Problem Class Reference

A Parametric Integer (linear) Programming problem.

#include <ppl.hh>

Public Types

• enum Control_Parameter_Name { CUTTING_STRATEGY, PIVOT_ROW_STRATEGY }
Possible names for PIP_Problem control parameters.

• enum Control_Parameter_Value {

CUTTING_STRATEGY_FIRST, CUTTING_STRATEGY_DEEPEST, CUTTING_STRATEGY_-
ALL, PIVOT_ROW_STRATEGY_FIRST,

PIVOT_ROW_STRATEGY_MAX_COLUMN }
Possible values for PIP_Problem control parameters.

• typedef Constraint_Sequence::const_iterator const_iterator
A type alias for the read-only iterator on the constraints defining the feasible region.

Public Member Functions

• PIP_Problem (dimension_type dim=0)
Builds a trivial PIP problem.

• template<typename In >

PIP_Problem (dimension_type dim, In first, In last, const Variables_Set &p_vars)
Builds a PIP problem having space dimension dim from the sequence of constraints in the range
[first, last); those dimensions whose indices occur in p_vars are interpreted as parameters.

• PIP_Problem (const PIP_Problem &y)
Ordinary copy-constructor.

• ∼PIP_Problem ()
Destructor.

• PIP_Problem & operator= (const PIP_Problem &y)
Assignment operator.

• dimension_type space_dimension () const
Returns the space dimension of the PIP problem.

• const Variables_Set & parameter_space_dimensions () const
Returns a set containing all the variables’ indexes representing the parameters of the PIP problem.

• const_iterator constraints_begin () const
Returns a read-only iterator to the first constraint defining the feasible region.

• const_iterator constraints_end () const

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.43 Parma_Polyhedra_Library::PIP_Problem Class Reference 390

Returns a past-the-end read-only iterator to the sequence of constraints defining the feasible region.

• void clear ()
Resets ∗this to be equal to the trivial PIP problem.

• void add_space_dimensions_and_embed (dimension_type m_vars, dimension_type m_params)
Adds m_vars + m_params new space dimensions and embeds the old PIP problem in the new vector
space.

• void add_to_parameter_space_dimensions (const Variables_Set &p_vars)
Sets the space dimensions whose indexes which are in set p_vars to be parameter space dimensions.

• void add_constraint (const Constraint &c)
Adds a copy of constraint c to the PIP problem.

• void add_constraints (const Constraint_System &cs)
Adds a copy of the constraints in cs to the PIP problem.

• bool is_satisfiable () const
Checks satisfiability of ∗this.

• PIP_Problem_Status solve () const
Optimizes the PIP problem.

• PIP_Tree solution () const
Returns a feasible solution for ∗this, if it exists.

• PIP_Tree optimizing_solution () const
Returns an optimizing solution for ∗this, if it exists.

• bool OK () const
Checks if all the invariants are satisfied.

• void print_solution (std::ostream &s, unsigned indent=0) const
Prints on s the solution computed for ∗this.

• void ascii_dump () const
Writes to std::cerr an ASCII representation of ∗this.

• void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of ∗this.

• void print () const
Prints ∗this to std::cerr using operator<<.

• bool ascii_load (std::istream &s)
Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets ∗this
accordingly. Returns true if successful, false otherwise.

• memory_size_type total_memory_in_bytes () const

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.43 Parma_Polyhedra_Library::PIP_Problem Class Reference 391

Returns the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• void swap (PIP_Problem &y)
Swaps ∗this with y.

• Control_Parameter_Value get_control_parameter (Control_Parameter_Name name) const
Returns the value of control parameter name.

• void set_control_parameter (Control_Parameter_Value value)
Sets control parameter value.

• void set_big_parameter_dimension (dimension_type big_dim)
Sets the dimension for the big parameter to big_dim.

• dimension_type get_big_parameter_dimension () const
Returns the space dimension for the big parameter.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a PIP_Problem can handle.

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &s, const PIP_Problem &p)
Output operator.

• void swap (Parma_Polyhedra_Library::PIP_Problem &x, Parma_Polyhedra_Library::PIP_Problem
&y)

Specializes std::swap.

10.43.1 Detailed Description

A Parametric Integer (linear) Programming problem. An object of this class encodes a parametric integer
(linear) programming problem. The PIP problem is specified by providing:

• the dimension of the vector space;

• the subset of those dimensions of the vector space that are interpreted as integer parameters (the other
space dimensions are interpreted as non-parameter integer variables);

• a finite set of linear equality and (strict or non-strict) inequality constraints involving variables and/or
parameters; these constraints are used to define:

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.43 Parma_Polyhedra_Library::PIP_Problem Class Reference 392

– the feasible region, if they involve one or more problem variable (and maybe some parameters);

– the initial context, if they only involve the parameters;

• optionally, the so-called big parameter, i.e., a problem parameter to be considered arbitrarily big.

Note that all problem variables and problem parameters are assumed to take non-negative integer values,
so that there is no need to specify non-negativity constraints.

The class provides support for the (incremental) solution of the PIP problem based on variations of the
revised simplex method and on Gomory cut generation techniques.

The solution for a PIP problem is the lexicographic minimum of the integer points of the feasible region,
expressed in terms of the parameters. As the problem to be solved only involves non-negative variables
and parameters, the problem will always be either unfeasible or optimizable.

As the feasibility and the solution value of a PIP problem depend on the values of the parameters, the
solution is a binary decision tree, dividing the context parameter set into subsets. The tree nodes are of two
kinds:

• Decision nodes. These are internal tree nodes encoding one or more linear tests on the parameters;
if all the tests are satisfied, then the solution is the node’s true child; otherwise, the solution is the
node’s false child;

• Solution nodes. These are leaf nodes in the tree, encoding the solution of the problem in the current
context subset, where each variable is defined in terms of a linear expression of the parameters.
Solution nodes also optionally embed a set of parameter constraints: if all these constraints are
satisfied, the solution is described by the node, otherwise the problem has no solution.

It may happen that a decision node has no false child. This means that there is no solution if at least one
of the corresponding constraints is not satisfied. Decision nodes having two or more linear tests on the
parameters cannot have a false child. Decision nodes always have a true child.

Both kinds of tree nodes may also contain the definition of extra parameters which are artificially introduced
by the solver to enforce an integral solution. Such artificial parameters are defined by the integer division
of a linear expression on the parameters by an integer coefficient.

By exploiting the incremental nature of the solver, it is possible to reuse part of the computational work
already done when solving variants of a given PIP_Problem: currently, incremental resolution supports the
addition of space dimensions, the addition of parameters and the addition of constraints.

Example problem

An example PIP problem can be defined the following:

3*j >= -2*i+8
j <= 4*i - 4
i <= n
j <= m

where i and j are the problem variables and n and m are the problem parameters. This problem can
be optimized; the resulting solution tree may be represented as follows:

if 7*n >= 10 then
if 7*m >= 12 then

{i = 2 ; j = 2}
else

Parameter P = (m) div 2
if 2*n + 3*m >= 8 then
{i = -m - P + 4 ; j = m}

else
|

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.43 Parma_Polyhedra_Library::PIP_Problem Class Reference 393

else
|

The solution tree starts with a decision node depending on the context constraint 7∗n >= 10. If this
constraint is satisfied by the values assigned to the problem parameters, then the (textually first) then
branch is taken, reaching the true child of the root node (which in this case is another decision node);
otherwise, the (textually last) else branch is taken, for which there is no corresponding false child.

The ⊥ notation, also called bottom, denotes the lexicographic minimum of an empty set of solutions,
here meaning the corresponding subproblem is unfeasible.

Notice that a tree node may introduce new (non-problem) parameters, as is the case for parameter P
in the (textually first) else branch above. These artificial parameters are only meaningful inside the
subtree where they are defined and are used to define the parametric values of the problem variables in
solution nodes (e.g., the {i,j} vector in the textually third then branch).

Context restriction

The above solution is correct in an unrestricted initial context, meaning all possible values are allowed
for the parameters. If we restrict the context with the following parameter inequalities:

m >= n
n >= 5

then the resulting optimizing tree will be a simple solution node:

{i = 2 ; j = 2}

Creating the PIP_Problem object

The PIP_Problem object corresponding to the above example can be created as follows:

Variable i(0);
Variable j(1);
Variable n(2);
Variable m(3);
Variables_Set params(n, m);
Constraint_System cs;
cs.insert(3*j >= -2*i+8);
cs.insert(j <= 4*i - 4);
cs.insert(j <= m);
cs.insert(i <= n);
PIP_Problem pip(cs.space_dimension(), cs.begin(), cs.end(), params);

If you want to restrict the initial context, simply add the parameter constraints the same way as for
normal constraints.

cs.insert(m >= n);
cs.insert(n >= 5);

Solving the problem

Once the PIP_Problem object has been created, you can start the resolution of the problem by calling
the solve() method:

PIP_Problem_Status status = pip.solve();

where the returned status indicates if the problem has been optimized or if it is unfeasible for any
possible configuration of the parameter values. The resolution process is also started if an attempt is
made to get its solution, as follows:

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.43 Parma_Polyhedra_Library::PIP_Problem Class Reference 394

const PIP_Tree_Node* node = pip.solution();

In this case, an unfeasible problem will result in an empty solution tree, i.e., assigning a null pointer to
node.

Printing the solution tree

A previously computed solution tree may be printed as follows:

pip.print_solution(std::cout);

This will produce the following output (note: variables and parameters are printed according to the
default output function; see Variable::set_output_function):

if 7*C >= 10 then
if 7*D >= 12 then

{2 ; 2}
else

Parameter E = (D) div 2
if 2*C + 3*D >= 8 then
{-D - E + 4 ; D}

else
|

else
|

Spanning the solution tree

A parameter assignment for a PIP problem binds each of the problem parameters to a non-negative
integer value. After fixing a parameter assignment, the “spanning” of the PIP problem solution tree
refers to the process whereby the solution tree is navigated, starting from the root node: the value of
artificial parameters is computed according to the parameter assignment and the node’s contraints are
evaluated, thereby descending in either the true or the false subtree of decision nodes and eventually
reaching a solution node or a bottom node. If a solution node is found, each of the problem variables
is provided with a parametric expression, which can be evaluated to a fixed value using the given
parameter assignment and the computed values for artificial parameters.

The coding of the spanning process can be done as follows. First, the root of the PIP solution tree is
retrieved:

const PIP_Tree_Node* node = pip.solution();

If node represents an unfeasible solution (i.e., ⊥), its value will be 0. For a non-null tree
node, the virtual methods PIP_Tree_Node::as_decision() and PIP_Tree_Node::as_-
solution() can be used to check whether the node is a decision or a solution node:

const PIP_Solution_Node* sol = node->as_solution();
if (sol != 0) {

// The node is a solution node
...

}
else {

// The node is a decision node
const PIP_Decision_Node* dec = node->as_decision();
...

}

The true (resp., false) child node of a Decision Node may be accessed by using method PIP_-
Decision_Node::child_node(bool), passing true (resp., false) as the input argument.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.43 Parma_Polyhedra_Library::PIP_Problem Class Reference 395

Artificial parameters

A PIP_Tree_Node::Artificial_Parameter object represents the result of the integer division of a
Linear_Expression (on the other parameters, including the previously-defined artificials) by an in-
teger denominator (a Coefficient object). The dimensions of the artificial parameters (if any) in a tree
node have consecutive indices starting from dim+1, where the value of dim is computed as follows:

• for the tree root node, dim is the space dimension of the PIP_Problem;

• for any other node of the tree, it is recusrively obtained by adding the value of dim computed for
the parent node to the number of artificial parameters defined in the parent node.

Since the numbering of dimensions for artificial parameters follows the rule above, the addition of new
problem variables and/or new problem parameters to an already solved PIP_Problem object (as done
when incrementally solving a problem) will result in the systematic renumbering of all the existing
artificial parameters.

Node constraints

All kind of tree nodes can contain context constraints. Decision nodes always contain at least one of
them. The node’s local constraint system can be obtained using method PIP_Tree_Node::constraints.
These constraints only involve parameters, including both the problem parameters and the artificial
parameters that have been defined in nodes occurring on the path from the root node to the current
node. The meaning of these constraints is as follows:

• On a decision node, if all tests in the constraints are true, then the solution is the true child;
otherwise it is the false child.

• On a solution node, if the (possibly empty) system of constraints evaluates to true for a given
parameter assignment, then the solution is described by the node; otherwise the solution is ⊥
(i.e., the problem is unfeasible for that parameter assignment).

Getting the optimal values for the variables

After spanning the solution tree using the given parameter assignment, if a solution node has been
reached, then it is possible to retrieve the parametric expression for each of the problem variables using
method PIP_Solution_Node::parametric_values. The retrieved expression will be defined in terms of
all the parameters (problem parameters and artificial parameters defined along the path).

Solving maximization problems

You can solve a lexicographic maximization problem by reformulating its constraints using variable
substitution. Proceed the following steps:

• Create a big parameter (see PIP_Problem::set_big_parameter_dimension), which we will callM .

• Reformulate each of the maximization problem constraints by substituting each xi variable with
an expression of the form M − x′i, where the x′i variables are positive variables to be minimized.

• Solve the lexicographic minimum for the x′ variable vector.

• In the solution expressions, the values of the x′ variables will be expressed in the form: x′i =
M − xi. To get back the value of the expression of each xi variable, just apply the formula:
xi = M − x′i.

Note that if the resulting expression of one of the x′i variables is not in the x′i = M − xi form, this
means that the sign-unrestricted problem is unbounded.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.43 Parma_Polyhedra_Library::PIP_Problem Class Reference 396

You can choose to maximize only a subset of the variables while minimizing the other variables. In
that case, just apply the variable substitution method on the variables you want to be maximized. The
variable optimization priority will still be in lexicographic order.

Example: consider you want to find the lexicographic maximum of the (x, y) vector, under the con-
straints: {

y ≥ 2x− 4
y ≤ −x+ p

where p is a parameter.

After variable substitution, the constraints become:{
M − y ≥ 2M − 2x− 4
M − y ≤ −M + x+ p

The code for creating the corresponding problem object is the following:

Variable x(0);
Variable y(1);
Variable p(2);
Variable M(3);
Variables_Set params(p, M);
Constraint_System cs;
cs.insert(M - y >= 2*M - 2*x - 4);
cs.insert(M - y <= -M + x + p);
PIP_Problem pip(cs.space_dimension(), cs.begin(), cs.end(), params);
pip.set_big_parameter_dimension(3); // M is the big parameter

Solving the problem provides the following solution:

Parameter E = (C + 1) div 3
{D - E - 1 ; -C + D + E + 1}

Under the notations above, the solution is:{
x′ = M −

⌊
p+1
3

⌋
− 1

y′ = M − p+
⌊
p+1
3

⌋
+ 1

Performing substitution again provides us with the values of the original variables:{
x =

⌊
p+1
3

⌋
+ 1

y = p−
⌊
p+1
3

⌋
− 1

Allowing variables to be arbitrarily signed

You can deal with arbitrarily signed variables by reformulating the constraints using variable substitu-
tion. Proceed the following steps:

• Create a big parameter (see PIP_Problem::set_big_parameter_dimension), which we will callM .

• Reformulate each of the maximization problem constraints by substituting each xi variable with
an expression of the form x′i −M , where the x′i variables are positive.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.43 Parma_Polyhedra_Library::PIP_Problem Class Reference 397

• Solve the lexicographic minimum for the x′ variable vector.

• The solution expression can be read in the form:

• In the solution expressions, the values of the x′ variables will be expressed in the form: x′i =
xi+M . To get back the value of the expression of each signed xi variable, just apply the formula:
xi = x′i −M .

Note that if the resulting expression of one of the x′i variables is not in the x′i = xi + M form, this
means that the sign-unrestricted problem is unbounded.

You can choose to define only a subset of the variables to be sign-unrestricted. In that case, just apply
the variable substitution method on the variables you want to be sign-unrestricted.

Example: consider you want to find the lexicographic minimum of the (x, y) vector, where the x and
y variables are sign-unrestricted, under the constraints:{

y ≥ −2x− 4
2y ≤ x+ 2p

where p is a parameter.

After variable substitution, the constraints become:{
y′ −M ≥ −2x′ + 2M − 4
2y′ − 2M ≤ x′ −M + 2p

The code for creating the corresponding problem object is the following:

Variable x(0);
Variable y(1);
Variable p(2);
Variable M(3);
Variables_Set params(p, M);
Constraint_System cs;
cs.insert(y - M >= -2*x + 2*M - 4);
cs.insert(2*y - 2*M <= x - M + 2*p);
PIP_Problem pip(cs.space_dimension(), cs.begin(), cs.end(), params);
pip.set_big_parameter_dimension(3); // M is the big parameter

Solving the problem provides the following solution:

Parameter E = (2*C + 3) div 5
{D - E - 1 ; D + 2*E - 2}

Under the notations above, the solution is:{
x′ = M −

⌊
2p+3

5

⌋
− 1

y′ = M + 2
⌊

2p+3
5

⌋
− 2

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.43 Parma_Polyhedra_Library::PIP_Problem Class Reference 398

Performing substitution again provides us with the values of the original variables:{
x = −

⌊
2p+3

5

⌋
− 1

y = 2
⌊

2p+3
5

⌋
− 2

Allowing parameters to be arbitrarily signed

You can consider a parameter p arbitrarily signed by replacing p with p+− p−, where both p+ and p−

are positive parameters. To represent a set of arbitrarily signed parameters, replace each parameter pi
with p+

i − p−, where −p− is the minimum negative value of all parameters.

Minimizing a linear cost function

Lexicographic solving can be used to find the parametric minimum of a linear cost function.

Suppose the variables are named x1, x2, . . . , xn, and the parameters p1, p2, . . . , pm. You can
minimize a linear cost function f(x2, . . . , xn, p1, . . . , pm) by simply adding the constraint x1 ≥
f(x2, . . . , xn, p1, . . . , pm) to the constraint system. As lexicographic minimization ensures x1 is min-
imized in priority, and because x1 is forced by a constraint to be superior or equal to the cost function,
optimal solutions of the problem necessarily ensure that the solution value of x1 is the optimal value
of the cost function.

10.43.2 Member Enumeration Documentation

10.43.2.1 enum Parma_Polyhedra_Library::PIP_Problem::Control_Parameter_Name

Possible names for PIP_Problem control parameters.

Enumerator:

CUTTING_STRATEGY Cutting strategy.

PIVOT_ROW_STRATEGY Pivot row strategy.

10.43.2.2 enum Parma_Polyhedra_Library::PIP_Problem::Control_Parameter_Value

Possible values for PIP_Problem control parameters.

Enumerator:

CUTTING_STRATEGY_FIRST Choose the first non-integer row.

CUTTING_STRATEGY_DEEPEST Choose row which generates the deepest cut.

CUTTING_STRATEGY_ALL Always generate all possible cuts.

PIVOT_ROW_STRATEGY_FIRST Choose the first row with negative parameter sign.

PIVOT_ROW_STRATEGY_MAX_COLUMN Choose the row which generates the lexico-maximal
pivot column.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.43 Parma_Polyhedra_Library::PIP_Problem Class Reference 399

10.43.3 Constructor & Destructor Documentation

10.43.3.1 Parma_Polyhedra_Library::PIP_Problem::PIP_Problem (dimension_type dim = 0)
[explicit]

Builds a trivial PIP problem.

A trivial PIP problem requires to compute the lexicographic minimum on a vector space under no con-
straints and with no parameters: due to the implicit non-negativity constraints, the origin of the vector
space is an optimal solution.

Parameters

dim The dimension of the vector space enclosing ∗this (optional argument with default value 0).

Exceptions

std::length_error Thrown if dim exceeds max_space_dimension().

10.43.3.2 template<typename In > Parma_Polyhedra_Library::PIP_Problem::PIP_Problem (
dimension_type dim, In first, In last, const Variables_Set & p_vars)

Builds a PIP problem having space dimension dim from the sequence of constraints in the range
[first, last); those dimensions whose indices occur in p_vars are interpreted as parameters.

Parameters

dim The dimension of the vector space (variables and parameters) enclosing ∗this.

first An input iterator to the start of the sequence of constraints.

last A past-the-end input iterator to the sequence of constraints.

p_vars The set of variables’ indexes that are interpreted as parameters.

Exceptions

std::length_error Thrown if dim exceeds max_space_dimension().

std::invalid_argument Thrown if the space dimension of a constraint in the sequence (resp., the pa-
rameter variables) is strictly greater than dim.

10.43.4 Member Function Documentation

10.43.4.1 void Parma_Polyhedra_Library::PIP_Problem::clear ()

Resets ∗this to be equal to the trivial PIP problem.

The space dimension is reset to 0.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.43 Parma_Polyhedra_Library::PIP_Problem Class Reference 400

10.43.4.2 void Parma_Polyhedra_Library::PIP_Problem::add_space_dimensions_and_embed (
dimension_type m_vars, dimension_type m_params)

Adds m_vars + m_params new space dimensions and embeds the old PIP problem in the new vector
space.

Parameters

m_vars The number of space dimensions to add that are interpreted as PIP problem variables (i.e.,
non parameters). These are added before adding the m_params parameters.

m_params The number of space dimensions to add that are interpreted as PIP problem parameters.
These are added after having added the m_vars problem variables.

Exceptions

std::length_error Thrown if adding m_vars + m_params new space dimensions would cause the
vector space to exceed dimension max_space_dimension().

The new space dimensions will be those having the highest indexes in the new PIP problem; they are
initially unconstrained.

10.43.4.3 void Parma_Polyhedra_Library::PIP_Problem::add_to_parameter_space_dimensions (
const Variables_Set & p_vars)

Sets the space dimensions whose indexes which are in set p_vars to be parameter space dimensions.

Exceptions

std::invalid_argument Thrown if some index in p_vars does not correspond to a space dimension
in ∗this.

10.43.4.4 void Parma_Polyhedra_Library::PIP_Problem::add_constraint (const Constraint & c
)

Adds a copy of constraint c to the PIP problem.

Exceptions

std::invalid_argument Thrown if the space dimension of c is strictly greater than the space dimension
of ∗this.

10.43.4.5 void Parma_Polyhedra_Library::PIP_Problem::add_constraints (const
Constraint_System & cs)

Adds a copy of the constraints in cs to the PIP problem.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.43 Parma_Polyhedra_Library::PIP_Problem Class Reference 401

Exceptions

std::invalid_argument Thrown if the space dimension of constraint system cs is strictly greater than
the space dimension of ∗this.

10.43.4.6 bool Parma_Polyhedra_Library::PIP_Problem::is_satisfiable () const

Checks satisfiability of ∗this.

Returns

true if and only if the PIP problem is satisfiable.

10.43.4.7 PIP_Problem_Status Parma_Polyhedra_Library::PIP_Problem::solve () const

Optimizes the PIP problem.

Returns

A PIP_Problem_Status flag indicating the outcome of the optimization attempt (unfeasible or opti-
mized problem).

10.43.4.8 PIP_Tree Parma_Polyhedra_Library::PIP_Problem::solution () const

Returns a feasible solution for ∗this, if it exists.

A null pointer is returned for an unfeasible PIP problem.

10.43.4.9 PIP_Tree Parma_Polyhedra_Library::PIP_Problem::optimizing_solution () const

Returns an optimizing solution for ∗this, if it exists.

A null pointer is returned for an unfeasible PIP problem.

10.43.4.10 void Parma_Polyhedra_Library::PIP_Problem::print_solution (std::ostream & s,
unsigned indent = 0) const

Prints on s the solution computed for ∗this.

Parameters

s The output stream.

indent An indentation parameter (default value 0).

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.44 Parma_Polyhedra_Library::PIP_Solution_Node Class Reference 402

Exceptions

std::logic_error Thrown if trying to print the solution when the PIP problem still has to be solved.

10.43.4.11 dimension_type Parma_Polyhedra_Library::PIP_Problem::get_big_parameter_-
dimension () const [inline]

Returns the space dimension for the big parameter.

If a big parameter was not set, returns not_a_dimension().

10.43.5 Friends And Related Function Documentation

10.43.5.1 std::ostream & operator<< (std::ostream & s, const PIP_Problem & p)
[related]

Output operator.

10.43.5.2 void swap (Parma_Polyhedra_Library::PIP_Problem & x,
Parma_Polyhedra_Library::PIP_Problem & y) [related]

Specializes std::swap.

The documentation for this class was generated from the following file:

• ppl.hh

10.44 Parma_Polyhedra_Library::PIP_Solution_Node Class Reference

A tree node representing part of the space of solutions.

#include <ppl.hh>

Inherits Parma_Polyhedra_Library::PIP_Tree_Node.

Classes

• struct No_Constraints
A tag type to select the alternative copy constructor.

Public Member Functions

• PIP_Solution_Node (const PIP_Problem ∗owner)
Constructor: builds a solution node owned by ∗owner.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.44 Parma_Polyhedra_Library::PIP_Solution_Node Class Reference 403

• virtual PIP_Tree_Node ∗ clone () const
Returns a pointer to a dynamically-allocated copy of ∗this.

• virtual ∼PIP_Solution_Node ()
Destructor.

• virtual bool OK () const
Returns true if and only if ∗this is well formed.

• virtual const PIP_Solution_Node ∗ as_solution () const
Returns this.

• const Linear_Expression & parametric_values (Variable var) const
Returns a parametric expression for the values of problem variable var.

• void ascii_dump (std::ostream &s) const
Dumps to s an ASCII representation of ∗this.

• bool ascii_load (std::istream &s)
Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets ∗this
accordingly. Returns true if successful, false otherwise.

• virtual memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• virtual memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

Protected Member Functions

• PIP_Solution_Node (const PIP_Solution_Node &y)
Copy constructor.

• PIP_Solution_Node (const PIP_Solution_Node &y, No_Constraints)
Alternative copy constructor.

• virtual void set_owner (const PIP_Problem ∗owner)
Sets the pointer to the PIP_Problem owning object.

• virtual bool check_ownership (const PIP_Problem ∗owner) const
Returns true if and only if all the nodes in the subtree rooted in ∗this is owned by ∗pip.

• virtual void update_tableau (const PIP_Problem &pip, dimension_type external_space_dim,
dimension_type first_pending_constraint, const Constraint_Sequence &input_cs, const Variables_-
Set ¶meters)

Implements pure virtual method PIP_Tree_Node::update_tableau.

• void update_solution (const std::vector< bool > &pip_dim_is_param) const
Update the solution values.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.44 Parma_Polyhedra_Library::PIP_Solution_Node Class Reference 404

• void update_solution () const
Helper method.

• virtual PIP_Tree_Node ∗ solve (const PIP_Problem &pip, bool check_feasible_context, const Matrix
&context, const Variables_Set ¶ms, dimension_type space_dim)

Implements pure virtual method PIP_Tree_Node::solve.

• void generate_cut (dimension_type i, Variables_Set ¶meters, Matrix &context, dimension_type
&space_dimension)

Generate a Gomory cut using non-integer tableau row i.

• virtual void print_tree (std::ostream &s, unsigned indent, const std::vector< bool > &pip_dim_is_-
param, dimension_type first_art_dim) const

Prints on s the tree rooted in ∗this.

10.44.1 Detailed Description

A tree node representing part of the space of solutions.

10.44.2 Constructor & Destructor Documentation

10.44.2.1 Parma_Polyhedra_Library::PIP_Solution_Node::PIP_Solution_Node (const
PIP_Solution_Node & y, No_Constraints) [protected]

Alternative copy constructor.

This constructor differs from the default copy constructor in that it will not copy the constraint system, nor
the artificial parameters.

10.44.3 Member Function Documentation

10.44.3.1 const Linear_Expression& Parma_Polyhedra_Library::PIP_Solution_-
Node::parametric_values (Variable var) const

Returns a parametric expression for the values of problem variable var.

The returned linear expression may involve problem parameters as well as artificial parameters.

Parameters

var The problem variable which is queried about.

Exceptions

std::invalid_argument Thrown if var is dimension-incompatible with the PIP_Problem owning this
solution node, or if var is a problem parameter.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.45 Parma_Polyhedra_Library::PIP_Tree_Node Class Reference 405

10.44.3.2 void Parma_Polyhedra_Library::PIP_Solution_Node::update_solution (const
std::vector< bool > & pip_dim_is_param) const [protected]

Update the solution values.

Parameters

pip_dim_is_param A vector of Boolean flags telling which PIP problem dimensions are problem
parameters. The size of the vector is equal to the PIP problem internal space dimension (i.e., no
artificial parameters).

10.44.3.3 void Parma_Polyhedra_Library::PIP_Solution_Node::generate_cut (dimension_type i,
Variables_Set & parameters, Matrix & context, dimension_type & space_dimension)
[protected]

Generate a Gomory cut using non-integer tableau row i.

Parameters

i row index in simplex tableau from which the cut is generated

parameters a std::set of the current parameter dimensions (including artificials); to be updated if a
new artificial parameter is to be created

context a set of linear inequalities on the parameters, in Matrix form; to be updated if a new artificial
parameter is to be created

space_dimension the current space dimension, including variables and all parameters; to be updated
if an extra parameter is to be created

The documentation for this class was generated from the following file:

• ppl.hh

10.45 Parma_Polyhedra_Library::PIP_Tree_Node Class Reference

A node of the PIP solution tree.

#include <ppl.hh>

Inherited by Parma_Polyhedra_Library::PIP_Decision_Node, and Parma_Polyhedra_Library::PIP_-
Solution_Node.

Classes

• class Artificial_Parameter
Artificial parameters in PIP solution trees.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.45 Parma_Polyhedra_Library::PIP_Tree_Node Class Reference 406

Public Types

• typedef std::vector< Artificial_Parameter > Artificial_Parameter_Sequence
A type alias for a sequence of Artificial_Parameter’s.

Public Member Functions

• virtual PIP_Tree_Node ∗ clone () const =0
Returns a pointer to a dynamically-allocated copy of ∗this.

• virtual ∼PIP_Tree_Node ()
Destructor.

• virtual bool OK () const
Returns true if and only if ∗this is well formed.

• virtual const PIP_Solution_Node ∗ as_solution () const
Returns this if ∗this is a solution node, 0 otherwise.

• virtual const PIP_Decision_Node ∗ as_decision () const
Returns this if ∗this is a decision node, 0 otherwise.

• const Constraint_System & constraints () const
Returns the system of parameter constraints controlling ∗this.

• Artificial_Parameter_Sequence::const_iterator art_parameter_begin () const
Returns a const_iterator to the beginning of local artificial parameters.

• Artificial_Parameter_Sequence::const_iterator art_parameter_end () const
Returns a const_iterator to the end of local artificial parameters.

• dimension_type art_parameter_count () const
Returns the number of local artificial parameters.

• void print (std::ostream &s, unsigned indent=0) const
Prints on s the tree rooted in ∗this.

• void ascii_dump (std::ostream &s) const
Dumps to s an ASCII representation of ∗this.

• bool ascii_load (std::istream &s)
Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets ∗this
accordingly. Returns true if successful, false otherwise.

• virtual memory_size_type total_memory_in_bytes () const =0
Returns the total size in bytes of the memory occupied by ∗this.

• virtual memory_size_type external_memory_in_bytes () const =0
Returns the size in bytes of the memory managed by ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.45 Parma_Polyhedra_Library::PIP_Tree_Node Class Reference 407

Protected Types

• typedef std::vector< Constraint > Constraint_Sequence
A type alias for a sequence of constraints.

Protected Member Functions

• PIP_Tree_Node (const PIP_Problem ∗owner)
Constructor: builds a node owned by ∗owner.

• PIP_Tree_Node (const PIP_Tree_Node &y)
Copy constructor.

• const PIP_Problem ∗ get_owner () const
Returns a pointer to the PIP_Problem owning object.

• virtual void set_owner (const PIP_Problem ∗owner)=0
Sets the pointer to the PIP_Problem owning object.

• virtual bool check_ownership (const PIP_Problem ∗owner) const =0
Returns true if and only if all the nodes in the subtree rooted in ∗this is owned by ∗pip.

• const PIP_Decision_Node ∗ parent () const
Returns a pointer to this node’s parent.

• void set_parent (const PIP_Decision_Node ∗p)
Set this node’s parent to ∗p.

• virtual void update_tableau (const PIP_Problem &pip, dimension_type external_space_dim,
dimension_type first_pending_constraint, const Constraint_Sequence &input_cs, const Variables_-
Set ¶meters)=0

Populates the parametric simplex tableau using external data.

• virtual PIP_Tree_Node ∗ solve (const PIP_Problem &pip, bool check_feasible_context, const Matrix
&context, const Variables_Set ¶ms, dimension_type space_dim)=0

Executes a parametric simplex on the tableau, under specified context.

• void add_constraint (const Row &x, const Variables_Set ¶meters)
Inserts a new parametric constraint in internal Row format.

• void parent_merge ()
Merges parent’s artificial parameters into ∗this.

• virtual void print_tree (std::ostream &s, unsigned indent, const std::vector< bool > &pip_dim_is_-
param, dimension_type first_art_dim) const

Prints on s the tree rooted in ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.45 Parma_Polyhedra_Library::PIP_Tree_Node Class Reference 408

Static Protected Member Functions

• static void indent_and_print (std::ostream &s, unsigned indent, const char ∗str)
A helper function used when printing PIP trees.

• static bool compatibility_check (Matrix &s)
Checks whether a context matrix is satisfiable.

• static bool compatibility_check (const Matrix &context, const Row &row)
Helper method: checks for satisfiability of the restricted context obtained by adding row to context.

Protected Attributes

• const PIP_Problem ∗ owner_
A pointer to the PIP_Problem object owning this node.

• const PIP_Decision_Node ∗ parent_
A pointer to the parent of ∗this, null if ∗this is the root.

• Constraint_System constraints_
The local system of parameter constraints.

• Artificial_Parameter_Sequence artificial_parameters
The local sequence of expressions for local artificial parameters.

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &os, const PIP_Tree_Node &x)
Output operator: prints the solution tree rooted in x.

10.45.1 Detailed Description

A node of the PIP solution tree. This is the base class for the nodes of the binary trees representing the
solutions of PIP problems. From this one, two classes are derived:

• PIP_Decision_Node, for the internal nodes of the tree;

• PIP_Solution_Node, for the leaves of the tree.

10.45.2 Member Function Documentation

10.45.2.1 const Constraint_System & Parma_Polyhedra_Library::PIP_Tree_Node::constraints (
) const [inline]

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.45 Parma_Polyhedra_Library::PIP_Tree_Node Class Reference 409

Returns the system of parameter constraints controlling ∗this.

The indices in the constraints are the same as the original variables and parameters. Coefficients in indices
corresponding to variables always are zero.

10.45.2.2 void Parma_Polyhedra_Library::PIP_Tree_Node::print (std::ostream & s, unsigned
indent = 0) const

Prints on s the tree rooted in ∗this.

Parameters

s The output stream.

indent The amount of indentation.

10.45.2.3 virtual void Parma_Polyhedra_Library::PIP_Tree_Node::update_tableau (const
PIP_Problem & pip, dimension_type external_space_dim, dimension_type
first_pending_constraint, const Constraint_Sequence & input_cs, const Variables_Set &
parameters) [protected, pure virtual]

Populates the parametric simplex tableau using external data.

Parameters

pip The PIP_Problem object containing this node.

external_space_dim The number of all problem variables and problem parameters (excluding artifi-
cial parameters).

first_pending_constraint The first element in input_cs to be added to the tableau, which already
contains the previous elements.

input_cs All the constraints of the PIP problem.

parameters The set of indices of the problem parameters.

Implemented in Parma_Polyhedra_Library::PIP_Solution_Node, and Parma_Polyhedra_Library::PIP_-
Decision_Node.

10.45.2.4 virtual PIP_Tree_Node∗ Parma_Polyhedra_Library::PIP_Tree_Node::solve (const
PIP_Problem & pip, bool check_feasible_context, const Matrix & context, const
Variables_Set & params, dimension_type space_dim) [protected, pure
virtual]

Executes a parametric simplex on the tableau, under specified context.

Returns

The root of the PIP tree solution, or 0 if unfeasible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.45 Parma_Polyhedra_Library::PIP_Tree_Node Class Reference 410

Parameters

pip The PIP_Problem object containing this node.
check_feasible_context Whether the resolution process should (re-)check feasibility of context (since

the initial context may have been modified).
context The context, being a set of constraints on the parameters.
params The local parameter set, including parent’s artificial parameters.
space_dim The space dimension of parent, including artificial parameters.

Implemented in Parma_Polyhedra_Library::PIP_Solution_Node, and Parma_Polyhedra_Library::PIP_-
Decision_Node.

10.45.2.5 virtual void Parma_Polyhedra_Library::PIP_Tree_Node::print_tree (std::ostream &
s, unsigned indent, const std::vector< bool > & pip_dim_is_param, dimension_type
first_art_dim) const [protected, virtual]

Prints on s the tree rooted in ∗this.

Parameters

s The output stream.
indent The amount of indentation.
pip_dim_is_param A vector of Boolean flags telling which PIP problem dimensions are problem

parameters. The size of the vector is equal to the PIP problem internal space dimension (i.e., no
artificial parameters).

first_art_dim The first space dimension corresponding to an artificial parameter that was created in
this node (if any).

Reimplemented in Parma_Polyhedra_Library::PIP_Solution_Node, and Parma_Polyhedra_Library::PIP_-
Decision_Node.

10.45.2.6 static bool Parma_Polyhedra_Library::PIP_Tree_Node::compatibility_check (Matrix
& s) [static, protected]

Checks whether a context matrix is satisfiable.

The satisfiability check is implemented by the revised dual simplex algorithm on the context matrix. The
algorithm ensures the feasible solution is integer by applying a cut generation method when intermediate
non-integer solutions are found.

10.45.3 Friends And Related Function Documentation

10.45.3.1 std::ostream & operator<< (std::ostream & os, const PIP_Tree_Node & x)
[related]

Output operator: prints the solution tree rooted in x.

The documentation for this class was generated from the following file:

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 411

• ppl.hh

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template
Reference

The powerset construction instantiated on PPL pointset domains.

#include <ppl.hh>

Inherits Powerset< Parma_Polyhedra_Library::Determinate< PSET > >.

Public Member Functions

• void ascii_dump () const
Writes to std::cerr an ASCII representation of ∗this.

• void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of ∗this.

• void print () const
Prints ∗this to std::cerr using operator<<.

• bool ascii_load (std::istream &s)
Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets ∗this
accordingly. Returns true if successful, false otherwise.

Constructors

• Pointset_Powerset (dimension_type num_dimensions=0, Degenerate_Element
kind=UNIVERSE)

Builds a universe (top) or empty (bottom) Pointset_Powerset.

• Pointset_Powerset (const Pointset_Powerset &y, Complexity_Class complexity=ANY_-
COMPLEXITY)

Ordinary copy constructor.

• template<typename QH >

Pointset_Powerset (const Pointset_Powerset< QH > &y, Complexity_Class complexity=ANY_-
COMPLEXITY)

Conversion constructor: the type QH of the disjuncts in the source powerset is different from PSET.

• template<typename QH1 , typename QH2 , typename R >

Pointset_Powerset (const Partially_Reduced_Product<QH1, QH2, R>&prp, Complexity_Class
complexity=ANY_COMPLEXITY)

Creates a Pointset_Powerset from a product This will be created as a single disjunct of type PSET that
approximates the product.

• Pointset_Powerset (const Constraint_System &cs)
Creates a Pointset_Powerset with a single disjunct approximating the system of constraints cs.

• Pointset_Powerset (const Congruence_System &cgs)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 412

Creates a Pointset_Powerset with a single disjunct approximating the system of congruences cgs.

• Pointset_Powerset (const C_Polyhedron &ph, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a pointset_powerset out of a closed polyhedron.

• Pointset_Powerset (const NNC_Polyhedron &ph, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a pointset_powerset out of an nnc polyhedron.

• Pointset_Powerset (const Grid &gr, Complexity_Class complexity=ANY_COMPLEXITY)
Builds a pointset_powerset out of a grid.

• template<typename T >

Pointset_Powerset (const Octagonal_Shape< T > &os, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a pointset_powerset out of an octagonal shape.

• template<typename T >

Pointset_Powerset (const BD_Shape< T > &bds, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a pointset_powerset out of a bd shape.

• template<typename Interval >

Pointset_Powerset (const Box< Interval > &box, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a pointset_powerset out of a box.

Member Functions that Do Not Modify the Pointset_Powerset

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• dimension_type affine_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• bool is_empty () const
Returns true if and only if ∗this is an empty powerset.

• bool is_universe () const
Returns true if and only if ∗this is the top element of the powerser lattice.

• bool is_topologically_closed () const
Returns true if and only if all the disjuncts in ∗this are topologically closed.

• bool is_bounded () const
Returns true if and only if all elements in ∗this are bounded.

• bool is_disjoint_from (const Pointset_Powerset &y) const
Returns true if and only if ∗this and y are disjoint.

• bool is_discrete () const
Returns true if and only if ∗this is discrete.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 413

• bool constrains (Variable var) const
Returns true if and only if var is constrained in ∗this.

• bool bounds_from_above (const Linear_Expression &expr) const
Returns true if and only if expr is bounded from above in ∗this.

• bool bounds_from_below (const Linear_Expression &expr) const
Returns true if and only if expr is bounded from below in ∗this.

• bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum) const

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value is computed.

• bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum, Generator &g) const

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value and a point where expr reaches it are computed.

• bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum) const

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value is computed.

• bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum, Generator &g) const

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value and a point where expr reaches it are computed.

• bool geometrically_covers (const Pointset_Powerset &y) const
Returns true if and only if ∗this geometrically covers y, i.e., if any point (in some element) of y is
also a point (of some element) of ∗this.

• bool geometrically_equals (const Pointset_Powerset &y) const
Returns true if and only if ∗this is geometrically equal to y, i.e., if (the elements of) ∗this and y
contain the same set of points.

• bool contains (const Pointset_Powerset &y) const
Returns true if and only if each disjunct of y is contained in a disjunct of ∗this.

• bool strictly_contains (const Pointset_Powerset &y) const
Returns true if and only if each disjunct of y is strictly contained in a disjunct of ∗this.

• bool contains_integer_point () const
Returns true if and only if ∗this contains at least one integer point.

• Poly_Con_Relation relation_with (const Constraint &c) const
Returns the relations holding between the powerset ∗this and the constraint c.

• Poly_Gen_Relation relation_with (const Generator &g) const
Returns the relations holding between the powerset ∗this and the generator g.

• Poly_Con_Relation relation_with (const Congruence &cg) const
Returns the relations holding between the powerset ∗this and the congruence c.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 414

• memory_size_type total_memory_in_bytes () const
Returns a lower bound to the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns a lower bound to the size in bytes of the memory managed by ∗this.

• int32_t hash_code () const
Returns a 32-bit hash code for ∗this.

• bool OK () const
Checks if all the invariants are satisfied.

Space Dimension Preserving Member Functions that May Modify the Pointset_Powerset

• void add_disjunct (const PSET &ph)
Adds to ∗this the disjunct ph.

• void add_constraint (const Constraint &c)
Intersects ∗this with constraint c.

• void refine_with_constraint (const Constraint &c)
Use the constraint c to refine ∗this.

• void add_constraints (const Constraint_System &cs)
Intersects ∗this with the constraints in cs.

• void refine_with_constraints (const Constraint_System &cs)
Use the constraints in cs to refine ∗this.

• void add_congruence (const Congruence &c)
Intersects ∗this with congruence c.

• void refine_with_congruence (const Congruence &cg)
Use the congruence cg to refine ∗this.

• void add_congruences (const Congruence_System &cgs)
Intersects ∗this with the congruences in cgs.

• void refine_with_congruences (const Congruence_System &cgs)
Use the congruences in cgs to refine ∗this.

• void unconstrain (Variable var)
Computes the cylindrification of ∗this with respect to space dimension var, assigning the result to
∗this.

• void unconstrain (const Variables_Set &vars)
Computes the cylindrification of ∗this with respect to the set of space dimensions vars, assigning the
result to ∗this.

• void drop_some_non_integer_points (Complexity_Class complexity=ANY_COMPLEXITY)
Possibly tightens ∗this by dropping some points with non-integer coordinates.

• void drop_some_non_integer_points (const Variables_Set &vars, Complexity_Class
complexity=ANY_COMPLEXITY)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 415

Possibly tightens ∗this by dropping some points with non-integer coordinates for the space dimensions
corresponding to vars.

• void topological_closure_assign ()
Assigns to ∗this its topological closure.

• void intersection_assign (const Pointset_Powerset &y)
Assigns to ∗this the intersection of ∗this and y.

• void difference_assign (const Pointset_Powerset &y)
Assigns to ∗this an (a smallest) over-approximation as a powerset of the disjunct domain of the set-
theoretical difference of ∗this and y.

• bool simplify_using_context_assign (const Pointset_Powerset &y)
Assigns to ∗this a meet-preserving simplification of ∗this with respect to y. If false is returned,
then the intersection is empty.

• void affine_image (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to ∗this the affine image of ∗this under the function mapping variable var to the affine
expression specified by expr and denominator.

• void affine_preimage (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to ∗this the affine preimage of ∗this under the function mapping variable var to the affine
expression specified by expr and denominator.

• void generalized_affine_image (Variable var, Relation_Symbol relsym, const Linear_Expression
&expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the generalized affine relation var′ ./ expr
denominator

,
where ./ is the relation symbol encoded by relsym.

• void generalized_affine_preimage (Variable var, Relation_Symbol relsym, const Linear_-
Expression &expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation var′ ./
expr

denominator
, where ./ is the relation symbol encoded by relsym.

• void generalized_affine_image (const Linear_Expression &lhs, Relation_Symbol relsym, const
Linear_Expression &rhs)

Assigns to ∗this the image of ∗this with respect to the generalized affine relation lhs′ ./ rhs, where
./ is the relation symbol encoded by relsym.

• void generalized_affine_preimage (const Linear_Expression &lhs, Relation_Symbol relsym,
const Linear_Expression &rhs)

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation lhs′ ./ rhs,
where ./ is the relation symbol encoded by relsym.

• void bounded_affine_image (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the bounded affine relation lb_expr
denominator

≤ var′ ≤
ub_expr

denominator
.

• void bounded_affine_preimage (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the bounded affine relation lb_expr
denominator

≤
var′ ≤ ub_expr

denominator
.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 416

• void time_elapse_assign (const Pointset_Powerset &y)
Assigns to ∗this the result of computing the time-elapse between ∗this and y.

• void wrap_assign (const Variables_Set &vars, Bounded_Integer_Type_Width w, Bounded_-
Integer_Type_Representation r, Bounded_Integer_Type_Overflow o, const Constraint_System
∗pcs=0, unsigned complexity_threshold=16, bool wrap_individually=true)

Wraps the specified dimensions of the vector space.

• void pairwise_reduce ()
Assign to ∗this the result of (recursively) merging together the pairs of disjuncts whose upper-bound
is the same as their set-theoretical union.

• template<typename Widening >

void BGP99_extrapolation_assign (const Pointset_Powerset &y, Widening wf, unsigned max_-
disjuncts)

Assigns to ∗this the result of applying the BGP99 extrapolation operator to ∗this and y, using the
widening function wf and the cardinality threshold max_disjuncts.

• template<typename Cert , typename Widening >

void BHZ03_widening_assign (const Pointset_Powerset &y, Widening wf)
Assigns to ∗this the result of computing the BHZ03-widening between ∗this and y, using the widen-
ing function wf certified by the convergence certificate Cert.

Member Functions that May Modify the Dimension of the Vector Space

• Pointset_Powerset & operator= (const Pointset_Powerset &y)
The assignment operator (∗this and y can be dimension-incompatible).

• template<typename QH >

Pointset_Powerset & operator= (const Pointset_Powerset< QH > &y)
Conversion assignment: the type QH of the disjuncts in the source powerset is different from PSET
(∗this and y can be dimension-incompatible).

• void swap (Pointset_Powerset &y)
Swaps ∗this with y.

• void add_space_dimensions_and_embed (dimension_type m)
Adds m new dimensions to the vector space containing ∗this and embeds each disjunct in ∗this in
the new space.

• void add_space_dimensions_and_project (dimension_type m)
Adds m new dimensions to the vector space containing ∗this without embedding the disjuncts in ∗this
in the new space.

• void concatenate_assign (const Pointset_Powerset &y)
Assigns to ∗this the concatenation of ∗this and y.

• void remove_space_dimensions (const Variables_Set &vars)
Removes all the specified space dimensions.

• void remove_higher_space_dimensions (dimension_type new_dimension)
Removes the higher space dimensions so that the resulting space will have dimension new_-
dimension.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 417

• template<typename Partial_Function >

void map_space_dimensions (const Partial_Function &pfunc)
Remaps the dimensions of the vector space according to a partial function.

• void expand_space_dimension (Variable var, dimension_type m)
Creates m copies of the space dimension corresponding to var.

• void fold_space_dimensions (const Variables_Set &vars, Variable dest)
Folds the space dimensions in vars into dest.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a Pointset_Powerset<PSET> can handle.

Related Functions

(Note that these are not member functions.)

• template<typename PSET >

Widening_Function< PSET > widen_fun_ref (void(PSET::∗wm)(const PSET &, unsigned ∗))
Wraps a widening method into a function object.

• template<typename PSET , typename CSYS >

Limited_Widening_Function< PSET, CSYS > widen_fun_ref (void(PSET::∗lwm)(const PSET &,
const CSYS &, unsigned ∗), const CSYS &cs)

Wraps a limited widening method into a function object.

• template<typename PSET >

std::pair< PSET, Pointset_Powerset< NNC_Polyhedron > > linear_partition (const PSET &p,
const PSET &q)

Partitions q with respect to p.

• bool check_containment (const NNC_Polyhedron &ph, const Pointset_Powerset< NNC_-
Polyhedron > &ps)

Returns true if and only if the union of the NNC polyhedra in ps contains the NNC polyhedron ph.

• std::pair< Grid, Pointset_Powerset< Grid > > approximate_partition (const Grid &p, const Grid
&q, bool &finite_partition)

Partitions the grid q with respect to grid p if and only if such a partition is finite.

• bool check_containment (const Grid &ph, const Pointset_Powerset< Grid > &ps)
Returns true if and only if the union of the grids ps contains the grid g.

• template<typename PSET >

bool check_containment (const PSET &ph, const Pointset_Powerset< PSET > &ps)
Returns true if and only if the union of the objects in ps contains ph.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 418

• template<typename PSET >

void swap (Parma_Polyhedra_Library::Pointset_Powerset< PSET > &x, Parma_Polyhedra_-
Library::Pointset_Powerset< PSET > &y)

Specializes std::swap.

• template<>

bool check_containment (const C_Polyhedron &ph, const Pointset_Powerset< C_Polyhedron >
&ps)

10.46.1 Detailed Description

template<typename PSET> class Parma_Polyhedra_Library::Pointset_Powerset< PSET >

The powerset construction instantiated on PPL pointset domains.

Warning

At present, the supported instantiations for the disjunct domain template PSET are the simple
pointset domains: C_Polyhedron, NNC_Polyhedron, Grid, Octagonal_Shape<T>, BD_-
Shape<T>, Box<T>.

10.46.2 Constructor & Destructor Documentation

10.46.2.1 template<typename PSET > Parma_Polyhedra_Library::Pointset_Powerset< PSET
>::Pointset_Powerset (dimension_type num_dimensions = 0, Degenerate_Element
kind = UNIVERSE) [inline, explicit]

Builds a universe (top) or empty (bottom) Pointset_Powerset.

Parameters

num_dimensions The number of dimensions of the vector space enclosing the powerset;

kind Specifies whether the universe or the empty powerset has to be built.

10.46.2.2 template<typename PSET > Parma_Polyhedra_Library::Pointset_Powerset< PSET
>::Pointset_Powerset (const Pointset_Powerset< PSET > & y, Complexity_Class
complexity = ANY_COMPLEXITY) [inline]

Ordinary copy constructor.

The complexity argument is ignored.

10.46.2.3 template<typename PSET > template<typename QH > Parma_Polyhedra_-
Library::Pointset_Powerset< PSET >::Pointset_Powerset (const Pointset_Powerset<
QH > & y, Complexity_Class complexity = ANY_COMPLEXITY) [explicit]

Conversion constructor: the type QH of the disjuncts in the source powerset is different from PSET.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 419

Parameters

y The powerset to be used to build the new powerset.
complexity The maximal complexity of any algorithms used.

10.46.2.4 template<typename PSET > Parma_Polyhedra_Library::Pointset_Powerset< PSET
>::Pointset_Powerset (const C_Polyhedron & ph, Complexity_Class complexity =
ANY_COMPLEXITY) [inline, explicit]

Builds a pointset_powerset out of a closed polyhedron.

Builds a powerset that is either empty (if the polyhedron is found to be empty) or contains a single disjunct
approximating the polyhedron; this must only use algorithms that do not exceed the specified complexity.
The powerset inherits the space dimension of the polyhedron.

Parameters

ph The closed polyhedron to be used to build the powerset.
complexity The maximal complexity of any algorithms used.

Exceptions

std::length_error Thrown if the space dimension of ph exceeds the maximum allowed space dimen-
sion.

10.46.2.5 template<typename PSET > Parma_Polyhedra_Library::Pointset_Powerset< PSET
>::Pointset_Powerset (const NNC_Polyhedron & ph, Complexity_Class complexity =
ANY_COMPLEXITY) [inline, explicit]

Builds a pointset_powerset out of an nnc polyhedron.

Builds a powerset that is either empty (if the polyhedron is found to be empty) or contains a single disjunct
approximating the polyhedron; this must only use algorithms that do not exceed the specified complexity.
The powerset inherits the space dimension of the polyhedron.

Parameters

ph The closed polyhedron to be used to build the powerset.
complexity The maximal complexity of any algorithms used.

Exceptions

std::length_error Thrown if the space dimension of ph exceeds the maximum allowed space dimen-
sion.

10.46.2.6 template<typename PSET > Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::Pointset_Powerset (const Grid & gr, Complexity_Class complexity =
ANY_COMPLEXITY) [inline, explicit]

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 420

Builds a pointset_powerset out of a grid.

If the grid is nonempty, builds a powerset containing a single disjunct approximating the grid. Builds the
empty powerset otherwise. The powerset inherits the space dimension of the grid.

Parameters

gr The grid to be used to build the powerset.
complexity This argument is ignored.

Exceptions

std::length_error Thrown if the space dimension of gr exceeds the maximum allowed space dimen-
sion.

10.46.2.7 template<typename PSET > template<typename T > Parma_Polyhedra_-
Library::Pointset_Powerset< PSET >::Pointset_Powerset (const Octagonal_Shape< T
> & os, Complexity_Class complexity = ANY_COMPLEXITY) [explicit]

Builds a pointset_powerset out of an octagonal shape.

If the octagonal shape is nonempty, builds a powerset containing a single disjunct approximating the oc-
tagonal shape. Builds the empty powerset otherwise. The powerset inherits the space dimension of the
octagonal shape.

Parameters

os The octagonal shape to be used to build the powerset.
complexity This argument is ignored.

Exceptions

std::length_error Thrown if the space dimension of os exceeds the maximum allowed space dimen-
sion.

10.46.2.8 template<typename PSET > template<typename T > Parma_Polyhedra_-
Library::Pointset_Powerset< PSET >::Pointset_Powerset (const BD_Shape< T > &
bds, Complexity_Class complexity = ANY_COMPLEXITY) [explicit]

Builds a pointset_powerset out of a bd shape.

If the bd shape is nonempty, builds a powerset containing a single disjunct approximating the bd shape.
Builds the empty powerset otherwise. The powerset inherits the space dimension of the bd shape.

Parameters

bds The bd shape to be used to build the powerset.
complexity This argument is ignored.

Exceptions

std::length_error Thrown if the space dimension of bdss exceeds the maximum allowed space di-
mension.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 421

10.46.2.9 template<typename PSET > template<typename Interval > Parma_Polyhedra_-
Library::Pointset_Powerset< PSET >::Pointset_Powerset (const Box< Interval > &
box, Complexity_Class complexity = ANY_COMPLEXITY) [explicit]

Builds a pointset_powerset out of a box.

If the box is nonempty, builds a powerset containing a single disjunct approximating the box. Builds the
empty powerset otherwise. The powerset inherits the space dimension of the box.

Parameters

box The box to be used to build the powerset.

complexity This argument is ignored.

Exceptions

std::length_error Thrown if the space dimension of box exceeds the maximum allowed space di-
mension.

10.46.3 Member Function Documentation

10.46.3.1 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::is_disjoint_from (const Pointset_Powerset< PSET > & y) const

Returns true if and only if ∗this and y are disjoint.

Exceptions

std::invalid_argument Thrown if x and y are topology-incompatible or dimension-incompatible.

10.46.3.2 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::constrains (Variable var) const

Returns true if and only if var is constrained in ∗this.

Exceptions

std::invalid_argument Thrown if var is not a space dimension of ∗this.

Note

A variable is constrained if there exists a non-redundant disjunct that is constraining the variable: this
definition relies on the powerset lattice structure and may be somewhat different from the geometric
intuition. For instance, variable x is constrained in the powerset

ps =
{
{x ≥ 0}, {x ≤ 0}

}
,

even though ps is geometrically equal to the whole vector space.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 422

10.46.3.3 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::bounds_from_above (const Linear_Expression & expr) const

Returns true if and only if expr is bounded from above in ∗this.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

10.46.3.4 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::bounds_from_below (const Linear_Expression & expr) const

Returns true if and only if expr is bounded from below in ∗this.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

10.46.3.5 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::maximize (const Linear_Expression & expr, Coefficient & sup_n,
Coefficient & sup_d, bool & maximum) const

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value is computed.

Parameters

expr The linear expression to be maximized subject to ∗this;

sup_n The numerator of the supremum value;

sup_d The denominator of the supremum value;

maximum true if and only if the supremum is also the maximum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from above, false is returned and sup_n, sup_d and
maximum are left untouched.

10.46.3.6 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::maximize (const Linear_Expression & expr, Coefficient & sup_n,
Coefficient & sup_d, bool & maximum, Generator & g) const

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value and a point where expr reaches it are computed.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 423

Parameters

expr The linear expression to be maximized subject to ∗this;

sup_n The numerator of the supremum value;

sup_d The denominator of the supremum value;

maximum true if and only if the supremum is also the maximum value;

g When maximization succeeds, will be assigned the point or closure point where expr reaches its
supremum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from above, false is returned and sup_n, sup_d, maximum
and g are left untouched.

10.46.3.7 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::minimize (const Linear_Expression & expr, Coefficient & inf_n, Coefficient
& inf_d, bool & minimum) const

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value is computed.

Parameters

expr The linear expression to be minimized subject to ∗this;

inf_n The numerator of the infimum value;

inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from below, false is returned and inf_n, inf_d and
minimum are left untouched.

10.46.3.8 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::minimize (const Linear_Expression & expr, Coefficient & inf_n, Coefficient
& inf_d, bool & minimum, Generator & g) const

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value and a point where expr reaches it are computed.

Parameters

expr The linear expression to be minimized subject to ∗this;

inf_n The numerator of the infimum value;

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 424

inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value;

g When minimization succeeds, will be assigned a point or closure point where expr reaches its
infimum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from below, false is returned and inf_n, inf_d, minimum
and g are left untouched.

10.46.3.9 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::geometrically_covers (const Pointset_Powerset< PSET > & y) const
[inline]

Returns true if and only if ∗this geometrically covers y, i.e., if any point (in some element) of y is also
a point (of some element) of ∗this.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

Warning

This may be really expensive!

10.46.3.10 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::geometrically_equals (const Pointset_Powerset< PSET > & y) const
[inline]

Returns true if and only if ∗this is geometrically equal to y, i.e., if (the elements of) ∗this and y
contain the same set of points.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

Warning

This may be really expensive!

10.46.3.11 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::contains (const Pointset_Powerset< PSET > & y) const

Returns true if and only if each disjunct of y is contained in a disjunct of ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 425

Exceptions

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

10.46.3.12 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::strictly_contains (const Pointset_Powerset< PSET > & y) const

Returns true if and only if each disjunct of y is strictly contained in a disjunct of ∗this.

Exceptions

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

10.46.3.13 template<typename PSET > Poly_Con_Relation Parma_Polyhedra_-
Library::Pointset_Powerset< PSET >::relation_with (const Constraint & c)
const

Returns the relations holding between the powerset ∗this and the constraint c.

Exceptions

std::invalid_argument Thrown if ∗this and constraint c are dimension-incompatible.

10.46.3.14 template<typename PSET > Poly_Gen_Relation Parma_Polyhedra_-
Library::Pointset_Powerset< PSET >::relation_with (const Generator & g)
const

Returns the relations holding between the powerset ∗this and the generator g.

Exceptions

std::invalid_argument Thrown if ∗this and generator g are dimension-incompatible.

10.46.3.15 template<typename PSET > Poly_Con_Relation Parma_Polyhedra_-
Library::Pointset_Powerset< PSET >::relation_with (const Congruence & cg)
const

Returns the relations holding between the powerset ∗this and the congruence c.

Exceptions

std::invalid_argument Thrown if ∗this and congruence c are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 426

10.46.3.16 template<typename PSET > int32_t Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::hash_code () const [inline]

Returns a 32-bit hash code for ∗this.

If x and y are such that x == y, then x.hash_code() == y.hash_code().

10.46.3.17 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::add_disjunct (const PSET & ph)

Adds to ∗this the disjunct ph.

Exceptions

std::invalid_argument Thrown if ∗this and ph are dimension-incompatible.

10.46.3.18 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::add_constraint (const Constraint & c)

Intersects ∗this with constraint c.

Exceptions

std::invalid_argument Thrown if ∗this and constraint c are topology-incompatible or dimension-
incompatible.

10.46.3.19 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::refine_with_constraint (const Constraint & c)

Use the constraint c to refine ∗this.

Parameters

c The constraint to be used for refinement.

Exceptions

std::invalid_argument Thrown if ∗this and c are dimension-incompatible.

10.46.3.20 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::add_constraints (const Constraint_System & cs)

Intersects ∗this with the constraints in cs.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 427

Parameters

cs The constraints to intersect with.

Exceptions

std::invalid_argument Thrown if ∗this and cs are topology-incompatible or dimension-
incompatible.

10.46.3.21 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::refine_with_constraints (const Constraint_System & cs)

Use the constraints in cs to refine ∗this.

Parameters

cs The constraints to be used for refinement.

Exceptions

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible.

10.46.3.22 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::add_congruence (const Congruence & c)

Intersects ∗this with congruence c.

Exceptions

std::invalid_argument Thrown if ∗this and congruence c are topology-incompatible or dimension-
incompatible.

10.46.3.23 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::refine_with_congruence (const Congruence & cg)

Use the congruence cg to refine ∗this.

Parameters

cg The congruence to be used for refinement.

Exceptions

std::invalid_argument Thrown if ∗this and cg are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 428

10.46.3.24 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::add_congruences (const Congruence_System & cgs)

Intersects ∗this with the congruences in cgs.

Parameters

cgs The congruences to intersect with.

Exceptions

std::invalid_argument Thrown if ∗this and cgs are topology-incompatible or dimension-
incompatible.

10.46.3.25 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::refine_with_congruences (const Congruence_System & cgs)

Use the congruences in cgs to refine ∗this.

Parameters

cgs The congruences to be used for refinement.

Exceptions

std::invalid_argument Thrown if ∗this and cgs are dimension-incompatible.

10.46.3.26 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::unconstrain (Variable var)

Computes the cylindrification of ∗this with respect to space dimension var, assigning the result to
∗this.

Parameters

var The space dimension that will be unconstrained.

Exceptions

std::invalid_argument Thrown if var is not a space dimension of ∗this.

10.46.3.27 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::unconstrain (const Variables_Set & vars)

Computes the cylindrification of ∗this with respect to the set of space dimensions vars, assigning the
result to ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 429

Parameters

vars The set of space dimension that will be unconstrained.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with one of the Variable objects
contained in vars.

10.46.3.28 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::drop_some_non_integer_points (Complexity_Class complexity =
ANY_COMPLEXITY)

Possibly tightens ∗this by dropping some points with non-integer coordinates.

Parameters

complexity The maximal complexity of any algorithms used.

Note

Currently there is no optimality guarantee, not even if complexity is ANY_COMPLEXITY.

10.46.3.29 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::drop_some_non_integer_points (const Variables_Set & vars,
Complexity_Class complexity = ANY_COMPLEXITY)

Possibly tightens ∗this by dropping some points with non-integer coordinates for the space dimensions
corresponding to vars.

Parameters

vars Points with non-integer coordinates for these variables/space-dimensions can be discarded.

complexity The maximal complexity of any algorithms used.

Note

Currently there is no optimality guarantee, not even if complexity is ANY_COMPLEXITY.

10.46.3.30 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::intersection_assign (const Pointset_Powerset< PSET > & y) [inline]

Assigns to ∗this the intersection of ∗this and y.

The result is obtained by intersecting each disjunct in ∗this with each disjunct in y and collecting all
these intersections.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 430

10.46.3.31 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::difference_assign (const Pointset_Powerset< PSET > & y) [inline]

Assigns to ∗this an (a smallest) over-approximation as a powerset of the disjunct domain of the set-
theoretical difference of ∗this and y.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.46.3.32 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::simplify_using_context_assign (const Pointset_Powerset< PSET > & y)

Assigns to ∗this a meet-preserving simplification of ∗this with respect to y. If false is returned, then
the intersection is empty.

Exceptions

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

10.46.3.33 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::affine_image (Variable var, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to ∗this the affine image of ∗this under the function mapping variable var to the affine
expression specified by expr and denominator.

Parameters

var The variable to which the affine expression is assigned;

expr The numerator of the affine expression;

denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this.

10.46.3.34 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::affine_preimage (Variable var, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to ∗this the affine preimage of ∗this under the function mapping variable var to the affine
expression specified by expr and denominator.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 431

Parameters

var The variable to which the affine expression is assigned;

expr The numerator of the affine expression;

denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this.

10.46.3.35 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::generalized_affine_image (Variable var, Relation_Symbol relsym, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the generalized affine relation var′ ./ expr
denominator ,

where ./ is the relation symbol encoded by relsym.

Parameters

var The left hand side variable of the generalized affine relation;

relsym The relation symbol;

expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression (optional argument with default
value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this or if ∗this is a C_Polyhedron
and relsym is a strict relation symbol.

10.46.3.36 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::generalized_affine_preimage (Variable var, Relation_Symbol relsym, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation var′ ./
expr

denominator , where ./ is the relation symbol encoded by relsym.

Parameters

var The left hand side variable of the generalized affine relation;

relsym The relation symbol;

expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression (optional argument with default
value 1).

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 432

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this or if ∗this is a C_Polyhedron
and relsym is a strict relation symbol.

10.46.3.37 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::generalized_affine_image (const Linear_Expression & lhs,
Relation_Symbol relsym, const Linear_Expression & rhs)

Assigns to ∗this the image of ∗this with respect to the generalized affine relation lhs′ ./ rhs, where ./
is the relation symbol encoded by relsym.

Parameters

lhs The left hand side affine expression;

relsym The relation symbol;

rhs The right hand side affine expression.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with lhs or rhs or if ∗this is
a C_Polyhedron and relsym is a strict relation symbol.

10.46.3.38 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::generalized_affine_preimage (const Linear_Expression & lhs,
Relation_Symbol relsym, const Linear_Expression & rhs)

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation lhs′ ./ rhs, where
./ is the relation symbol encoded by relsym.

Parameters

lhs The left hand side affine expression;

relsym The relation symbol;

rhs The right hand side affine expression.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with lhs or rhs or if ∗this is
a C_Polyhedron and relsym is a strict relation symbol.

10.46.3.39 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::bounded_affine_image (Variable var, const Linear_Expression & lb_expr,
const Linear_Expression & ub_expr, Coefficient_traits::const_reference denominator
= Coefficient_one())

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 433

Assigns to ∗this the image of ∗this with respect to the bounded affine relation lb_expr
denominator ≤ var′ ≤

ub_expr
denominator .

Parameters

var The variable updated by the affine relation;

lb_expr The numerator of the lower bounding affine expression;

ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if lb_expr (resp., ub_expr) and
∗this are dimension-incompatible or if var is not a space dimension of ∗this.

10.46.3.40 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::bounded_affine_preimage (Variable var, const Linear_Expression &
lb_expr, const Linear_Expression & ub_expr, Coefficient_traits::const_reference
denominator = Coefficient_one())

Assigns to ∗this the preimage of ∗thiswith respect to the bounded affine relation lb_expr
denominator ≤ var′ ≤

ub_expr
denominator .

Parameters

var The variable updated by the affine relation;

lb_expr The numerator of the lower bounding affine expression;

ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if lb_expr (resp., ub_expr) and
∗this are dimension-incompatible or if var is not a space dimension of ∗this.

10.46.3.41 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::time_elapse_assign (const Pointset_Powerset< PSET > & y) [inline]

Assigns to ∗this the result of computing the time-elapse between ∗this and y.

The result is obtained by computing the pairwise time elapse of each disjunct in ∗this with each disjunct
in y.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 434

10.46.3.42 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::wrap_assign (const Variables_Set & vars, Bounded_Integer_Type_Width
w, Bounded_Integer_Type_Representation r, Bounded_Integer_Type_Overflow o,
const Constraint_System ∗ pcs = 0, unsigned complexity_threshold = 16, bool
wrap_individually = true)

Wraps the specified dimensions of the vector space.

Parameters

vars The set of Variable objects corresponding to the space dimensions to be wrapped.

w The width of the bounded integer type corresponding to all the dimensions to be wrapped.

r The representation of the bounded integer type corresponding to all the dimensions to be wrapped.

o The overflow behavior of the bounded integer type corresponding to all the dimensions to be
wrapped.

pcs Possibly null pointer to a constraint system whose variables are contained in vars. If ∗pcs
depends on variables not in vars, the behavior is undefined. When non-null, the pointed-to
constraint system is assumed to represent the conditional or looping construct guard with respect
to which wrapping is performed. Since wrapping requires the computation of upper bounds
and due to non-distributivity of constraint refinement over upper bounds, passing a constraint
system in this way can be more precise than refining the result of the wrapping operation with
the constraints in ∗pcs.

complexity_threshold A precision parameter of the wrapping operator: higher values result in possi-
bly improved precision.

wrap_individually true if the dimensions should be wrapped individually (something that results in
much greater efficiency to the detriment of precision).

Exceptions

std::invalid_argument Thrown if ∗pcs is dimension-incompatible with vars, or if ∗this is
dimension-incompatible vars or with ∗pcs.

10.46.3.43 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::pairwise_reduce ()

Assign to ∗this the result of (recursively) merging together the pairs of disjuncts whose upper-bound is
the same as their set-theoretical union.

On exit, for all the pairs P , Q of different disjuncts in ∗this, we have P]Q 6= P ∪Q.

10.46.3.44 template<typename PSET > template<typename Widening > void Parma_-
Polyhedra_Library::Pointset_Powerset< PSET >::BGP99_extrapolation_assign (
const Pointset_Powerset< PSET > & y, Widening wf, unsigned max_disjuncts)

Assigns to ∗this the result of applying the BGP99 extrapolation operator to ∗this and y, using the
widening function wf and the cardinality threshold max_disjuncts.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 435

Parameters

y A powerset that must definitely entail ∗this;

wf The widening function to be used on polyhedra objects. It is obtained from the corre-
sponding widening method by using the helper function Parma_Polyhedra_Library::widen_-
fun_ref. Legal values are, e.g., widen_fun_ref(&Polyhedron::H79_widening_-
assign) and widen_fun_ref(&Polyhedron::limited_H79_extrapolation_-
assign, cs);

max_disjuncts The maximum number of disjuncts occurring in the powerset ∗this before starting
the computation. If this number is exceeded, some of the disjuncts in ∗this are collapsed (i.e.,
joined together).

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

For a description of the extrapolation operator, see [BGP99] and [BHZ03b].

10.46.3.45 template<typename PSET > template<typename Cert , typename Widening > void
Parma_Polyhedra_Library::Pointset_Powerset< PSET >::BHZ03_widening_assign (
const Pointset_Powerset< PSET > & y, Widening wf)

Assigns to ∗this the result of computing the BHZ03-widening between ∗this and y, using the widening
function wf certified by the convergence certificate Cert.

Parameters

y The finite powerset computed in the previous iteration step. It must definitely entail ∗this;

wf The widening function to be used on disjuncts. It is obtained from the correspond-
ing widening method by using the helper function widen_fun_ref. Legal values
are, e.g., widen_fun_ref(&Polyhedron::H79_widening_assign) and widen_-
fun_ref(&Polyhedron::limited_H79_extrapolation_assign, cs).

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

Warning

In order to obtain a proper widening operator, the template parameter Cert should be a finite con-
vergence certificate for the base-level widening function wf; otherwise, an extrapolation operator is
obtained. For a description of the methods that should be provided by Cert, see BHRZ03_Certificate
or H79_Certificate.

10.46.3.46 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::concatenate_assign (const Pointset_Powerset< PSET > & y)

Assigns to ∗this the concatenation of ∗this and y.

The result is obtained by computing the pairwise concatenation of each disjunct in ∗this with each dis-
junct in y.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 436

10.46.3.47 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::remove_space_dimensions (const Variables_Set & vars)

Removes all the specified space dimensions.

Parameters

vars The set of Variable objects corresponding to the space dimensions to be removed.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with one of the Variable objects
contained in vars.

10.46.3.48 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::remove_higher_space_dimensions (dimension_type new_dimension)

Removes the higher space dimensions so that the resulting space will have dimension new_dimension.

Exceptions

std::invalid_argument Thrown if new_dimensions is greater than the space dimension of ∗this.

10.46.3.49 template<typename PSET > template<typename Partial_Function > void
Parma_Polyhedra_Library::Pointset_Powerset< PSET >::map_space_dimensions (
const Partial_Function & pfunc)

Remaps the dimensions of the vector space according to a partial function.

See also Polyhedron::map_space_dimensions.

10.46.3.50 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::expand_space_dimension (Variable var, dimension_type m)

Creates m copies of the space dimension corresponding to var.

Parameters

var The variable corresponding to the space dimension to be replicated;

m The number of replicas to be created.

Exceptions

std::invalid_argument Thrown if var does not correspond to a dimension of the vector space.

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension().

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 437

If ∗this has space dimension n, with n > 0, and var has space dimension k ≤ n, then the k-th space
dimension is expanded to m new space dimensions n, n+ 1, . . . , n+m− 1.

10.46.3.51 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::fold_space_dimensions (const Variables_Set & vars, Variable dest)

Folds the space dimensions in vars into dest.

Parameters

vars The set of Variable objects corresponding to the space dimensions to be folded;

dest The variable corresponding to the space dimension that is the destination of the folding operation.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with dest or with one of the
Variable objects contained in vars. Also thrown if dest is contained in vars.

If ∗this has space dimension n, with n > 0, dest has space dimension k ≤ n, vars is a set of variables
whose maximum space dimension is also less than or equal to n, and dest is not a member of vars, then
the space dimensions corresponding to variables in vars are folded into the k-th space dimension.

10.46.4 Friends And Related Function Documentation

10.46.4.1 template<typename PSET > Widening_Function< PSET > widen_fun_ref (
void(PSET::∗)(const PSET &, unsigned ∗) wm) [related]

Wraps a widening method into a function object.

Parameters

wm The widening method.

10.46.4.2 template<typename PSET , typename CSYS > Limited_Widening_Function< PSET,
CSYS > widen_fun_ref (void(PSET::∗)(const PSET &, const CSYS &, unsigned ∗)
lwm, const CSYS & cs) [related]

Wraps a limited widening method into a function object.

Parameters

lwm The limited widening method.

cs The constraint system limiting the widening.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.46 Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 438

10.46.4.3 template<typename PSET > std::pair< PSET, Pointset_Powerset< NNC_Polyhedron >
> linear_partition (const PSET & p, const PSET & q) [related]

Partitions q with respect to p.

Let p and q be two polyhedra. The function returns an object r of type std::pair<PSET,
Pointset_Powerset<NNC_Polyhedron> > such that

• r.first is the intersection of p and q;

• r.second has the property that all its elements are pairwise disjoint and disjoint from p;

• the set-theoretical union of r.first with all the elements of r.second gives q (i.e., r is the
representation of a partition of q).

10.46.4.4 template<typename PSET > std::pair< Grid, Pointset_Powerset< Grid > >
approximate_partition (const Grid & p, const Grid & q, bool & finite_partition)
[related]

Partitions the grid q with respect to grid p if and only if such a partition is finite.

Let p and q be two grids. The function returns an object r of type std::pair<PSET, Pointset_-
Powerset<Grid> > such that

• r.first is the intersection of p and q;

• If there is a finite partition of q wrt p the Boolean finite_partition is set to true and
r.second has the property that all its elements are pairwise disjoint and disjoint from p and the
set-theoretical union of r.first with all the elements of r.second gives q (i.e., r is the repre-
sentation of a partition of q).

• Otherwise the Boolean finite_partition is set to false and the singleton set that contains q is
stored in r.secondr.

10.46.4.5 template<typename PSET > bool check_containment (const PSET & ph, const
Pointset_Powerset< PSET > & ps) [related]

Returns true if and only if the union of the objects in ps contains ph.

Note

It is assumed that the template parameter PSET can be converted without precision loss into an NNC_-
Polyhedron; otherwise, an incorrect result might be obtained.

10.46.4.6 template<typename PSET > void swap (Parma_Polyhedra_Library::Pointset_-
Powerset< PSET > & x, Parma_Polyhedra_Library::Pointset_Powerset< PSET > &
y) [related]

Specializes std::swap.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.47 Parma_Polyhedra_Library::Poly_Con_Relation Class Reference 439

10.46.4.7 bool check_containment (const C_Polyhedron & ph, const Pointset_Powerset<
C_Polyhedron > & ps) [related]

The documentation for this class was generated from the following file:

• ppl.hh

10.47 Parma_Polyhedra_Library::Poly_Con_Relation Class Reference

The relation between a polyhedron and a constraint.

#include <ppl.hh>

Public Member Functions

• void ascii_dump () const
Writes to std::cerr an ASCII representation of ∗this.

• void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of ∗this.

• void print () const
Prints ∗this to std::cerr using operator<<.

• bool implies (const Poly_Con_Relation &y) const
True if and only if ∗this implies y.

• bool OK () const
Checks if all the invariants are satisfied.

Static Public Member Functions

• static Poly_Con_Relation nothing ()
The assertion that says nothing.

• static Poly_Con_Relation is_disjoint ()
The polyhedron and the set of points satisfying the constraint are disjoint.

• static Poly_Con_Relation strictly_intersects ()
The polyhedron intersects the set of points satisfying the constraint, but it is not included in it.

• static Poly_Con_Relation is_included ()
The polyhedron is included in the set of points satisfying the constraint.

• static Poly_Con_Relation saturates ()
The polyhedron is included in the set of points saturating the constraint.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.47 Parma_Polyhedra_Library::Poly_Con_Relation Class Reference 440

Friends

• bool operator== (const Poly_Con_Relation &x, const Poly_Con_Relation &y)
True if and only if x and y are logically equivalent.

• bool operator!= (const Poly_Con_Relation &x, const Poly_Con_Relation &y)
True if and only if x and y are not logically equivalent.

• Poly_Con_Relation operator&& (const Poly_Con_Relation &x, const Poly_Con_Relation &y)
Yields the logical conjunction of x and y.

• Poly_Con_Relation operator- (const Poly_Con_Relation &x, const Poly_Con_Relation &y)
Yields the assertion with all the conjuncts of x that are not in y.

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &s, const Poly_Con_Relation &r)
Output operator.

10.47.1 Detailed Description

The relation between a polyhedron and a constraint. This class implements conjunctions of assertions on
the relation between a polyhedron and a constraint.

10.47.2 Friends And Related Function Documentation

10.47.2.1 bool operator== (const Poly_Con_Relation & x, const Poly_Con_Relation & y)
[friend]

True if and only if x and y are logically equivalent.

10.47.2.2 bool operator!= (const Poly_Con_Relation & x, const Poly_Con_Relation & y)
[friend]

True if and only if x and y are not logically equivalent.

10.47.2.3 Poly_Con_Relation operator&& (const Poly_Con_Relation & x, const
Poly_Con_Relation & y) [friend]

Yields the logical conjunction of x and y.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.48 Parma_Polyhedra_Library::Poly_Gen_Relation Class Reference 441

10.47.2.4 Poly_Con_Relation operator- (const Poly_Con_Relation & x, const Poly_Con_Relation
& y) [friend]

Yields the assertion with all the conjuncts of x that are not in y.

10.47.2.5 std::ostream & operator<< (std::ostream & s, const Poly_Con_Relation & r)
[related]

Output operator.

The documentation for this class was generated from the following file:

• ppl.hh

10.48 Parma_Polyhedra_Library::Poly_Gen_Relation Class Reference

The relation between a polyhedron and a generator.

#include <ppl.hh>

Public Member Functions

• void ascii_dump () const
Writes to std::cerr an ASCII representation of ∗this.

• void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of ∗this.

• void print () const
Prints ∗this to std::cerr using operator<<.

• bool implies (const Poly_Gen_Relation &y) const
True if and only if ∗this implies y.

• bool OK () const
Checks if all the invariants are satisfied.

Static Public Member Functions

• static Poly_Gen_Relation nothing ()
The assertion that says nothing.

• static Poly_Gen_Relation subsumes ()
Adding the generator would not change the polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.48 Parma_Polyhedra_Library::Poly_Gen_Relation Class Reference 442

Friends

• bool operator== (const Poly_Gen_Relation &x, const Poly_Gen_Relation &y)
True if and only if x and y are logically equivalent.

• bool operator!= (const Poly_Gen_Relation &x, const Poly_Gen_Relation &y)
True if and only if x and y are not logically equivalent.

• Poly_Gen_Relation operator&& (const Poly_Gen_Relation &x, const Poly_Gen_Relation &y)
Yields the logical conjunction of x and y.

• Poly_Gen_Relation operator- (const Poly_Gen_Relation &x, const Poly_Gen_Relation &y)
Yields the assertion with all the conjuncts of x that are not in y.

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &s, const Poly_Gen_Relation &r)
Output operator.

10.48.1 Detailed Description

The relation between a polyhedron and a generator. This class implements conjunctions of assertions on
the relation between a polyhedron and a generator.

10.48.2 Friends And Related Function Documentation

10.48.2.1 bool operator== (const Poly_Gen_Relation & x, const Poly_Gen_Relation & y)
[friend]

True if and only if x and y are logically equivalent.

10.48.2.2 bool operator!= (const Poly_Gen_Relation & x, const Poly_Gen_Relation & y)
[friend]

True if and only if x and y are not logically equivalent.

10.48.2.3 Poly_Gen_Relation operator&& (const Poly_Gen_Relation & x, const
Poly_Gen_Relation & y) [friend]

Yields the logical conjunction of x and y.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 443

10.48.2.4 Poly_Gen_Relation operator- (const Poly_Gen_Relation & x, const Poly_Gen_Relation
& y) [friend]

Yields the assertion with all the conjuncts of x that are not in y.

10.48.2.5 std::ostream & operator<< (std::ostream & s, const Poly_Gen_Relation & r)
[related]

Output operator.

The documentation for this class was generated from the following file:

• ppl.hh

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference

The base class for convex polyhedra.

#include <ppl.hh>

Inherited by Parma_Polyhedra_Library::C_Polyhedron, and Parma_Polyhedra_Library::NNC_-
Polyhedron.

Public Types

• typedef Coefficient coefficient_type
The numeric type of coefficients.

Public Member Functions

Member Functions that Do Not Modify the Polyhedron

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• dimension_type affine_dimension () const
Returns 0, if ∗this is empty; otherwise, returns the affine dimension of ∗this.

• const Constraint_System & constraints () const
Returns the system of constraints.

• const Constraint_System & minimized_constraints () const
Returns the system of constraints, with no redundant constraint.

• const Generator_System & generators () const
Returns the system of generators.

• const Generator_System & minimized_generators () const

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 444

Returns the system of generators, with no redundant generator.

• Congruence_System congruences () const
Returns a system of (equality) congruences satisfied by ∗this.

• Congruence_System minimized_congruences () const
Returns a system of (equality) congruences satisfied by ∗this, with no redundant congruences and
having the same affine dimension as ∗this.

• Grid_Generator_System grid_generators () const
Returns a universe system of grid generators.

• Grid_Generator_System minimized_grid_generators () const
Returns a universe system of grid generators.

• Poly_Con_Relation relation_with (const Constraint &c) const
Returns the relations holding between the polyhedron ∗this and the constraint c.

• Poly_Gen_Relation relation_with (const Generator &g) const
Returns the relations holding between the polyhedron ∗this and the generator g.

• Poly_Con_Relation relation_with (const Congruence &cg) const
Returns the relations holding between the polyhedron ∗this and the congruence c.

• bool is_empty () const
Returns true if and only if ∗this is an empty polyhedron.

• bool is_universe () const
Returns true if and only if ∗this is a universe polyhedron.

• bool is_topologically_closed () const
Returns true if and only if ∗this is a topologically closed subset of the vector space.

• bool is_disjoint_from (const Polyhedron &y) const
Returns true if and only if ∗this and y are disjoint.

• bool is_discrete () const
Returns true if and only if ∗this is discrete.

• bool is_bounded () const
Returns true if and only if ∗this is a bounded polyhedron.

• bool contains_integer_point () const
Returns true if and only if ∗this contains at least one integer point.

• bool constrains (Variable var) const
Returns true if and only if var is constrained in ∗this.

• bool bounds_from_above (const Linear_Expression &expr) const
Returns true if and only if expr is bounded from above in ∗this.

• bool bounds_from_below (const Linear_Expression &expr) const
Returns true if and only if expr is bounded from below in ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 445

• bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum) const

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value is computed.

• bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum, Generator &g) const

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value and a point where expr reaches it are computed.

• bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum) const

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value is computed.

• bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum, Generator &g) const

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value and a point where expr reaches it are computed.

• bool frequency (const Linear_Expression &expr, Coefficient &freq_n, Coefficient &freq_d, Co-
efficient &val_n, Coefficient &val_d) const

Returns true if and only if there exist a unique value val such that ∗this saturates the equality expr
= val.

• bool contains (const Polyhedron &y) const
Returns true if and only if ∗this contains y.

• bool strictly_contains (const Polyhedron &y) const
Returns true if and only if ∗this strictly contains y.

• bool OK (bool check_not_empty=false) const
Checks if all the invariants are satisfied.

Space Dimension Preserving Member Functions that May Modify the Polyhedron

• void add_constraint (const Constraint &c)
Adds a copy of constraint c to the system of constraints of ∗this (without minimizing the result).

• void add_generator (const Generator &g)
Adds a copy of generator g to the system of generators of ∗this (without minimizing the result).

• void add_congruence (const Congruence &cg)
Adds a copy of congruence cg to ∗this, if cg can be exactly represented by a polyhedron.

• void add_constraints (const Constraint_System &cs)
Adds a copy of the constraints in cs to the system of constraints of ∗this (without minimizing the
result).

• void add_recycled_constraints (Constraint_System &cs)
Adds the constraints in cs to the system of constraints of ∗this (without minimizing the result).

• void add_generators (const Generator_System &gs)
Adds a copy of the generators in gs to the system of generators of ∗this (without minimizing the result).

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 446

• void add_recycled_generators (Generator_System &gs)
Adds the generators in gs to the system of generators of ∗this (without minimizing the result).

• void add_congruences (const Congruence_System &cgs)
Adds a copy of the congruences in cgs to ∗this, if all the congruences can be exactly represented by
a polyhedron.

• void add_recycled_congruences (Congruence_System &cgs)
Adds the congruences in cgs to ∗this, if all the congruences can be exactly represented by a polyhe-
dron.

• void refine_with_constraint (const Constraint &c)
Uses a copy of constraint c to refine ∗this.

• void refine_with_congruence (const Congruence &cg)
Uses a copy of congruence cg to refine ∗this.

• void refine_with_constraints (const Constraint_System &cs)
Uses a copy of the constraints in cs to refine ∗this.

• void refine_with_congruences (const Congruence_System &cgs)
Uses a copy of the congruences in cgs to refine ∗this.

• void unconstrain (Variable var)
Computes the cylindrification of ∗this with respect to space dimension var, assigning the result to
∗this.

• void unconstrain (const Variables_Set &vars)
Computes the cylindrification of ∗this with respect to the set of space dimensions vars, assigning the
result to ∗this.

• void intersection_assign (const Polyhedron &y)
Assigns to ∗this the intersection of ∗this and y.

• void poly_hull_assign (const Polyhedron &y)
Assigns to ∗this the poly-hull of ∗this and y.

• void upper_bound_assign (const Polyhedron &y)
Same as poly_hull_assign(y).

• void poly_difference_assign (const Polyhedron &y)
Assigns to ∗this the poly-difference of ∗this and y.

• void difference_assign (const Polyhedron &y)
Same as poly_difference_assign(y).

• bool simplify_using_context_assign (const Polyhedron &y)
Assigns to ∗this a meet-preserving simplification of ∗this with respect to y. If false is returned,
then the intersection is empty.

• void affine_image (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to ∗this the affine image of ∗this under the function mapping variable var to the affine
expression specified by expr and denominator.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 447

• void affine_preimage (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to ∗this the affine preimage of ∗this under the function mapping variable var to the affine
expression specified by expr and denominator.

• void generalized_affine_image (Variable var, Relation_Symbol relsym, const Linear_Expression
&expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the generalized affine relation var′ ./ expr
denominator

,
where ./ is the relation symbol encoded by relsym.

• void generalized_affine_preimage (Variable var, Relation_Symbol relsym, const Linear_-
Expression &expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation var′ ./
expr

denominator
, where ./ is the relation symbol encoded by relsym.

• void generalized_affine_image (const Linear_Expression &lhs, Relation_Symbol relsym, const
Linear_Expression &rhs)

Assigns to ∗this the image of ∗this with respect to the generalized affine relation lhs′ ./ rhs, where
./ is the relation symbol encoded by relsym.

• void generalized_affine_preimage (const Linear_Expression &lhs, Relation_Symbol relsym,
const Linear_Expression &rhs)

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation lhs′ ./ rhs,
where ./ is the relation symbol encoded by relsym.

• void bounded_affine_image (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the bounded affine relation lb_expr
denominator

≤ var′ ≤
ub_expr

denominator
.

• void bounded_affine_preimage (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the bounded affine relation lb_expr
denominator

≤
var′ ≤ ub_expr

denominator
.

• void time_elapse_assign (const Polyhedron &y)
Assigns to ∗this the result of computing the time-elapse between ∗this and y.

• void wrap_assign (const Variables_Set &vars, Bounded_Integer_Type_Width w, Bounded_-
Integer_Type_Representation r, Bounded_Integer_Type_Overflow o, const Constraint_System
∗pcs=0, unsigned complexity_threshold=16, bool wrap_individually=true)

Wraps the specified dimensions of the vector space.

• void drop_some_non_integer_points (Complexity_Class complexity=ANY_COMPLEXITY)
Possibly tightens ∗this by dropping some points with non-integer coordinates.

• void drop_some_non_integer_points (const Variables_Set &vars, Complexity_Class
complexity=ANY_COMPLEXITY)

Possibly tightens ∗this by dropping some points with non-integer coordinates for the space dimensions
corresponding to vars.

• void topological_closure_assign ()
Assigns to ∗this its topological closure.

• void BHRZ03_widening_assign (const Polyhedron &y, unsigned ∗tp=0)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 448

Assigns to ∗this the result of computing the BHRZ03-widening between ∗this and y.

• void limited_BHRZ03_extrapolation_assign (const Polyhedron &y, const Constraint_System
&cs, unsigned ∗tp=0)

Assigns to ∗this the result of computing the limited extrapolation between ∗this and y using the
BHRZ03-widening operator.

• void bounded_BHRZ03_extrapolation_assign (const Polyhedron &y, const Constraint_System
&cs, unsigned ∗tp=0)

Assigns to ∗this the result of computing the bounded extrapolation between ∗this and y using the
BHRZ03-widening operator.

• void H79_widening_assign (const Polyhedron &y, unsigned ∗tp=0)
Assigns to ∗this the result of computing the H79_widening between ∗this and y.

• void widening_assign (const Polyhedron &y, unsigned ∗tp=0)
Same as H79_widening_assign(y, tp).

• void limited_H79_extrapolation_assign (const Polyhedron &y, const Constraint_System &cs, un-
signed ∗tp=0)

Assigns to ∗this the result of computing the limited extrapolation between ∗this and y using the
H79-widening operator.

• void bounded_H79_extrapolation_assign (const Polyhedron &y, const Constraint_System &cs,
unsigned ∗tp=0)

Assigns to ∗this the result of computing the bounded extrapolation between ∗this and y using the
H79-widening operator.

Member Functions that May Modify the Dimension of the Vector Space

• void add_space_dimensions_and_embed (dimension_type m)
Adds m new space dimensions and embeds the old polyhedron in the new vector space.

• void add_space_dimensions_and_project (dimension_type m)
Adds m new space dimensions to the polyhedron and does not embed it in the new vector space.

• void concatenate_assign (const Polyhedron &y)
Assigns to ∗this the concatenation of ∗this and y, taken in this order.

• void remove_space_dimensions (const Variables_Set &vars)
Removes all the specified dimensions from the vector space.

• void remove_higher_space_dimensions (dimension_type new_dimension)
Removes the higher dimensions of the vector space so that the resulting space will have dimension
new_dimension.

• template<typename Partial_Function >

void map_space_dimensions (const Partial_Function &pfunc)
Remaps the dimensions of the vector space according to a partial function.

• void expand_space_dimension (Variable var, dimension_type m)
Creates m copies of the space dimension corresponding to var.

• void fold_space_dimensions (const Variables_Set &vars, Variable dest)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 449

Folds the space dimensions in vars into dest.

Miscellaneous Member Functions

• ∼Polyhedron ()
Destructor.

• void swap (Polyhedron &y)
Swaps ∗this with polyhedron y. (∗this and y can be dimension-incompatible.).

• void ascii_dump () const
Writes to std::cerr an ASCII representation of ∗this.

• void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of ∗this.

• void print () const
Prints ∗this to std::cerr using operator<<.

• bool ascii_load (std::istream &s)
Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets
∗this accordingly. Returns true if successful, false otherwise.

• memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• int32_t hash_code () const
Returns a 32-bit hash code for ∗this.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension all kinds of Polyhedron can handle.

• static bool can_recycle_constraint_systems ()
Returns true indicating that this domain has methods that can recycle constraints.

• static void initialize ()
Initializes the class.

• static void finalize ()
Finalizes the class.

• static bool can_recycle_congruence_systems ()
Returns false indicating that this domain cannot recycle congruences.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 450

Protected Member Functions

• Polyhedron (Topology topol, dimension_type num_dimensions, Degenerate_Element kind)
Builds a polyhedron having the specified properties.

• Polyhedron (const Polyhedron &y, Complexity_Class complexity=ANY_COMPLEXITY)
Ordinary copy constructor.

• Polyhedron (Topology topol, const Constraint_System &cs)
Builds a polyhedron from a system of constraints.

• Polyhedron (Topology topol, Constraint_System &cs, Recycle_Input dummy)
Builds a polyhedron recycling a system of constraints.

• Polyhedron (Topology topol, const Generator_System &gs)
Builds a polyhedron from a system of generators.

• Polyhedron (Topology topol, Generator_System &gs, Recycle_Input dummy)
Builds a polyhedron recycling a system of generators.

• template<typename Interval >

Polyhedron (Topology topol, const Box< Interval > &box, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a polyhedron from a box.

• Polyhedron & operator= (const Polyhedron &y)
The assignment operator. (∗this and y can be dimension-incompatible.).

• void drop_some_non_integer_points (const Variables_Set ∗pvars, Complexity_Class complexity)
Possibly tightens ∗this by dropping some points with non-integer coordinates for the space dimensions
corresponding to ∗pvars.

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &s, const Polyhedron &ph)
Output operator.

• bool operator!= (const Polyhedron &x, const Polyhedron &y)
Returns true if and only if x and y are different polyhedra.

• void swap (Parma_Polyhedra_Library::Polyhedron &x, Parma_Polyhedra_Library::Polyhedron
&y)

Specializes std::swap.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 451

10.49.1 Detailed Description

The base class for convex polyhedra. An object of the class Polyhedron represents a convex polyhedron in
the vector space Rn.

A polyhedron can be specified as either a finite system of constraints or a finite system of generators (see
Section Representations of Convex Polyhedra) and it is always possible to obtain either representation.
That is, if we know the system of constraints, we can obtain from this the system of generators that define
the same polyhedron and vice versa. These systems can contain redundant members: in this case we say
that they are not in the minimal form.

Two key attributes of any polyhedron are its topological kind (recording whether it is a C_Polyhedron or
an NNC_Polyhedron object) and its space dimension (the dimension n ∈ N of the enclosing vector space):

• all polyhedra, the empty ones included, are endowed with a specific topology and space dimension;

• most operations working on a polyhedron and another object (i.e., another polyhedron, a constraint
or generator, a set of variables, etc.) will throw an exception if the polyhedron and the object are
not both topology-compatible and dimension-compatible (see Section Representations of Convex
Polyhedra);

• the topology of a polyhedron cannot be changed; rather, there are constructors for each of the two
derived classes that will build a new polyhedron with the topology of that class from another poly-
hedron from either class and any topology;

• the only ways in which the space dimension of a polyhedron can be changed are:

– explicit calls to operators provided for that purpose;

– standard copy, assignment and swap operators.

Note that four different polyhedra can be defined on the zero-dimension space: the empty polyhedron,
either closed or NNC, and the universe polyhedron R0, again either closed or NNC.

In all the examples it is assumed that variables x and y are defined (where they are used) as follows:

Variable x(0);
Variable y(1);

Example 1

The following code builds a polyhedron corresponding to a square in R2, given as a system of con-
straints:

Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 3);
cs.insert(y >= 0);
cs.insert(y <= 3);
C_Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from a system of generators
specifying the four vertices of the square:

Generator_System gs;
gs.insert(point(0*x + 0*y));
gs.insert(point(0*x + 3*y));
gs.insert(point(3*x + 0*y));
gs.insert(point(3*x + 3*y));
C_Polyhedron ph(gs);

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 452

Example 2

The following code builds an unbounded polyhedron corresponding to a half-strip in R2, given as a
system of constraints:

Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x - y <= 0);
cs.insert(x - y + 1 >= 0);
C_Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from the system of generators
specifying the two vertices of the polyhedron and one ray:

Generator_System gs;
gs.insert(point(0*x + 0*y));
gs.insert(point(0*x + y));
gs.insert(ray(x - y));
C_Polyhedron ph(gs);

Example 3

The following code builds the polyhedron corresponding to a half-plane by adding a single constraint
to the universe polyhedron in R2:

C_Polyhedron ph(2);
ph.add_constraint(y >= 0);

The following code builds the same polyhedron as above, but starting from the empty polyhedron in
the space R2 and inserting the appropriate generators (a point, a ray and a line).

C_Polyhedron ph(2, EMPTY);
ph.add_generator(point(0*x + 0*y));
ph.add_generator(ray(y));
ph.add_generator(line(x));

Note that, although the above polyhedron has no vertices, we must add one point, because otherwise
the result of the Minkowski’s sum would be an empty polyhedron. To avoid subtle errors related to the
minimization process, it is required that the first generator inserted in an empty polyhedron is a point
(otherwise, an exception is thrown).

Example 4

The following code shows the use of the function add_space_dimensions_and_embed:

C_Polyhedron ph(1);
ph.add_constraint(x == 2);
ph.add_space_dimensions_and_embed(1);

We build the universe polyhedron in the 1-dimension space R. Then we add a single equality con-
straint, thus obtaining the polyhedron corresponding to the singleton set {2} ⊆ R. After the last line
of code, the resulting polyhedron is {

(2, y)T ∈ R2
∣∣ y ∈ R

}
.

Example 5

The following code shows the use of the function add_space_dimensions_and_project:

C_Polyhedron ph(1);
ph.add_constraint(x == 2);
ph.add_space_dimensions_and_project(1);

The first two lines of code are the same as in Example 4 for add_space_dimensions_and_-
embed. After the last line of code, the resulting polyhedron is the singleton set

{
(2, 0)T

}
⊆ R2.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 453

Example 6

The following code shows the use of the function affine_image:

C_Polyhedron ph(2, EMPTY);
ph.add_generator(point(0*x + 0*y));
ph.add_generator(point(0*x + 3*y));
ph.add_generator(point(3*x + 0*y));
ph.add_generator(point(3*x + 3*y));
Linear_Expression expr = x + 4;
ph.affine_image(x, expr);

In this example the starting polyhedron is a square in R2, the considered variable is x and the affine
expression is x + 4. The resulting polyhedron is the same square translated to the right. Moreover, if
the affine transformation for the same variable x is x+ y:

Linear_Expression expr = x + y;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the line x − y. Instead, if we do not use an invertible transformation for the
same variable; for example, the affine expression y:

Linear_Expression expr = y;

the resulting polyhedron is a diagonal of the square.

Example 7

The following code shows the use of the function affine_preimage:

C_Polyhedron ph(2);
ph.add_constraint(x >= 0);
ph.add_constraint(x <= 3);
ph.add_constraint(y >= 0);
ph.add_constraint(y <= 3);
Linear_Expression expr = x + 4;
ph.affine_preimage(x, expr);

In this example the starting polyhedron, var and the affine expression and the denominator are the
same as in Example 6, while the resulting polyhedron is again the same square, but translated to the
left. Moreover, if the affine transformation for x is x+ y

Linear_Expression expr = x + y;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the line x + y. Instead, if we do not use an invertible transformation for the
same variable x, for example, the affine expression y:

Linear_Expression expr = y;

the resulting polyhedron is a line that corresponds to the y axis.

Example 8

For this example we use also the variables:

Variable z(2);
Variable w(3);

The following code shows the use of the function remove_space_dimensions:

Generator_System gs;
gs.insert(point(3*x + y +0*z + 2*w));
C_Polyhedron ph(gs);
Variables_Set vars;
vars.insert(y);
vars.insert(z);
ph.remove_space_dimensions(vars);

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 454

The starting polyhedron is the singleton set
{

(3, 1, 0, 2)T
}
⊆ R4, while the resulting polyhedron

is
{

(3, 2)T
}
⊆ R2. Be careful when removing space dimensions incrementally: since dimensions

are automatically renamed after each application of the remove_space_dimensions operator,
unexpected results can be obtained. For instance, by using the following code we would obtain a
different result:

set<Variable> vars1;
vars1.insert(y);
ph.remove_space_dimensions(vars1);
set<Variable> vars2;
vars2.insert(z);
ph.remove_space_dimensions(vars2);

In this case, the result is the polyhedron
{

(3, 0)T
}
⊆ R2: when removing the set of dimensions

vars2 we are actually removing variable w of the original polyhedron. For the same reason, the
operator remove_space_dimensions is not idempotent: removing twice the same non-empty
set of dimensions is never the same as removing them just once.

10.49.2 Constructor & Destructor Documentation

10.49.2.1 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol, dimension_type
num_dimensions, Degenerate_Element kind) [protected]

Builds a polyhedron having the specified properties.

Parameters

topol The topology of the polyhedron;

num_dimensions The number of dimensions of the vector space enclosing the polyhedron;

kind Specifies whether the universe or the empty polyhedron has to be built.

10.49.2.2 Parma_Polyhedra_Library::Polyhedron::Polyhedron (const Polyhedron & y,
Complexity_Class complexity = ANY_COMPLEXITY) [protected]

Ordinary copy constructor.

The complexity argument is ignored.

10.49.2.3 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol, const
Constraint_System & cs) [protected]

Builds a polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters

topol The topology of the polyhedron;

cs The system of constraints defining the polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 455

Exceptions

std::invalid_argument Thrown if the topology of cs is incompatible with topol.

10.49.2.4 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol,
Constraint_System & cs, Recycle_Input dummy) [protected]

Builds a polyhedron recycling a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters

topol The topology of the polyhedron;

cs The system of constraints defining the polyhedron. It is not declared const because its data-
structures may be recycled to build the polyhedron.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions

std::invalid_argument Thrown if the topology of cs is incompatible with topol.

10.49.2.5 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol, const
Generator_System & gs) [protected]

Builds a polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters

topol The topology of the polyhedron;

gs The system of generators defining the polyhedron.

Exceptions

std::invalid_argument Thrown if the topology of gs is incompatible with topol, or if the system of
generators is not empty but has no points.

10.49.2.6 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol,
Generator_System & gs, Recycle_Input dummy) [protected]

Builds a polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters

topol The topology of the polyhedron;

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 456

gs The system of generators defining the polyhedron. It is not declared const because its data-
structures may be recycled to build the polyhedron.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions

std::invalid_argument Thrown if the topology of gs is incompatible with topol, or if the system of
generators is not empty but has no points.

10.49.2.7 template<typename Interval > Parma_Polyhedra_Library::Polyhedron::Polyhedron
(Topology topol, const Box< Interval > & box, Complexity_Class complexity =
ANY_COMPLEXITY) [protected]

Builds a polyhedron from a box.

This will use an algorithm whose complexity is polynomial and build the smallest polyhedron with topol-
ogy topol containing box.

Parameters

topol The topology of the polyhedron;

box The box representing the polyhedron to be built;

complexity This argument is ignored.

10.49.3 Member Function Documentation

10.49.3.1 Poly_Con_Relation Parma_Polyhedra_Library::Polyhedron::relation_with (const
Constraint & c) const

Returns the relations holding between the polyhedron ∗this and the constraint c.

Exceptions

std::invalid_argument Thrown if ∗this and constraint c are dimension-incompatible.

10.49.3.2 Poly_Gen_Relation Parma_Polyhedra_Library::Polyhedron::relation_with (const
Generator & g) const

Returns the relations holding between the polyhedron ∗this and the generator g.

Exceptions

std::invalid_argument Thrown if ∗this and generator g are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 457

10.49.3.3 Poly_Con_Relation Parma_Polyhedra_Library::Polyhedron::relation_with (const
Congruence & cg) const

Returns the relations holding between the polyhedron ∗this and the congruence c.

Exceptions

std::invalid_argument Thrown if ∗this and congruence c are dimension-incompatible.

10.49.3.4 bool Parma_Polyhedra_Library::Polyhedron::is_disjoint_from (const Polyhedron & y
) const

Returns true if and only if ∗this and y are disjoint.

Exceptions

std::invalid_argument Thrown if x and y are topology-incompatible or dimension-incompatible.

10.49.3.5 bool Parma_Polyhedra_Library::Polyhedron::constrains (Variable var) const

Returns true if and only if var is constrained in ∗this.

Exceptions

std::invalid_argument Thrown if var is not a space dimension of ∗this.

10.49.3.6 bool Parma_Polyhedra_Library::Polyhedron::bounds_from_above (const
Linear_Expression & expr) const [inline]

Returns true if and only if expr is bounded from above in ∗this.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

10.49.3.7 bool Parma_Polyhedra_Library::Polyhedron::bounds_from_below (const
Linear_Expression & expr) const [inline]

Returns true if and only if expr is bounded from below in ∗this.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 458

10.49.3.8 bool Parma_Polyhedra_Library::Polyhedron::maximize (const Linear_Expression &
expr, Coefficient & sup_n, Coefficient & sup_d, bool & maximum) const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value is computed.

Parameters

expr The linear expression to be maximized subject to ∗this;
sup_n The numerator of the supremum value;
sup_d The denominator of the supremum value;
maximum true if and only if the supremum is also the maximum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from above, false is returned and sup_n, sup_d and
maximum are left untouched.

10.49.3.9 bool Parma_Polyhedra_Library::Polyhedron::maximize (const Linear_Expression &
expr, Coefficient & sup_n, Coefficient & sup_d, bool & maximum, Generator & g)
const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from above in ∗this, in which
case the supremum value and a point where expr reaches it are computed.

Parameters

expr The linear expression to be maximized subject to ∗this;
sup_n The numerator of the supremum value;
sup_d The denominator of the supremum value;
maximum true if and only if the supremum is also the maximum value;
g When maximization succeeds, will be assigned the point or closure point where expr reaches its

supremum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from above, false is returned and sup_n, sup_d, maximum
and g are left untouched.

10.49.3.10 bool Parma_Polyhedra_Library::Polyhedron::minimize (const Linear_Expression &
expr, Coefficient & inf_n, Coefficient & inf_d, bool & minimum) const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value is computed.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 459

Parameters

expr The linear expression to be minimized subject to ∗this;

inf_n The numerator of the infimum value;

inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from below, false is returned and inf_n, inf_d and
minimum are left untouched.

10.49.3.11 bool Parma_Polyhedra_Library::Polyhedron::minimize (const Linear_Expression &
expr, Coefficient & inf_n, Coefficient & inf_d, bool & minimum, Generator & g)
const [inline]

Returns true if and only if ∗this is not empty and expr is bounded from below in ∗this, in which
case the infimum value and a point where expr reaches it are computed.

Parameters

expr The linear expression to be minimized subject to ∗this;

inf_n The numerator of the infimum value;

inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value;

g When minimization succeeds, will be assigned a point or closure point where expr reaches its
infimum value.

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If ∗this is empty or expr is not bounded from below, false is returned and inf_n, inf_d, minimum
and g are left untouched.

10.49.3.12 bool Parma_Polyhedra_Library::Polyhedron::frequency (const Linear_Expression &
expr, Coefficient & freq_n, Coefficient & freq_d, Coefficient & val_n, Coefficient &
val_d) const

Returns true if and only if there exist a unique value val such that ∗this saturates the equality expr
= val.

Parameters

expr The linear expression for which the frequency is needed;

freq_n If true is returned, the value is set to 0; Present for interface compatibility with class Grid,
where the frequency can have a non-zero value;

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 460

freq_d If true is returned, the value is set to 1;

val_n The numerator of val;

val_d The denominator of val;

Exceptions

std::invalid_argument Thrown if expr and ∗this are dimension-incompatible.

If false is returned, then freq_n, freq_d, val_n and val_d are left untouched.

10.49.3.13 bool Parma_Polyhedra_Library::Polyhedron::contains (const Polyhedron & y) const

Returns true if and only if ∗this contains y.

Exceptions

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

10.49.3.14 bool Parma_Polyhedra_Library::Polyhedron::strictly_contains (const Polyhedron &
y) const [inline]

Returns true if and only if ∗this strictly contains y.

Exceptions

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

10.49.3.15 bool Parma_Polyhedra_Library::Polyhedron::OK (bool check_not_empty = false)
const

Checks if all the invariants are satisfied.

Returns

true if and only if ∗this satisfies all the invariants and either check_not_empty is false or
∗this is not empty.

Parameters

check_not_empty true if and only if, in addition to checking the invariants, ∗this must be checked
to be not empty.

The check is performed so as to intrude as little as possible. If the library has been compiled with run-
time assertions enabled, error messages are written on std::cerr in case invariants are violated. This is
useful for the purpose of debugging the library.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 461

10.49.3.16 void Parma_Polyhedra_Library::Polyhedron::add_constraint (const Constraint & c)

Adds a copy of constraint c to the system of constraints of ∗this (without minimizing the result).

Parameters

c The constraint that will be added to the system of constraints of ∗this.

Exceptions

std::invalid_argument Thrown if ∗this and constraint c are topology-incompatible or dimension-
incompatible.

10.49.3.17 void Parma_Polyhedra_Library::Polyhedron::add_generator (const Generator & g)

Adds a copy of generator g to the system of generators of ∗this (without minimizing the result).

Exceptions

std::invalid_argument Thrown if ∗this and generator g are topology-incompatible or dimension-
incompatible, or if ∗this is an empty polyhedron and g is not a point.

10.49.3.18 void Parma_Polyhedra_Library::Polyhedron::add_congruence (const Congruence &
cg)

Adds a copy of congruence cg to ∗this, if cg can be exactly represented by a polyhedron.

Exceptions

std::invalid_argument Thrown if ∗this and congruence cg are dimension-incompatible, of if cg is
a proper congruence which is neither a tautology, nor a contradiction.

10.49.3.19 void Parma_Polyhedra_Library::Polyhedron::add_constraints (const
Constraint_System & cs)

Adds a copy of the constraints in cs to the system of constraints of ∗this (without minimizing the result).

Parameters

cs Contains the constraints that will be added to the system of constraints of ∗this.

Exceptions

std::invalid_argument Thrown if ∗this and cs are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 462

10.49.3.20 void Parma_Polyhedra_Library::Polyhedron::add_recycled_constraints (
Constraint_System & cs)

Adds the constraints in cs to the system of constraints of ∗this (without minimizing the result).

Parameters

cs The constraint system to be added to ∗this. The constraints in cs may be recycled.

Exceptions

std::invalid_argument Thrown if ∗this and cs are topology-incompatible or dimension-
incompatible.

Warning

The only assumption that can be made on cs upon successful or exceptional return is that it can be
safely destroyed.

10.49.3.21 void Parma_Polyhedra_Library::Polyhedron::add_generators (const
Generator_System & gs)

Adds a copy of the generators in gs to the system of generators of ∗this (without minimizing the result).

Parameters

gs Contains the generators that will be added to the system of generators of ∗this.

Exceptions

std::invalid_argument Thrown if ∗this and gs are topology-incompatible or dimension-
incompatible, or if ∗this is empty and the system of generators gs is not empty, but has no
points.

10.49.3.22 void Parma_Polyhedra_Library::Polyhedron::add_recycled_generators (
Generator_System & gs)

Adds the generators in gs to the system of generators of ∗this (without minimizing the result).

Parameters

gs The generator system to be added to ∗this. The generators in gs may be recycled.

Exceptions

std::invalid_argument Thrown if ∗this and gs are topology-incompatible or dimension-
incompatible, or if ∗this is empty and the system of generators gs is not empty, but has no
points.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 463

Warning

The only assumption that can be made on gs upon successful or exceptional return is that it can be
safely destroyed.

10.49.3.23 void Parma_Polyhedra_Library::Polyhedron::add_congruences (const
Congruence_System & cgs)

Adds a copy of the congruences in cgs to ∗this, if all the congruences can be exactly represented by a
polyhedron.

Parameters

cgs The congruences to be added.

Exceptions

std::invalid_argument Thrown if ∗this and cgs are dimension-incompatible, of if there exists in
cgs a proper congruence which is neither a tautology, nor a contradiction.

10.49.3.24 void Parma_Polyhedra_Library::Polyhedron::add_recycled_congruences (
Congruence_System & cgs) [inline]

Adds the congruences in cgs to ∗this, if all the congruences can be exactly represented by a polyhedron.

Parameters

cgs The congruences to be added. Its elements may be recycled.

Exceptions

std::invalid_argument Thrown if ∗this and cgs are dimension-incompatible, of if there exists in
cgs a proper congruence which is neither a tautology, nor a contradiction

Warning

The only assumption that can be made on cgs upon successful or exceptional return is that it can be
safely destroyed.

10.49.3.25 void Parma_Polyhedra_Library::Polyhedron::refine_with_constraint (const
Constraint & c)

Uses a copy of constraint c to refine ∗this.

Exceptions

std::invalid_argument Thrown if ∗this and constraint c are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 464

10.49.3.26 void Parma_Polyhedra_Library::Polyhedron::refine_with_congruence (const
Congruence & cg)

Uses a copy of congruence cg to refine ∗this.

Exceptions

std::invalid_argument Thrown if ∗this and congruence cg are dimension-incompatible.

10.49.3.27 void Parma_Polyhedra_Library::Polyhedron::refine_with_constraints (const
Constraint_System & cs)

Uses a copy of the constraints in cs to refine ∗this.

Parameters

cs Contains the constraints used to refine the system of constraints of ∗this.

Exceptions

std::invalid_argument Thrown if ∗this and cs are dimension-incompatible.

10.49.3.28 void Parma_Polyhedra_Library::Polyhedron::refine_with_congruences (const
Congruence_System & cgs)

Uses a copy of the congruences in cgs to refine ∗this.

Parameters

cgs Contains the congruences used to refine the system of constraints of ∗this.

Exceptions

std::invalid_argument Thrown if ∗this and cgs are dimension-incompatible.

10.49.3.29 void Parma_Polyhedra_Library::Polyhedron::unconstrain (Variable var)

Computes the cylindrification of ∗this with respect to space dimension var, assigning the result to
∗this.

Parameters

var The space dimension that will be unconstrained.

Exceptions

std::invalid_argument Thrown if var is not a space dimension of ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 465

10.49.3.30 void Parma_Polyhedra_Library::Polyhedron::unconstrain (const Variables_Set &
vars)

Computes the cylindrification of ∗this with respect to the set of space dimensions vars, assigning the
result to ∗this.

Parameters

vars The set of space dimension that will be unconstrained.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with one of the Variable objects
contained in vars.

10.49.3.31 void Parma_Polyhedra_Library::Polyhedron::intersection_assign (const Polyhedron
& y)

Assigns to ∗this the intersection of ∗this and y.

Exceptions

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

10.49.3.32 void Parma_Polyhedra_Library::Polyhedron::poly_hull_assign (const Polyhedron &
y)

Assigns to ∗this the poly-hull of ∗this and y.

Exceptions

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

10.49.3.33 void Parma_Polyhedra_Library::Polyhedron::poly_difference_assign (const
Polyhedron & y)

Assigns to ∗this the poly-difference of ∗this and y.

Exceptions

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 466

10.49.3.34 bool Parma_Polyhedra_Library::Polyhedron::simplify_using_context_assign (const
Polyhedron & y)

Assigns to ∗this a meet-preserving simplification of ∗this with respect to y. If false is returned, then
the intersection is empty.

Exceptions

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

10.49.3.35 void Parma_Polyhedra_Library::Polyhedron::affine_image (Variable var, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one())

Assigns to ∗this the affine image of ∗this under the function mapping variable var to the affine
expression specified by expr and denominator.

Parameters

var The variable to which the affine expression is assigned;

expr The numerator of the affine expression;

denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this.

10.49.3.36 void Parma_Polyhedra_Library::Polyhedron::affine_preimage (Variable var, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one())

Assigns to ∗this the affine preimage of ∗this under the function mapping variable var to the affine
expression specified by expr and denominator.

Parameters

var The variable to which the affine expression is substituted;

expr The numerator of the affine expression;

denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 467

10.49.3.37 void Parma_Polyhedra_Library::Polyhedron::generalized_affine_image (
Variable var, Relation_Symbol relsym, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the generalized affine relation var′ ./ expr
denominator ,

where ./ is the relation symbol encoded by relsym.

Parameters

var The left hand side variable of the generalized affine relation;

relsym The relation symbol;

expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression (optional argument with default
value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this or if ∗this is a C_Polyhedron
and relsym is a strict relation symbol.

10.49.3.38 void Parma_Polyhedra_Library::Polyhedron::generalized_affine_preimage
(Variable var, Relation_Symbol relsym, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation var′ ./
expr

denominator , where ./ is the relation symbol encoded by relsym.

Parameters

var The left hand side variable of the generalized affine relation;

relsym The relation symbol;

expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression (optional argument with default
value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-
incompatible or if var is not a space dimension of ∗this or if ∗this is a C_Polyhedron
and relsym is a strict relation symbol.

10.49.3.39 void Parma_Polyhedra_Library::Polyhedron::generalized_affine_image (const
Linear_Expression & lhs, Relation_Symbol relsym, const Linear_Expression & rhs)

Assigns to ∗this the image of ∗this with respect to the generalized affine relation lhs′ ./ rhs, where ./
is the relation symbol encoded by relsym.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 468

Parameters

lhs The left hand side affine expression;

relsym The relation symbol;

rhs The right hand side affine expression.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with lhs or rhs or if ∗this is
a C_Polyhedron and relsym is a strict relation symbol.

10.49.3.40 void Parma_Polyhedra_Library::Polyhedron::generalized_affine_preimage (const
Linear_Expression & lhs, Relation_Symbol relsym, const Linear_Expression & rhs)

Assigns to ∗this the preimage of ∗this with respect to the generalized affine relation lhs′ ./ rhs, where
./ is the relation symbol encoded by relsym.

Parameters

lhs The left hand side affine expression;

relsym The relation symbol;

rhs The right hand side affine expression.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with lhs or rhs or if ∗this is
a C_Polyhedron and relsym is a strict relation symbol.

10.49.3.41 void Parma_Polyhedra_Library::Polyhedron::bounded_affine_image (Variable
var, const Linear_Expression & lb_expr, const Linear_Expression & ub_expr,
Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to ∗this the image of ∗this with respect to the bounded affine relation lb_expr
denominator ≤ var′ ≤

ub_expr
denominator .

Parameters

var The variable updated by the affine relation;

lb_expr The numerator of the lower bounding affine expression;

ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if lb_expr (resp., ub_expr) and
∗this are dimension-incompatible or if var is not a space dimension of ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 469

10.49.3.42 void Parma_Polyhedra_Library::Polyhedron::bounded_affine_preimage (Variable
var, const Linear_Expression & lb_expr, const Linear_Expression & ub_expr,
Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to ∗this the preimage of ∗thiswith respect to the bounded affine relation lb_expr
denominator ≤ var′ ≤

ub_expr
denominator .

Parameters

var The variable updated by the affine relation;

lb_expr The numerator of the lower bounding affine expression;

ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions

std::invalid_argument Thrown if denominator is zero or if lb_expr (resp., ub_expr) and
∗this are dimension-incompatible or if var is not a space dimension of ∗this.

10.49.3.43 void Parma_Polyhedra_Library::Polyhedron::time_elapse_assign (const Polyhedron
& y)

Assigns to ∗this the result of computing the time-elapse between ∗this and y.

Exceptions

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

10.49.3.44 void Parma_Polyhedra_Library::Polyhedron::wrap_assign (const Variables_Set &
vars, Bounded_Integer_Type_Width w, Bounded_Integer_Type_Representation r,
Bounded_Integer_Type_Overflow o, const Constraint_System ∗ pcs = 0, unsigned
complexity_threshold = 16, bool wrap_individually = true)

Wraps the specified dimensions of the vector space.

Parameters

vars The set of Variable objects corresponding to the space dimensions to be wrapped.

w The width of the bounded integer type corresponding to all the dimensions to be wrapped.

r The representation of the bounded integer type corresponding to all the dimensions to be wrapped.

o The overflow behavior of the bounded integer type corresponding to all the dimensions to be
wrapped.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 470

pcs Possibly null pointer to a constraint system whose variables are contained in vars. If ∗pcs
depends on variables not in vars, the behavior is undefined. When non-null, the pointed-to
constraint system is assumed to represent the conditional or looping construct guard with respect
to which wrapping is performed. Since wrapping requires the computation of upper bounds
and due to non-distributivity of constraint refinement over upper bounds, passing a constraint
system in this way can be more precise than refining the result of the wrapping operation with
the constraints in ∗pcs.

complexity_threshold A precision parameter of the wrapping operator: higher values result in possi-
bly improved precision.

wrap_individually true if the dimensions should be wrapped individually (something that results in
much greater efficiency to the detriment of precision).

Exceptions

std::invalid_argument Thrown if ∗pcs is dimension-incompatible with vars, or if ∗this is
dimension-incompatible vars or with ∗pcs.

10.49.3.45 void Parma_Polyhedra_Library::Polyhedron::drop_some_non_integer_points (
Complexity_Class complexity = ANY_COMPLEXITY) [inline]

Possibly tightens ∗this by dropping some points with non-integer coordinates.

Parameters

complexity The maximal complexity of any algorithms used.

Note

Currently there is no optimality guarantee, not even if complexity is ANY_COMPLEXITY.

10.49.3.46 void Parma_Polyhedra_Library::Polyhedron::drop_some_non_integer_points (
const Variables_Set & vars, Complexity_Class complexity = ANY_COMPLEXITY)
[inline]

Possibly tightens ∗this by dropping some points with non-integer coordinates for the space dimensions
corresponding to vars.

Parameters

vars Points with non-integer coordinates for these variables/space-dimensions can be discarded.

complexity The maximal complexity of any algorithms used.

Note

Currently there is no optimality guarantee, not even if complexity is ANY_COMPLEXITY.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 471

10.49.3.47 void Parma_Polyhedra_Library::Polyhedron::BHRZ03_widening_assign (const
Polyhedron & y, unsigned ∗ tp = 0)

Assigns to ∗this the result of computing the BHRZ03-widening between ∗this and y.

Parameters

y A polyhedron that must be contained in ∗this;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

10.49.3.48 void Parma_Polyhedra_Library::Polyhedron::limited_BHRZ03_extrapolation_assign (
const Polyhedron & y, const Constraint_System & cs, unsigned ∗ tp = 0)

Assigns to ∗this the result of computing the limited extrapolation between ∗this and y using the
BHRZ03-widening operator.

Parameters

y A polyhedron that must be contained in ∗this;

cs The system of constraints used to improve the widened polyhedron;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this, y and cs are topology-incompatible or dimension-
incompatible.

10.49.3.49 void Parma_Polyhedra_Library::Polyhedron::bounded_BHRZ03_extrapolation_-
assign (const Polyhedron & y, const Constraint_System & cs, unsigned ∗ tp = 0
)

Assigns to ∗this the result of computing the bounded extrapolation between ∗this and y using the
BHRZ03-widening operator.

Parameters

y A polyhedron that must be contained in ∗this;

cs The system of constraints used to improve the widened polyhedron;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 472

Exceptions

std::invalid_argument Thrown if ∗this, y and cs are topology-incompatible or dimension-
incompatible.

10.49.3.50 void Parma_Polyhedra_Library::Polyhedron::H79_widening_assign (const
Polyhedron & y, unsigned ∗ tp = 0)

Assigns to ∗this the result of computing the H79_widening between ∗this and y.

Parameters

y A polyhedron that must be contained in ∗this;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-
incompatible.

10.49.3.51 void Parma_Polyhedra_Library::Polyhedron::limited_H79_extrapolation_assign (
const Polyhedron & y, const Constraint_System & cs, unsigned ∗ tp = 0)

Assigns to ∗this the result of computing the limited extrapolation between ∗this and y using the H79-
widening operator.

Parameters

y A polyhedron that must be contained in ∗this;

cs The system of constraints used to improve the widened polyhedron;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this, y and cs are topology-incompatible or dimension-
incompatible.

10.49.3.52 void Parma_Polyhedra_Library::Polyhedron::bounded_H79_extrapolation_assign (
const Polyhedron & y, const Constraint_System & cs, unsigned ∗ tp = 0)

Assigns to ∗this the result of computing the bounded extrapolation between ∗this and y using the
H79-widening operator.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 473

Parameters

y A polyhedron that must be contained in ∗this;

cs The system of constraints used to improve the widened polyhedron;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions

std::invalid_argument Thrown if ∗this, y and cs are topology-incompatible or dimension-
incompatible.

10.49.3.53 void Parma_Polyhedra_Library::Polyhedron::add_space_dimensions_and_embed (
dimension_type m)

Adds m new space dimensions and embeds the old polyhedron in the new vector space.

Parameters

m The number of dimensions to add.

Exceptions

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension().

The new space dimensions will be those having the highest indexes in the new polyhedron, which is char-
acterized by a system of constraints in which the variables running through the new dimensions are not
constrained. For instance, when starting from the polyhedron P ⊆ R2 and adding a third space dimension,
the result will be the polyhedron {

(x, y, z)T ∈ R3
∣∣ (x, y)T ∈ P

}
.

10.49.3.54 void Parma_Polyhedra_Library::Polyhedron::add_space_dimensions_and_project (
dimension_type m)

Adds m new space dimensions to the polyhedron and does not embed it in the new vector space.

Parameters

m The number of space dimensions to add.

Exceptions

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension().

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 474

The new space dimensions will be those having the highest indexes in the new polyhedron, which is char-
acterized by a system of constraints in which the variables running through the new dimensions are all
constrained to be equal to 0. For instance, when starting from the polyhedron P ⊆ R2 and adding a third
space dimension, the result will be the polyhedron{

(x, y, 0)T ∈ R3
∣∣ (x, y)T ∈ P

}
.

10.49.3.55 void Parma_Polyhedra_Library::Polyhedron::concatenate_assign (const Polyhedron
& y)

Assigns to ∗this the concatenation of ∗this and y, taken in this order.

Exceptions

std::invalid_argument Thrown if ∗this and y are topology-incompatible.

std::length_error Thrown if the concatenation would cause the vector space to exceed dimension
max_space_dimension().

10.49.3.56 void Parma_Polyhedra_Library::Polyhedron::remove_space_dimensions (const
Variables_Set & vars)

Removes all the specified dimensions from the vector space.

Parameters

vars The set of Variable objects corresponding to the space dimensions to be removed.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with one of the Variable objects
contained in vars.

10.49.3.57 void Parma_Polyhedra_Library::Polyhedron::remove_higher_space_dimensions (
dimension_type new_dimension)

Removes the higher dimensions of the vector space so that the resulting space will have dimension new_-
dimension.

Exceptions

std::invalid_argument Thrown if new_dimensions is greater than the space dimension of ∗this.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 475

10.49.3.58 template<typename Partial_Function > void Parma_Polyhedra_-
Library::Polyhedron::map_space_dimensions (const Partial_Function & pfunc
)

Remaps the dimensions of the vector space according to a partial function.

Parameters

pfunc The partial function specifying the destiny of each space dimension.

The template type parameter Partial_Function must provide the following methods.

bool has_empty_codomain() const

returns true if and only if the represented partial function has an empty codomain (i.e., it is always
undefined). The has_empty_codomain() method will always be called before the methods below.
However, if has_empty_codomain() returns true, none of the functions below will be called.

dimension_type max_in_codomain() const

returns the maximum value that belongs to the codomain of the partial function. The max_in_-
codomain() method is called at most once.

bool maps(dimension_type i, dimension_type& j) const

Let f be the represented function and k be the value of i. If f is defined in k, then f(k) is assigned to
j and true is returned. If f is undefined in k, then false is returned. This method is called at most n
times, where n is the dimension of the vector space enclosing the polyhedron.

The result is undefined if pfunc does not encode a partial function with the properties described in the
specification of the mapping operator.

10.49.3.59 void Parma_Polyhedra_Library::Polyhedron::expand_space_dimension (Variable
var, dimension_type m)

Creates m copies of the space dimension corresponding to var.

Parameters

var The variable corresponding to the space dimension to be replicated;

m The number of replicas to be created.

Exceptions

std::invalid_argument Thrown if var does not correspond to a dimension of the vector space.

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension().

If ∗this has space dimension n, with n > 0, and var has space dimension k ≤ n, then the k-th space
dimension is expanded to m new space dimensions n, n+ 1, . . . , n+m− 1.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.49 Parma_Polyhedra_Library::Polyhedron Class Reference 476

10.49.3.60 void Parma_Polyhedra_Library::Polyhedron::fold_space_dimensions (const
Variables_Set & vars, Variable dest)

Folds the space dimensions in vars into dest.

Parameters

vars The set of Variable objects corresponding to the space dimensions to be folded;
dest The variable corresponding to the space dimension that is the destination of the folding operation.

Exceptions

std::invalid_argument Thrown if ∗this is dimension-incompatible with dest or with one of the
Variable objects contained in vars. Also thrown if dest is contained in vars.

If ∗this has space dimension n, with n > 0, dest has space dimension k ≤ n, vars is a set of variables
whose maximum space dimension is also less than or equal to n, and dest is not a member of vars, then
the space dimensions corresponding to variables in vars are folded into the k-th space dimension.

10.49.3.61 void Parma_Polyhedra_Library::Polyhedron::swap (Polyhedron & y) [inline]

Swaps ∗this with polyhedron y. (∗this and y can be dimension-incompatible.).

Exceptions

std::invalid_argument Thrown if x and y are topology-incompatible.

10.49.3.62 int32_t Parma_Polyhedra_Library::Polyhedron::hash_code () const [inline]

Returns a 32-bit hash code for ∗this.

If x and y are such that x == y, then x.hash_code() == y.hash_code().

10.49.3.63 void Parma_Polyhedra_Library::Polyhedron::drop_some_non_integer_points (const
Variables_Set ∗ pvars, Complexity_Class complexity) [protected]

Possibly tightens ∗this by dropping some points with non-integer coordinates for the space dimensions
corresponding to ∗pvars.

Parameters

pvars When nonzero, points with non-integer coordinates for the variables/space-dimensions con-
tained in ∗pvars can be discarded.

complexity The maximal complexity of any algorithms used.

Note

Currently there is no optimality guarantee, not even if complexity is ANY_COMPLEXITY.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.50 Parma_Polyhedra_Library::Powerset< D > Class Template Reference 477

10.49.4 Friends And Related Function Documentation

10.49.4.1 std::ostream & operator<< (std::ostream & s, const Polyhedron & ph)
[related]

Output operator.

Writes a textual representation of ph on s: false is written if ph is an empty polyhedron; true is
written if ph is a universe polyhedron; a minimized system of constraints defining ph is written otherwise,
all constraints in one row separated by ", ".

10.49.4.2 bool operator!= (const Polyhedron & x, const Polyhedron & y) [related]

Returns true if and only if x and y are different polyhedra.

Note that x and y may be topology- and/or dimension-incompatible polyhedra: in those cases, the value
true is returned.

10.49.4.3 void swap (Parma_Polyhedra_Library::Polyhedron & x,
Parma_Polyhedra_Library::Polyhedron & y) [related]

Specializes std::swap.

The documentation for this class was generated from the following file:

• ppl.hh

10.50 Parma_Polyhedra_Library::Powerset< D > Class Template Reference

The powerset construction on a base-level domain.

#include <ppl.hh>

Public Types

• typedef iterator_to_const< Sequence > iterator
Alias for a read-only bidirectional iterator on the disjuncts of a Powerset element.

• typedef const_iterator_to_const< Sequence > const_iterator
A bidirectional const_iterator on the disjuncts of a Powerset element.

• typedef std::reverse_iterator< iterator > reverse_iterator
The reverse iterator type built from Powerset::iterator.

• typedef std::reverse_iterator< const_iterator > const_reverse_iterator
The reverse iterator type built from Powerset::const_iterator.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.50 Parma_Polyhedra_Library::Powerset< D > Class Template Reference 478

Public Member Functions

Constructors and Destructor

• Powerset ()
Default constructor: builds the bottom of the powerset constraint system (i.e., the empty powerset).

• Powerset (const Powerset &y)
Copy constructor.

• Powerset (const D &d)
If d is not bottom, builds a powerset containing only d. Builds the empty powerset otherwise.

• ∼Powerset ()
Destructor.

Member Functions that Do Not Modify the Powerset Object

• bool definitely_entails (const Powerset &y) const
Returns true if ∗this definitely entails y. Returns false if ∗this may not entail y (i.e., if ∗this
does not entail y or if entailment could not be decided).

• bool is_top () const
Returns true if and only if ∗this is the top element of the powerset constraint system (i.e., it represents
the universe).

• bool is_bottom () const
Returns true if and only if ∗this is the bottom element of the powerset constraint system (i.e., it
represents the empty set).

• memory_size_type total_memory_in_bytes () const
Returns a lower bound to the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns a lower bound to the size in bytes of the memory managed by ∗this.

• bool OK (bool disallow_bottom=false) const
Checks if all the invariants are satisfied.

Member Functions for the Direct Manipulation of Disjuncts

• void omega_reduce () const
Drops from the sequence of disjuncts in ∗this all the non-maximal elements so that ∗this is non-
redundant.

• size_type size () const
Returns the number of disjuncts.

• bool empty () const
Returns true if and only if there are no disjuncts in ∗this.

• iterator begin ()

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.50 Parma_Polyhedra_Library::Powerset< D > Class Template Reference 479

Returns an iterator pointing to the first disjunct, if ∗this is not empty; otherwise, returns the past-the-
end iterator.

• iterator end ()
Returns the past-the-end iterator.

• const_iterator begin () const
Returns a const_iterator pointing to the first disjunct, if ∗this is not empty; otherwise, returns the
past-the-end const_iterator.

• const_iterator end () const
Returns the past-the-end const_iterator.

• reverse_iterator rbegin ()
Returns a reverse_iterator pointing to the last disjunct, if ∗this is not empty; otherwise, returns the
before-the-start reverse_iterator.

• reverse_iterator rend ()
Returns the before-the-start reverse_iterator.

• const_reverse_iterator rbegin () const
Returns a const_reverse_iterator pointing to the last disjunct, if ∗this is not empty; otherwise, returns
the before-the-start const_reverse_iterator.

• const_reverse_iterator rend () const
Returns the before-the-start const_reverse_iterator.

• void add_disjunct (const D &d)
Adds to ∗this the disjunct d.

• iterator drop_disjunct (iterator position)
Drops the disjunct in ∗this pointed to by position, returning an iterator to the disjunct following
position.

• void drop_disjuncts (iterator first, iterator last)
Drops all the disjuncts from first to last (excluded).

• void clear ()
Drops all the disjuncts, making ∗this an empty powerset.

Member Functions that May Modify the Powerset Object

• Powerset & operator= (const Powerset &y)
The assignment operator.

• void swap (Powerset &y)
Swaps ∗this with y.

• void least_upper_bound_assign (const Powerset &y)
Assigns to ∗this the least upper bound of ∗this and y.

• void upper_bound_assign (const Powerset &y)
Assigns to ∗this an upper bound of ∗this and y.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.50 Parma_Polyhedra_Library::Powerset< D > Class Template Reference 480

• bool upper_bound_assign_if_exact (const Powerset &y)
Assigns to ∗this the least upper bound of ∗this and y and returns true.

• void meet_assign (const Powerset &y)
Assigns to ∗this the meet of ∗this and y.

• void collapse ()
If ∗this is not empty (i.e., it is not the bottom element), it is reduced to a singleton obtained by comput-
ing an upper-bound of all the disjuncts.

Protected Types

• typedef std::list< D > Sequence
A powerset is implemented as a sequence of elements.

• typedef Sequence::iterator Sequence_iterator
Alias for the low-level iterator on the disjuncts.

• typedef Sequence::const_iterator Sequence_const_iterator
Alias for the low-level const_iterator on the disjuncts.

Protected Member Functions

• bool is_omega_reduced () const
Returns true if and only if ∗this does not contain non-maximal elements.

• void collapse (unsigned max_disjuncts)
Upon return, ∗this will contain at most max_disjuncts elements; the set of disjuncts in positions
greater than or equal to max_disjuncts, will be replaced at that position by their upper-bound.

• iterator add_non_bottom_disjunct_preserve_reduction (const D &d, iterator first, iterator last)
Adds to ∗this the disjunct d, assuming d is not the bottom element and ensuring partial Omega-reduction.

• void add_non_bottom_disjunct_preserve_reduction (const D &d)
Adds to ∗this the disjunct d, assuming d is not the bottom element and preserving Omega-reduction.

• template<typename Binary_Operator_Assign >

void pairwise_apply_assign (const Powerset &y, Binary_Operator_Assign op_assign)
Assigns to ∗this the result of applying op_assign pairwise to the elements in ∗this and y.

Protected Attributes

• Sequence sequence
The sequence container holding powerset’s elements.

• bool reduced
If true, ∗this is Omega-reduced.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.50 Parma_Polyhedra_Library::Powerset< D > Class Template Reference 481

Related Functions

(Note that these are not member functions.)

• template<typename D >

bool operator== (const Powerset< D > &x, const Powerset< D > &y)
Returns true if and only if x and y are equivalent.

• template<typename D >

bool operator!= (const Powerset< D > &x, const Powerset< D > &y)
Returns true if and only if x and y are not equivalent.

• template<typename D >

std::ostream & operator<< (std::ostream &s, const Powerset< D > &x)
Output operator.

• template<typename D >

void swap (Parma_Polyhedra_Library::Powerset< D > &x, Parma_Polyhedra_Library::Powerset<
D > &y)

Specializes std::swap.

10.50.1 Detailed Description

template<typename D> class Parma_Polyhedra_Library::Powerset< D >

The powerset construction on a base-level domain. This class offers a generic implementation of a powerset
domain as defined in Section The Powerset Construction.

Besides invoking the available methods on the disjuncts of a Powerset, this class also provides bidirectional
iterators that allow for a direct inspection of these disjuncts. For a consistent handling of Omega-reduction,
all the iterators are read-only, meaning that the disjuncts cannot be overwritten. Rather, by using the class
iterator, it is possible to drop one or more disjuncts (possibly so as to later add back modified versions).
As an example of iterator usage, the following template function drops from powerset ps all the disjuncts
that would have become redundant by the addition of an external element d.

template <typename D>
void
drop_subsumed(Powerset<D>& ps, const D& d) {

for (typename Powerset<D>::iterator i = ps.begin(),
ps_end = ps.end(), i != ps_end;)

if (i->definitely_entails(d))
i = ps.drop_disjunct(i);

else
++i;

}

The template class D must provide the following methods.

memory_size_type total_memory_in_bytes() const

Returns a lower bound on the total size in bytes of the memory occupied by the instance of D.

bool is_top() const

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.50 Parma_Polyhedra_Library::Powerset< D > Class Template Reference 482

Returns true if and only if the instance of D is the top element of the domain.

bool is_bottom() const

Returns true if and only if the instance of D is the bottom element of the domain.

bool definitely_entails(const D& y) const

Returns true if the instance of D definitely entails y. Returns false if the instance may not entail y
(i.e., if the instance does not entail y or if entailment could not be decided).

void upper_bound_assign(const D& y)

Assigns to the instance of D an upper bound of the instance and y.

void meet_assign(const D& y)

Assigns to the instance of D the meet of the instance and y.

bool OK() const

Returns true if the instance of D is in a consistent state, else returns false.

The following operators on the template class D must be defined.

operator<<(std::ostream& s, const D& x)

Writes a textual representation of the instance of D on s.

operator==(const D& x, const D& y)

Returns true if and only if x and y are equivalent D’s.

operator!=(const D& x, const D& y)

Returns true if and only if x and y are different D’s.

10.50.2 Member Typedef Documentation

10.50.2.1 template<typename D> typedef std::list<D> Parma_Polyhedra_Library::Powerset< D
>::Sequence [protected]

A powerset is implemented as a sequence of elements.

The particular sequence employed must support efficient deletion in any position and efficient back inser-
tion.

10.50.2.2 template<typename D> typedef iterator_to_const<Sequence>
Parma_Polyhedra_Library::Powerset< D >::iterator

Alias for a read-only bidirectional iterator on the disjuncts of a Powerset element.

By using this iterator type, the disjuncts cannot be overwritten, but they can be removed
using methods drop_disjunct(iterator position) and drop_disjuncts(iterator
first, iterator last), while still ensuring a correct handling of Omega-reduction.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.50 Parma_Polyhedra_Library::Powerset< D > Class Template Reference 483

10.50.3 Member Function Documentation

10.50.3.1 template<typename D > void Parma_Polyhedra_Library::Powerset< D
>::omega_reduce () const

Drops from the sequence of disjuncts in ∗this all the non-maximal elements so that ∗this is non-
redundant.

This method is declared const because, even though Omega-reduction may change the syntactic repre-
sentation of ∗this, its semantics will be unchanged.

10.50.3.2 template<typename D > void Parma_Polyhedra_Library::Powerset< D
>::upper_bound_assign (const Powerset< D > & y) [inline]

Assigns to ∗this an upper bound of ∗this and y.

The result will be the least upper bound of ∗this and y.

10.50.3.3 template<typename D > bool Parma_Polyhedra_Library::Powerset< D
>::upper_bound_assign_if_exact (const Powerset< D > & y) [inline]

Assigns to ∗this the least upper bound of ∗this and y and returns true.

Exceptions

std::invalid_argument Thrown if ∗this and y are dimension-incompatible.

10.50.3.4 template<typename D> Powerset< D >::iterator Parma_Polyhedra_-
Library::Powerset< D >::add_non_bottom_disjunct_preserve_reduction (const D &
d, iterator first, iterator last) [protected]

Adds to ∗this the disjunct d, assuming d is not the bottom element and ensuring partial Omega-reduction.

If d is not the bottom element and is not Omega-redundant with respect to elements in positions between
first and last, all elements in these positions that would be made Omega-redundant by the addition
of d are dropped and d is added to the reduced sequence. If ∗this is reduced before an invocation of this
method, it will be reduced upon successful return from the method.

10.50.3.5 template<typename D> void Parma_Polyhedra_Library::Powerset< D
>::add_non_bottom_disjunct_preserve_reduction (const D & d) [inline,
protected]

Adds to ∗this the disjunct d, assuming d is not the bottom element and preserving Omega-reduction.

If ∗this is reduced before an invocation of this method, it will be reduced upon successful return from
the method.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.51 Parma_Polyhedra_Library::Recycle_Input Struct Reference 484

10.50.3.6 template<typename D > template<typename Binary_Operator_Assign > void
Parma_Polyhedra_Library::Powerset< D >::pairwise_apply_assign (const Powerset<
D > & y, Binary_Operator_Assign op_assign) [protected]

Assigns to ∗this the result of applying op_assign pairwise to the elements in ∗this and y.

The elements of the powerset result are obtained by applying op_assign to each pair of elements whose
components are drawn from ∗this and y, respectively.

10.50.4 Friends And Related Function Documentation

10.50.4.1 template<typename D > bool operator== (const Powerset< D > & x, const
Powerset< D > & y) [related]

Returns true if and only if x and y are equivalent.

10.50.4.2 template<typename D > bool operator!= (const Powerset< D > & x, const Powerset<
D > & y) [related]

Returns true if and only if x and y are not equivalent.

10.50.4.3 template<typename D > std::ostream & operator<< (std::ostream & s, const
Powerset< D > & x) [related]

Output operator.

10.50.4.4 template<typename D > void swap (Parma_Polyhedra_Library::Powerset< D > & x,
Parma_Polyhedra_Library::Powerset< D > & y) [related]

Specializes std::swap.

The documentation for this class was generated from the following file:

• ppl.hh

10.51 Parma_Polyhedra_Library::Recycle_Input Struct Reference

A tag class.

#include <ppl.hh>

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.52 Parma_Polyhedra_Library::Shape_Preserving_Reduction< D1, D2 > Class Template
Reference 485

10.51.1 Detailed Description

A tag class. Tag class to distinguish those constructors that recycle the data structures of their arguments,
instead of taking a copy.

The documentation for this struct was generated from the following file:

• ppl.hh

10.52 Parma_Polyhedra_Library::Shape_Preserving_Reduction< D1, D2 >
Class Template Reference

This class provides the reduction method for the Shape_Preserving_Product domain.

#include <ppl.hh>

Public Member Functions

• Shape_Preserving_Reduction ()
Default constructor.

• void product_reduce (D1 &d1, D2 &d2)
The congruences reduction operator for detect emptiness or any equalities implied by each of the con-
gruences defining one of the components and the bounds of the other component. It is assumed that the
components are already constraints reduced.

• ∼Shape_Preserving_Reduction ()
Destructor.

10.52.1 Detailed Description

template<typename D1, typename D2> class Parma_Polyhedra_Library::Shape_Preserving_-
Reduction< D1, D2 >

This class provides the reduction method for the Shape_Preserving_Product domain. The reduction classes
are used to instantiate the Partially_Reduced_Product domain.

This reduction method includes the congruences reduction. This class uses the minimized constraints
defining each of the components. For each of the constraints, it checks the frequency and value for the
same linear expression in the other component. If the constraint does not satisfy the implied congruence,
the inhomogeneous term is adjusted so that it does. Note that unless the congruences reduction adds
equalitites the shapes of the domains are unaltered.

10.52.2 Member Function Documentation

10.52.2.1 template<typename D1 , typename D2 > void Parma_Polyhedra_Library::Shape_-
Preserving_Reduction< D1, D2 >::product_reduce (D1 & d1, D2 & d2
)

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.53 Parma_Polyhedra_Library::Smash_Reduction< D1, D2 > Class Template Reference 486

The congruences reduction operator for detect emptiness or any equalities implied by each of the con-
gruences defining one of the components and the bounds of the other component. It is assumed that the
components are already constraints reduced.

The minimized congruence system defining the domain element d1 is used to check if d2 intersects none,
one or more than one of the hyperplanes defined by the congruences: if it intersects none, then product
is set empty; if it intersects one, then the equality defining this hyperplane is added to both components;
otherwise, the product is unchanged. In each case, the donor domain must provide a congruence system in
minimal form.

Parameters

d1 A pointset domain element;

d2 A pointset domain element;

The documentation for this class was generated from the following file:

• ppl.hh

10.53 Parma_Polyhedra_Library::Smash_Reduction< D1, D2 > Class Template
Reference

This class provides the reduction method for the Smash_Product domain.

#include <ppl.hh>

Public Member Functions

• Smash_Reduction ()
Default constructor.

• void product_reduce (D1 &d1, D2 &d2)
The smash reduction operator for propagating emptiness between the domain elements d1 and d2.

• ∼Smash_Reduction ()
Destructor.

10.53.1 Detailed Description

template<typename D1, typename D2> class Parma_Polyhedra_Library::Smash_Reduction< D1,
D2 >

This class provides the reduction method for the Smash_Product domain. The reduction classes are used
to instantiate the Partially_Reduced_Product domain. This class propagates emptiness between its compo-
nents.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.54 Parma_Polyhedra_Library::Throwable Class Reference 487

10.53.2 Member Function Documentation

10.53.2.1 template<typename D1 , typename D2 > void Parma_Polyhedra_-
Library::Smash_Reduction< D1, D2 >::product_reduce (D1 & d1, D2 & d2
)

The smash reduction operator for propagating emptiness between the domain elements d1 and d2.

If either of the the domain elements d1 or d2 is empty then the other is also set empty.

Parameters

d1 A pointset domain element;

d2 A pointset domain element;

The documentation for this class was generated from the following file:

• ppl.hh

10.54 Parma_Polyhedra_Library::Throwable Class Reference

User objects the PPL can throw.

#include <ppl.hh>

Public Member Functions

• virtual void throw_me () const =0
Throws the user defined exception object.

• virtual ∼Throwable ()
Virtual destructor.

10.54.1 Detailed Description

User objects the PPL can throw. This abstract base class should be instantiated by those users willing to
provide a polynomial upper bound to the time spent by any invocation of a library operator.

The documentation for this class was generated from the following file:

• ppl.hh

10.55 Parma_Polyhedra_Library::Variable Class Reference

A dimension of the vector space.

#include <ppl.hh>

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.55 Parma_Polyhedra_Library::Variable Class Reference 488

Classes

• struct Compare
Binary predicate defining the total ordering on variables.

Public Types

• typedef void output_function_type (std::ostream &s, const Variable &v)
Type of output functions.

Public Member Functions

• Variable (dimension_type i)
Builds the variable corresponding to the Cartesian axis of index i.

• dimension_type id () const
Returns the index of the Cartesian axis associated to the variable.

• dimension_type space_dimension () const
Returns the dimension of the vector space enclosing ∗this.

• memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• bool OK () const
Checks if all the invariants are satisfied.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a Variable can handle.

• static void set_output_function (output_function_type ∗p)
Sets the output function to be used for printing Variable objects.

• static output_function_type ∗ get_output_function ()
Returns the pointer to the current output function.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.55 Parma_Polyhedra_Library::Variable Class Reference 489

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &s, const Variable &v)
Output operator.

• bool less (Variable v, Variable w)
Defines a total ordering on variables.

10.55.1 Detailed Description

A dimension of the vector space. An object of the class Variable represents a dimension of the space,
that is one of the Cartesian axes. Variables are used as basic blocks in order to build more complex
linear expressions. Each variable is identified by a non-negative integer, representing the index of the
corresponding Cartesian axis (the first axis has index 0). The space dimension of a variable is the dimension
of the vector space made by all the Cartesian axes having an index less than or equal to that of the considered
variable; thus, if a variable has index i, its space dimension is i+ 1.

Note that the “meaning” of an object of the class Variable is completely specified by the integer index
provided to its constructor: be careful not to be mislead by C++ language variable names. For instance,
in the following example the linear expressions e1 and e2 are equivalent, since the two variables x and z
denote the same Cartesian axis.

Variable x(0);
Variable y(1);
Variable z(0);
Linear_Expression e1 = x + y;
Linear_Expression e2 = y + z;

10.55.2 Constructor & Destructor Documentation

10.55.2.1 Parma_Polyhedra_Library::Variable::Variable (dimension_type i) [inline,
explicit]

Builds the variable corresponding to the Cartesian axis of index i.

Exceptions

std::length_error Thrown if i+1 exceeds Variable::max_space_dimension().

10.55.3 Member Function Documentation

10.55.3.1 dimension_type Parma_Polyhedra_Library::Variable::space_dimension () const
[inline]

Returns the dimension of the vector space enclosing ∗this.

The returned value is id()+1.

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.56 Parma_Polyhedra_Library::Variables_Set Class Reference 490

10.55.4 Friends And Related Function Documentation

10.55.4.1 std::ostream & operator<< (std::ostream & s, const Variable & v) [related]

Output operator.

10.55.4.2 bool less (Variable v, Variable w) [related]

Defines a total ordering on variables.

The documentation for this class was generated from the following file:

• ppl.hh

10.56 Parma_Polyhedra_Library::Variables_Set Class Reference

An std::set of variables’ indexes.

#include <ppl.hh>

Public Member Functions

• Variables_Set ()
Builds the empty set of variable indexes.

• Variables_Set (const Variable &v)
Builds the singleton set of indexes containing v.id();.

• Variables_Set (const Variable &v, const Variable &w)
Builds the set of variables’s indexes in the range from v.id() to w.id().

• dimension_type space_dimension () const
Returns the dimension of the smallest vector space enclosing all the variables whose indexes are in the set.

• void insert (Variable v)
Inserts the index of variable v into the set.

• bool ascii_load (std::istream &s)
Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets ∗this
accordingly. Returns true if successful, false otherwise.

• memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by ∗this.

• memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by ∗this.

• bool OK () const

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.56 Parma_Polyhedra_Library::Variables_Set Class Reference 491

Checks if all the invariants are satisfied.

• void ascii_dump () const
Writes to std::cerr an ASCII representation of ∗this.

• void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of ∗this.

• void print () const
Prints ∗this to std::cerr using operator<<.

Static Public Member Functions

• static dimension_type max_space_dimension ()
Returns the maximum space dimension a Variables_Set can handle.

Related Functions

(Note that these are not member functions.)

• std::ostream & operator<< (std::ostream &s, const Variables_Set &v)
Output operator.

10.56.1 Detailed Description

An std::set of variables’ indexes.

10.56.2 Constructor & Destructor Documentation

10.56.2.1 Parma_Polyhedra_Library::Variables_Set::Variables_Set (const Variable & v, const
Variable & w)

Builds the set of variables’s indexes in the range from v.id() to w.id().

If v.id() <= w.id(), this constructor builds the set of variables’ indexes v.id(), v.id()+1, ...,
w.id(). The empty set is built otherwise.

10.56.3 Friends And Related Function Documentation

10.56.3.1 std::ostream & operator<< (std::ostream & s, const Variables_Set & v)
[related]

Output operator.

The documentation for this class was generated from the following file:

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.56 Parma_Polyhedra_Library::Variables_Set Class Reference 492

• ppl.hh

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

Index
abandon_expensive_computations

PPL_CXX_interface, 69
abs_assign

Parma_Polyhedra_Library::Checked_Number,
178

Parma_Polyhedra_Library::GMP_Integer, 240
add_congruence

Parma_Polyhedra_Library::BD_Shape, 106
Parma_Polyhedra_Library::Box, 143
Parma_Polyhedra_Library::Grid, 261
Parma_Polyhedra_Library::Octagonal_Shape,

341
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 374
Parma_Polyhedra_Library::Pointset_-

Powerset, 427
Parma_Polyhedra_Library::Polyhedron, 461

add_congruences
Parma_Polyhedra_Library::BD_Shape, 107
Parma_Polyhedra_Library::Box, 143
Parma_Polyhedra_Library::Grid, 262
Parma_Polyhedra_Library::Octagonal_Shape,

341
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 375
Parma_Polyhedra_Library::Pointset_-

Powerset, 427
Parma_Polyhedra_Library::Polyhedron, 463

add_constraint
Parma_Polyhedra_Library::BD_Shape, 106
Parma_Polyhedra_Library::Box, 142
Parma_Polyhedra_Library::Grid, 262
Parma_Polyhedra_Library::MIP_Problem,

314
Parma_Polyhedra_Library::Octagonal_Shape,

340
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 374
Parma_Polyhedra_Library::PIP_Problem, 400
Parma_Polyhedra_Library::Pointset_-

Powerset, 426
Parma_Polyhedra_Library::Polyhedron, 460

add_constraints
Parma_Polyhedra_Library::BD_Shape, 107
Parma_Polyhedra_Library::Box, 142
Parma_Polyhedra_Library::Grid, 263
Parma_Polyhedra_Library::MIP_Problem,

314
Parma_Polyhedra_Library::Octagonal_Shape,

340

Parma_Polyhedra_Library::Partially_-
Reduced_Product, 376

Parma_Polyhedra_Library::PIP_Problem, 400
Parma_Polyhedra_Library::Pointset_-

Powerset, 426
Parma_Polyhedra_Library::Polyhedron, 461

add_disjunct
Parma_Polyhedra_Library::Pointset_-

Powerset, 426
add_generator

Parma_Polyhedra_Library::Polyhedron, 461
add_generators

Parma_Polyhedra_Library::Polyhedron, 462
add_grid_generator

Parma_Polyhedra_Library::Grid, 261
add_grid_generators

Parma_Polyhedra_Library::Grid, 264
add_mul_assign

Parma_Polyhedra_Library::Checked_Number,
179

Parma_Polyhedra_Library::GMP_Integer, 241
Parma_Polyhedra_Library::Linear_-

Expression, 306
add_non_bottom_disjunct_preserve_reduction

Parma_Polyhedra_Library::Powerset, 483
add_recycled_congruences

Parma_Polyhedra_Library::BD_Shape, 108
Parma_Polyhedra_Library::Box, 144
Parma_Polyhedra_Library::Grid, 262
Parma_Polyhedra_Library::Octagonal_Shape,

341
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 376
Parma_Polyhedra_Library::Polyhedron, 463

add_recycled_constraints
Parma_Polyhedra_Library::BD_Shape, 107
Parma_Polyhedra_Library::Box, 143
Parma_Polyhedra_Library::Grid, 263
Parma_Polyhedra_Library::Octagonal_Shape,

340
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 377
Parma_Polyhedra_Library::Polyhedron, 461

add_recycled_generators
Parma_Polyhedra_Library::Polyhedron, 462

add_recycled_grid_generators
Parma_Polyhedra_Library::Grid, 265

add_space_dimensions_and_embed
Parma_Polyhedra_Library::BD_Shape, 119
Parma_Polyhedra_Library::Box, 154

INDEX 494

Parma_Polyhedra_Library::Grid, 274
Parma_Polyhedra_Library::MIP_Problem,

313
Parma_Polyhedra_Library::Octagonal_Shape,

351
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 383
Parma_Polyhedra_Library::PIP_Problem, 399
Parma_Polyhedra_Library::Polyhedron, 473

add_space_dimensions_and_project
Parma_Polyhedra_Library::BD_Shape, 119
Parma_Polyhedra_Library::Box, 155
Parma_Polyhedra_Library::Grid, 274
Parma_Polyhedra_Library::Octagonal_Shape,

352
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 384
Parma_Polyhedra_Library::Polyhedron, 473

add_to_integer_space_dimensions
Parma_Polyhedra_Library::MIP_Problem,

313
add_to_parameter_space_dimensions

Parma_Polyhedra_Library::PIP_Problem, 400
add_unit_rows_and_columns

Parma_Polyhedra_Library::Congruence_-
System, 197

affine_image
Parma_Polyhedra_Library::BD_Shape, 111
Parma_Polyhedra_Library::Box, 148
Parma_Polyhedra_Library::Grid, 267
Parma_Polyhedra_Library::Octagonal_Shape,

345
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 379
Parma_Polyhedra_Library::Pointset_-

Powerset, 430
Parma_Polyhedra_Library::Polyhedron, 466

affine_preimage
Parma_Polyhedra_Library::BD_Shape, 112
Parma_Polyhedra_Library::Box, 148
Parma_Polyhedra_Library::Grid, 267
Parma_Polyhedra_Library::Octagonal_Shape,

345
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 379
Parma_Polyhedra_Library::Pointset_-

Powerset, 430
Parma_Polyhedra_Library::Polyhedron, 466

all_affine_quasi_ranking_functions_MS
Parma_Polyhedra_Library, 84

all_affine_quasi_ranking_functions_MS_2
Parma_Polyhedra_Library, 85

all_affine_ranking_functions_MS
Parma_Polyhedra_Library, 83

all_affine_ranking_functions_MS_2
Parma_Polyhedra_Library, 83

ANY_COMPLEXITY
PPL_CXX_interface, 67

approximate_partition
Parma_Polyhedra_Library::Pointset_-

Powerset, 438
Artificial_Parameter

Parma_Polyhedra_Library::PIP_Tree_-
Node::Artificial_Parameter, 89

ascii_load
Parma_Polyhedra_Library::Generator_-

System, 237
Parma_Polyhedra_Library::Grid_Generator_-

System, 291
assign_r

Parma_Polyhedra_Library::Checked_Number,
176, 177

banner
Parma_Polyhedra_Library, 79

BD_Shape
Parma_Polyhedra_Library::BD_Shape, 99–

101
BGP99_extrapolation_assign

Parma_Polyhedra_Library::Pointset_-
Powerset, 434

BHMZ05_widening_assign
Parma_Polyhedra_Library::BD_Shape, 117
Parma_Polyhedra_Library::Octagonal_Shape,

350
BHRZ03_widening_assign

Parma_Polyhedra_Library::Polyhedron, 470
BHZ03_widening_assign

Parma_Polyhedra_Library::Pointset_-
Powerset, 435

BITS_128
PPL_CXX_interface, 67

BITS_16
PPL_CXX_interface, 67

BITS_32
PPL_CXX_interface, 67

BITS_64
PPL_CXX_interface, 67

BITS_8
PPL_CXX_interface, 67

bounded_affine_image
Parma_Polyhedra_Library::BD_Shape, 114
Parma_Polyhedra_Library::Box, 150
Parma_Polyhedra_Library::Grid, 269
Parma_Polyhedra_Library::Octagonal_Shape,

346
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 381

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 495

Parma_Polyhedra_Library::Pointset_-
Powerset, 432

Parma_Polyhedra_Library::Polyhedron, 468
bounded_affine_preimage

Parma_Polyhedra_Library::BD_Shape, 114
Parma_Polyhedra_Library::Box, 151
Parma_Polyhedra_Library::Grid, 270
Parma_Polyhedra_Library::Octagonal_Shape,

347
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 382
Parma_Polyhedra_Library::Pointset_-

Powerset, 433
Parma_Polyhedra_Library::Polyhedron, 468

bounded_BHRZ03_extrapolation_assign
Parma_Polyhedra_Library::Polyhedron, 471

bounded_H79_extrapolation_assign
Parma_Polyhedra_Library::Polyhedron, 472

Bounded_Integer_Type_Overflow
PPL_CXX_interface, 68

Bounded_Integer_Type_Representation
PPL_CXX_interface, 67

Bounded_Integer_Type_Width
PPL_CXX_interface, 67

bounds_from_above
Parma_Polyhedra_Library::BD_Shape, 102
Parma_Polyhedra_Library::Box, 139
Parma_Polyhedra_Library::Grid, 258
Parma_Polyhedra_Library::Octagonal_Shape,

337
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 371
Parma_Polyhedra_Library::Pointset_-

Powerset, 421
Parma_Polyhedra_Library::Polyhedron, 457

bounds_from_below
Parma_Polyhedra_Library::BD_Shape, 102
Parma_Polyhedra_Library::Box, 139
Parma_Polyhedra_Library::Grid, 258
Parma_Polyhedra_Library::Octagonal_Shape,

337
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 371
Parma_Polyhedra_Library::Pointset_-

Powerset, 422
Parma_Polyhedra_Library::Polyhedron, 457

Box
Parma_Polyhedra_Library::Box, 135–138

C++ Language Interface, 59
C_Polyhedron

Parma_Polyhedra_Library::C_Polyhedron,
163–166

CC76_extrapolation_assign

Parma_Polyhedra_Library::BD_Shape, 116
Parma_Polyhedra_Library::Octagonal_Shape,

349, 350
CC76_narrowing_assign

Parma_Polyhedra_Library::BD_Shape, 117
Parma_Polyhedra_Library::Box, 154
Parma_Polyhedra_Library::Octagonal_Shape,

351
CC76_widening_assign

Parma_Polyhedra_Library::Box, 153
ceil_assign

Parma_Polyhedra_Library::Checked_Number,
177, 178

check_containment
Parma_Polyhedra_Library::Pointset_-

Powerset, 438
classify

Parma_Polyhedra_Library::Checked_Number,
175

clear
Parma_Polyhedra_Library::MIP_Problem,

313
Parma_Polyhedra_Library::PIP_Problem, 399

CLOSURE_POINT
Parma_Polyhedra_Library::Generator, 228

closure_point
Parma_Polyhedra_Library::Generator, 229

cmp
Parma_Polyhedra_Library::Checked_Number,

181
Coefficient

PPL_CXX_interface, 65
coefficient

Parma_Polyhedra_Library::Congruence, 190
Parma_Polyhedra_Library::Constraint, 210
Parma_Polyhedra_Library::Generator, 229
Parma_Polyhedra_Library::Grid_Generator,

285
coefficient_swap

Parma_Polyhedra_Library::Grid_Generator,
285

compare
Parma_Polyhedra_Library::BHRZ03_-

Certificate, 126
Parma_Polyhedra_Library::Grid_Certificate,

278
Parma_Polyhedra_Library::H79_Certificate,

293
compatibility_check

Parma_Polyhedra_Library::PIP_Tree_Node,
410

Complexity_Class
PPL_CXX_interface, 67

concatenate_assign

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 496

Parma_Polyhedra_Library::BD_Shape, 120
Parma_Polyhedra_Library::Box, 155
Parma_Polyhedra_Library::Grid, 274
Parma_Polyhedra_Library::Octagonal_Shape,

352
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 384
Parma_Polyhedra_Library::Pointset_-

Powerset, 435
Parma_Polyhedra_Library::Polyhedron, 474

Congruence
Parma_Polyhedra_Library::Congruence, 190

Congruence_System
Parma_Polyhedra_Library::Congruence_-

System, 197
congruence_widening_assign

Parma_Polyhedra_Library::Grid, 272
constrains

Parma_Polyhedra_Library::BD_Shape, 106
Parma_Polyhedra_Library::Box, 138
Parma_Polyhedra_Library::Grid, 257
Parma_Polyhedra_Library::Octagonal_Shape,

337
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 371
Parma_Polyhedra_Library::Pointset_-

Powerset, 421
Parma_Polyhedra_Library::Polyhedron, 457

Constraint
Parma_Polyhedra_Library::Constraint, 210

constraints
Parma_Polyhedra_Library::PIP_Tree_Node,

408
construct

Parma_Polyhedra_Library::Checked_Number,
176

contains
Parma_Polyhedra_Library::BD_Shape, 105
Parma_Polyhedra_Library::Box, 141
Parma_Polyhedra_Library::Grid, 260
Parma_Polyhedra_Library::Octagonal_Shape,

335
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 373
Parma_Polyhedra_Library::Pointset_-

Powerset, 424
Parma_Polyhedra_Library::Polyhedron, 460

Control_Parameter_Name
Parma_Polyhedra_Library::MIP_Problem,

311
Parma_Polyhedra_Library::PIP_Problem, 398

Control_Parameter_Value
Parma_Polyhedra_Library::MIP_Problem,

311

Parma_Polyhedra_Library::PIP_Problem, 398
CUTTING_STRATEGY

Parma_Polyhedra_Library::PIP_Problem, 398
CUTTING_STRATEGY_ALL

Parma_Polyhedra_Library::PIP_Problem, 398
CUTTING_STRATEGY_DEEPEST

Parma_Polyhedra_Library::PIP_Problem, 398
CUTTING_STRATEGY_FIRST

Parma_Polyhedra_Library::PIP_Problem, 398

Degenerate_Element
PPL_CXX_interface, 66

difference_assign
Parma_Polyhedra_Library::BD_Shape, 111
Parma_Polyhedra_Library::Box, 147
Parma_Polyhedra_Library::Grid, 266
Parma_Polyhedra_Library::Octagonal_Shape,

344
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 378
Parma_Polyhedra_Library::Pointset_-

Powerset, 429
dimension_type

PPL_CXX_interface, 65
div_2exp_assign

Parma_Polyhedra_Library::Checked_Number,
179

Parma_Polyhedra_Library::GMP_Integer, 241
div_assign

Parma_Polyhedra_Library::Interval, 296
divisor

Parma_Polyhedra_Library::Generator, 230
Parma_Polyhedra_Library::Grid_Generator,

285
drop_some_non_integer_points

Parma_Polyhedra_Library::BD_Shape, 115,
116

Parma_Polyhedra_Library::Box, 152
Parma_Polyhedra_Library::Grid, 271
Parma_Polyhedra_Library::Octagonal_Shape,

349
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 383
Parma_Polyhedra_Library::Pointset_-

Powerset, 429
Parma_Polyhedra_Library::Polyhedron, 470,

476

EMPTY
PPL_CXX_interface, 66

empty_intersection_assign
Parma_Polyhedra_Library::Interval, 295

EQUAL
PPL_CXX_interface, 67

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 497

EQUALITY
Parma_Polyhedra_Library::Constraint, 210

euclidean_distance_assign
Parma_Polyhedra_Library::BD_Shape, 123,

124
Parma_Polyhedra_Library::Box, 159, 160
Parma_Polyhedra_Library::Generator, 232
Parma_Polyhedra_Library::Octagonal_Shape,

356
evaluate_objective_function

Parma_Polyhedra_Library::MIP_Problem,
315

exact_div_assign
Parma_Polyhedra_Library::Checked_Number,

180
Parma_Polyhedra_Library::GMP_Integer, 242

expand_space_dimension
Parma_Polyhedra_Library::BD_Shape, 121
Parma_Polyhedra_Library::Box, 156
Parma_Polyhedra_Library::Grid, 276
Parma_Polyhedra_Library::Octagonal_Shape,

353
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 385
Parma_Polyhedra_Library::Pointset_-

Powerset, 436
Parma_Polyhedra_Library::Polyhedron, 475

external_memory_in_bytes
Parma_Polyhedra_Library::Checked_Number,

177
Parma_Polyhedra_Library::GMP_Integer, 240

feasible_point
Parma_Polyhedra_Library::MIP_Problem,

315
floor_assign

Parma_Polyhedra_Library::Checked_Number,
177

fold_space_dimensions
Parma_Polyhedra_Library::BD_Shape, 121
Parma_Polyhedra_Library::Box, 157
Parma_Polyhedra_Library::Grid, 276
Parma_Polyhedra_Library::Octagonal_Shape,

354
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 386
Parma_Polyhedra_Library::Pointset_-

Powerset, 437
Parma_Polyhedra_Library::Polyhedron, 475

fpu_check_inexact
Parma_Polyhedra_Library, 80

frequency
Parma_Polyhedra_Library::BD_Shape, 104
Parma_Polyhedra_Library::Box, 141

Parma_Polyhedra_Library::Grid, 260
Parma_Polyhedra_Library::Octagonal_Shape,

339
Parma_Polyhedra_Library::Polyhedron, 459

gcd_assign
Parma_Polyhedra_Library::Checked_Number,

179
Parma_Polyhedra_Library::GMP_Integer, 241

gcdext_assign
Parma_Polyhedra_Library::Checked_Number,

179
Parma_Polyhedra_Library::GMP_Integer, 241

generalized_affine_image
Parma_Polyhedra_Library::BD_Shape, 112
Parma_Polyhedra_Library::Box, 149, 150
Parma_Polyhedra_Library::Grid, 268, 269
Parma_Polyhedra_Library::Octagonal_Shape,

345, 346
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 379, 380
Parma_Polyhedra_Library::Pointset_-

Powerset, 431, 432
Parma_Polyhedra_Library::Polyhedron, 466,

467
generalized_affine_preimage

Parma_Polyhedra_Library::BD_Shape, 113
Parma_Polyhedra_Library::Box, 149, 150
Parma_Polyhedra_Library::Grid, 268, 269
Parma_Polyhedra_Library::Octagonal_Shape,

347
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 380, 381
Parma_Polyhedra_Library::Pointset_-

Powerset, 431, 432
Parma_Polyhedra_Library::Polyhedron, 467,

468
generate_cut

Parma_Polyhedra_Library::PIP_Solution_-
Node, 405

generator_widening_assign
Parma_Polyhedra_Library::Grid, 272

geometrically_covers
Parma_Polyhedra_Library::Pointset_-

Powerset, 424
geometrically_equals

Parma_Polyhedra_Library::Pointset_-
Powerset, 424

get_big_parameter_dimension
Parma_Polyhedra_Library::PIP_Problem, 402

get_interval
Parma_Polyhedra_Library::Box, 157

get_lower_bound
Parma_Polyhedra_Library::Box, 157

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 498

get_upper_bound
Parma_Polyhedra_Library::Box, 158

GREATER_OR_EQUAL
PPL_CXX_interface, 67

GREATER_THAN
PPL_CXX_interface, 67

Grid
Parma_Polyhedra_Library::Grid, 253–257

grid_line
Parma_Polyhedra_Library::Grid_Generator,

284
grid_point

Parma_Polyhedra_Library::Grid_Generator,
284

H79_widening_assign
Parma_Polyhedra_Library::BD_Shape, 118
Parma_Polyhedra_Library::Polyhedron, 472

has_nontrivial_weakening
Parma_Polyhedra_Library::Determinate, 221

hash_code
Parma_Polyhedra_Library::BD_Shape, 122
Parma_Polyhedra_Library::Grid, 277
Parma_Polyhedra_Library::Octagonal_Shape,

354
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 386
Parma_Polyhedra_Library::Pointset_-

Powerset, 425
Parma_Polyhedra_Library::Polyhedron, 476

I_ANY
Parma_Polyhedra_Library, 79

I_CHANGED
Parma_Polyhedra_Library, 79

I_EMPTY
Parma_Polyhedra_Library, 79

I_EXACT
Parma_Polyhedra_Library, 79

I_INEXACT
Parma_Polyhedra_Library, 79

I_NOT_DEGENERATE
Parma_Polyhedra_Library, 79

I_NOT_EMPTY
Parma_Polyhedra_Library, 79

I_NOT_UNIVERSE
Parma_Polyhedra_Library, 79

I_SINGLETON
Parma_Polyhedra_Library, 79

I_SINGULARITIES
Parma_Polyhedra_Library, 79

I_SOME
Parma_Polyhedra_Library, 79

I_UNCHANGED

Parma_Polyhedra_Library, 79
I_UNIVERSE

Parma_Polyhedra_Library, 79
I_Result

Parma_Polyhedra_Library, 79
input

Parma_Polyhedra_Library::Checked_Number,
182

insert
Parma_Polyhedra_Library::Congruence_-

System, 197
Parma_Polyhedra_Library::Grid_Generator_-

System, 291
integer_upper_bound_assign_if_exact

Parma_Polyhedra_Library::BD_Shape, 111
Parma_Polyhedra_Library::Octagonal_Shape,

344
intersection_assign

Parma_Polyhedra_Library::BD_Shape, 110
Parma_Polyhedra_Library::Box, 147
Parma_Polyhedra_Library::Grid, 266
Parma_Polyhedra_Library::Octagonal_Shape,

343
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 378
Parma_Polyhedra_Library::Pointset_-

Powerset, 429
Parma_Polyhedra_Library::Polyhedron, 465

is_discrete
Parma_Polyhedra_Library::Grid, 257

is_disjoint_from
Parma_Polyhedra_Library::BD_Shape, 105
Parma_Polyhedra_Library::Box, 142
Parma_Polyhedra_Library::Grid, 257
Parma_Polyhedra_Library::Octagonal_Shape,

336
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 371
Parma_Polyhedra_Library::Pointset_-

Powerset, 421
Parma_Polyhedra_Library::Polyhedron, 457

is_equality
Parma_Polyhedra_Library::Congruence, 191

is_equivalent_to
Parma_Polyhedra_Library::Constraint, 211
Parma_Polyhedra_Library::Generator, 230
Parma_Polyhedra_Library::Grid_Generator,

285
is_inconsistent

Parma_Polyhedra_Library::Congruence, 191
Parma_Polyhedra_Library::Constraint, 210

is_infinity
Parma_Polyhedra_Library::Checked_Number,

176

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 499

is_integer
Parma_Polyhedra_Library::Checked_Number,

176
is_minus_infinity

Parma_Polyhedra_Library::Checked_Number,
176

is_not_a_number
Parma_Polyhedra_Library::Checked_Number,

176
is_plus_infinity

Parma_Polyhedra_Library::Checked_Number,
176

is_proper_congruence
Parma_Polyhedra_Library::Congruence, 191

is_satisfiable
Parma_Polyhedra_Library::MIP_Problem,

314
Parma_Polyhedra_Library::PIP_Problem, 401

is_tautological
Parma_Polyhedra_Library::Congruence, 191
Parma_Polyhedra_Library::Constraint, 210

is_topologically_closed
Parma_Polyhedra_Library::Grid, 257

iterator
Parma_Polyhedra_Library::Powerset, 482

l_infinity_distance_assign
Parma_Polyhedra_Library::BD_Shape, 124
Parma_Polyhedra_Library::Box, 160
Parma_Polyhedra_Library::Generator, 232,

233
Parma_Polyhedra_Library::Octagonal_Shape,

356, 357
lcm_assign

Parma_Polyhedra_Library::Checked_Number,
179

Parma_Polyhedra_Library::GMP_Integer, 241
less

Parma_Polyhedra_Library::Variable, 490
LESS_OR_EQUAL

PPL_CXX_interface, 67
LESS_THAN

PPL_CXX_interface, 67
limited_BHMZ05_extrapolation_assign

Parma_Polyhedra_Library::BD_Shape, 117
Parma_Polyhedra_Library::Octagonal_Shape,

350
limited_BHRZ03_extrapolation_assign

Parma_Polyhedra_Library::Polyhedron, 471
limited_CC76_extrapolation_assign

Parma_Polyhedra_Library::BD_Shape, 118
Parma_Polyhedra_Library::Box, 153
Parma_Polyhedra_Library::Octagonal_Shape,

351

limited_congruence_extrapolation_assign
Parma_Polyhedra_Library::Grid, 273

limited_extrapolation_assign
Parma_Polyhedra_Library::Grid, 273

limited_generator_extrapolation_assign
Parma_Polyhedra_Library::Grid, 273

limited_H79_extrapolation_assign
Parma_Polyhedra_Library::BD_Shape, 119
Parma_Polyhedra_Library::Polyhedron, 472

LINE
Parma_Polyhedra_Library::Generator, 228
Parma_Polyhedra_Library::Grid_Generator,

284
line

Parma_Polyhedra_Library::Generator, 228
Linear_Expression

Parma_Polyhedra_Library::Linear_-
Expression, 302, 303

linear_partition
Parma_Polyhedra_Library::Pointset_-

Powerset, 437

map_space_dimensions
Parma_Polyhedra_Library::BD_Shape, 120
Parma_Polyhedra_Library::Box, 156
Parma_Polyhedra_Library::Grid, 275
Parma_Polyhedra_Library::Octagonal_Shape,

353
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 385
Parma_Polyhedra_Library::Pointset_-

Powerset, 436
Parma_Polyhedra_Library::Polyhedron, 474

MAXIMIZATION
PPL_CXX_interface, 67

maximize
Parma_Polyhedra_Library::BD_Shape, 102,

103
Parma_Polyhedra_Library::Box, 139, 140
Parma_Polyhedra_Library::Grid, 258, 259
Parma_Polyhedra_Library::Octagonal_Shape,

337, 338
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 371, 372
Parma_Polyhedra_Library::Pointset_-

Powerset, 422
Parma_Polyhedra_Library::Polyhedron, 457,

458
memory_size_type

PPL_CXX_interface, 65
MINIMIZATION

PPL_CXX_interface, 67
minimize

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 500

Parma_Polyhedra_Library::BD_Shape, 103,
104

Parma_Polyhedra_Library::Box, 140
Parma_Polyhedra_Library::Grid, 259
Parma_Polyhedra_Library::Octagonal_Shape,

338, 339
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 372, 373
Parma_Polyhedra_Library::Pointset_-

Powerset, 423
Parma_Polyhedra_Library::Polyhedron, 458,

459
MIP_Problem

Parma_Polyhedra_Library::MIP_Problem,
311–313

MIP_Problem_Status
PPL_CXX_interface, 69

mul_2exp_assign
Parma_Polyhedra_Library::Checked_Number,

179
Parma_Polyhedra_Library::GMP_Integer, 241

mul_assign
Parma_Polyhedra_Library::Interval, 296

neg_assign
Parma_Polyhedra_Library::Checked_Number,

178
Parma_Polyhedra_Library::GMP_Integer, 240

NNC_Polyhedron
Parma_Polyhedra_Library::NNC_Polyhedron,

318–321
NONSTRICT_INEQUALITY

Parma_Polyhedra_Library::Constraint, 210
normalize

Parma_Polyhedra_Library::Congruence, 192
NOT_EQUAL

PPL_CXX_interface, 67

Octagonal_Shape
Parma_Polyhedra_Library::Octagonal_Shape,

333–335
OK

Parma_Polyhedra_Library::Generator_-
System, 237

Parma_Polyhedra_Library::Grid, 261
Parma_Polyhedra_Library::Grid_Generator_-

System, 291
Parma_Polyhedra_Library::Polyhedron, 460

omega_reduce
Parma_Polyhedra_Library::Powerset, 483

one_affine_ranking_function_MS
Parma_Polyhedra_Library, 81

one_affine_ranking_function_MS_2
Parma_Polyhedra_Library, 82

operator<
Parma_Polyhedra_Library::Checked_Number,

181
Parma_Polyhedra_Library::Constraint, 213

operator<<
Parma_Polyhedra_Library::BD_Shape, 122
Parma_Polyhedra_Library::Box, 158
Parma_Polyhedra_Library::Checked_Number,

181
Parma_Polyhedra_Library::Congruence, 192
Parma_Polyhedra_Library::Congruence_-

System, 198
Parma_Polyhedra_Library::Constraint, 214
Parma_Polyhedra_Library::Constraint_-

System, 217
Parma_Polyhedra_Library::Determinate, 222
Parma_Polyhedra_Library::Generator, 230,

233
Parma_Polyhedra_Library::Generator_-

System, 238
Parma_Polyhedra_Library::Grid, 277
Parma_Polyhedra_Library::Grid_Generator,

286
Parma_Polyhedra_Library::Grid_Generator_-

System, 291
Parma_Polyhedra_Library::Linear_-

Expression, 307
Parma_Polyhedra_Library::MIP_Problem,

316
Parma_Polyhedra_Library::Octagonal_Shape,

355
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 386
Parma_Polyhedra_Library::PIP_Problem, 402
Parma_Polyhedra_Library::PIP_Tree_Node,

410
Parma_Polyhedra_Library::PIP_Tree_-

Node::Artificial_Parameter, 89
Parma_Polyhedra_Library::Poly_Con_-

Relation, 441
Parma_Polyhedra_Library::Poly_Gen_-

Relation, 443
Parma_Polyhedra_Library::Polyhedron, 477
Parma_Polyhedra_Library::Powerset, 484
Parma_Polyhedra_Library::Variable, 490
Parma_Polyhedra_Library::Variables_Set, 491

operator<=
Parma_Polyhedra_Library::Checked_Number,

181
Parma_Polyhedra_Library::Constraint, 212,

213
operator>

Parma_Polyhedra_Library::Checked_Number,
180

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 501

Parma_Polyhedra_Library::Constraint, 212,
213

operator>>
Parma_Polyhedra_Library::Checked_Number,

183
operator>=

Parma_Polyhedra_Library::Checked_Number,
180

Parma_Polyhedra_Library::Constraint, 211,
212

operator∗
Parma_Polyhedra_Library::Linear_-

Expression, 305
operator∗=

Parma_Polyhedra_Library::Linear_-
Expression, 306

operator+
Parma_Polyhedra_Library::Checked_Number,

177
Parma_Polyhedra_Library::Linear_-

Expression, 303, 304, 306, 307
operator+=

Parma_Polyhedra_Library::Linear_-
Expression, 305

operator-
Parma_Polyhedra_Library::Checked_Number,

177
Parma_Polyhedra_Library::Linear_-

Expression, 304, 305
Parma_Polyhedra_Library::Poly_Con_-

Relation, 440
Parma_Polyhedra_Library::Poly_Gen_-

Relation, 442
operator-=

Parma_Polyhedra_Library::Linear_-
Expression, 306

operator/
Parma_Polyhedra_Library::Congruence, 192

operator/=
Parma_Polyhedra_Library::Congruence, 190

operator==
Parma_Polyhedra_Library::BD_Shape, 122
Parma_Polyhedra_Library::Box, 158
Parma_Polyhedra_Library::Checked_Number,

180
Parma_Polyhedra_Library::Congruence, 192
Parma_Polyhedra_Library::Constraint, 211,

213
Parma_Polyhedra_Library::Constraint_-

System, 217
Parma_Polyhedra_Library::Determinate, 221
Parma_Polyhedra_Library::Generator, 230
Parma_Polyhedra_Library::Grid, 277

Parma_Polyhedra_Library::Grid_Generator,
286

Parma_Polyhedra_Library::Grid_Generator_-
System, 291

Parma_Polyhedra_Library::Octagonal_Shape,
355

Parma_Polyhedra_Library::Partially_-
Reduced_Product, 386

Parma_Polyhedra_Library::PIP_Tree_-
Node::Artificial_Parameter, 89

Parma_Polyhedra_Library::Poly_Con_-
Relation, 440

Parma_Polyhedra_Library::Poly_Gen_-
Relation, 442

Parma_Polyhedra_Library::Powerset, 484
operator%=

Parma_Polyhedra_Library::Congruence, 193
operator&&

Parma_Polyhedra_Library::Poly_Con_-
Relation, 440

Parma_Polyhedra_Library::Poly_Gen_-
Relation, 442

optimal_value
Parma_Polyhedra_Library::MIP_Problem,

316
Optimization_Mode

PPL_CXX_interface, 67
OPTIMIZED_MIP_PROBLEM

PPL_CXX_interface, 69
OPTIMIZED_PIP_PROBLEM

PPL_CXX_interface, 69
optimizing_point

Parma_Polyhedra_Library::MIP_Problem,
315

optimizing_solution
Parma_Polyhedra_Library::PIP_Problem, 401

output
Parma_Polyhedra_Library::Checked_Number,

181
OVERFLOW_IMPOSSIBLE

PPL_CXX_interface, 68
OVERFLOW_UNDEFINED

PPL_CXX_interface, 68
OVERFLOW_WRAPS

PPL_CXX_interface, 68

pairwise_apply_assign
Parma_Polyhedra_Library::Powerset, 483

pairwise_reduce
Parma_Polyhedra_Library::Pointset_-

Powerset, 434
PARAMETER

Parma_Polyhedra_Library::Grid_Generator,
284

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 502

parameter
Parma_Polyhedra_Library::Grid_Generator,

284
parametric_values

Parma_Polyhedra_Library::PIP_Solution_-
Node, 404

Parma_Polyhedra_Library
I_ANY, 79
I_CHANGED, 79
I_EMPTY, 79
I_EXACT, 79
I_INEXACT, 79
I_NOT_DEGENERATE, 79
I_NOT_EMPTY, 79
I_NOT_UNIVERSE, 79
I_SINGLETON, 79
I_SINGULARITIES, 79
I_SOME, 79
I_UNCHANGED, 79
I_UNIVERSE, 79
VC_MINUS_INFINITY, 78
VC_NAN, 78
VC_NORMAL, 78
VC_PLUS_INFINITY, 78
VR_EMPTY, 79
VR_EQ, 79
VR_GE, 79
VR_GT, 79
VR_LE, 79
VR_LGE, 79
VR_LT, 79
VR_NE, 79

Parma_Polyhedra_Library::Constraint
EQUALITY, 210
NONSTRICT_INEQUALITY, 210
STRICT_INEQUALITY, 210

Parma_Polyhedra_Library::Generator
CLOSURE_POINT, 228
LINE, 228
POINT, 228
RAY, 228

Parma_Polyhedra_Library::Grid_Generator
LINE, 284
PARAMETER, 284
POINT, 284

Parma_Polyhedra_Library::MIP_Problem
PRICING, 311
PRICING_STEEPEST_EDGE_EXACT, 311
PRICING_STEEPEST_EDGE_FLOAT, 311
PRICING_TEXTBOOK, 311

Parma_Polyhedra_Library::PIP_Problem
CUTTING_STRATEGY, 398
CUTTING_STRATEGY_ALL, 398
CUTTING_STRATEGY_DEEPEST, 398

CUTTING_STRATEGY_FIRST, 398
PIVOT_ROW_STRATEGY, 398
PIVOT_ROW_STRATEGY_FIRST, 398
PIVOT_ROW_STRATEGY_MAX_-

COLUMN, 398
Parma_Polyhedra_Library, 69

all_affine_quasi_ranking_functions_MS, 84
all_affine_quasi_ranking_functions_MS_2, 85
all_affine_ranking_functions_MS, 83
all_affine_ranking_functions_MS_2, 83
banner, 79
fpu_check_inexact, 80
I_Result, 79
one_affine_ranking_function_MS, 81
one_affine_ranking_function_MS_2, 82
restore_pre_PPL_rounding, 80
Result_Class, 78
Result_Relation, 78
set_irrational_precision, 80
set_rounding_for_PPL, 79
termination_test_MS, 80
termination_test_MS_2, 81

Parma_Polyhedra_Library::BD_Shape, 89
add_congruence, 106
add_congruences, 107
add_constraint, 106
add_constraints, 107
add_recycled_congruences, 108
add_recycled_constraints, 107
add_space_dimensions_and_embed, 119
add_space_dimensions_and_project, 119
affine_image, 111
affine_preimage, 112
BD_Shape, 99–101
BHMZ05_widening_assign, 117
bounded_affine_image, 114
bounded_affine_preimage, 114
bounds_from_above, 102
bounds_from_below, 102
CC76_extrapolation_assign, 116
CC76_narrowing_assign, 117
concatenate_assign, 120
constrains, 106
contains, 105
difference_assign, 111
drop_some_non_integer_points, 115, 116
euclidean_distance_assign, 123, 124
expand_space_dimension, 121
fold_space_dimensions, 121
frequency, 104
generalized_affine_image, 112
generalized_affine_preimage, 113
H79_widening_assign, 118
hash_code, 122

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 503

integer_upper_bound_assign_if_exact, 111
intersection_assign, 110
is_disjoint_from, 105
l_infinity_distance_assign, 124
limited_BHMZ05_extrapolation_assign, 117
limited_CC76_extrapolation_assign, 118
limited_H79_extrapolation_assign, 119
map_space_dimensions, 120
maximize, 102, 103
minimize, 103, 104
operator<<, 122
operator==, 122
rectilinear_distance_assign, 123
refine_with_congruence, 108
refine_with_congruences, 109
refine_with_constraint, 108
refine_with_constraints, 109
relation_with, 105, 106
remove_higher_space_dimensions, 120
remove_space_dimensions, 120
simplify_using_context_assign, 111
strictly_contains, 105
swap, 125
time_elapse_assign, 114
unconstrain, 109, 110
upper_bound_assign, 110
upper_bound_assign_if_exact, 110
wrap_assign, 115

Parma_Polyhedra_Library::BHRZ03_Certificate,
125

compare, 126
Parma_Polyhedra_Library::BHRZ03_-

Certificate::Compare, 184
Parma_Polyhedra_Library::Box, 126

add_congruence, 143
add_congruences, 143
add_constraint, 142
add_constraints, 142
add_recycled_congruences, 144
add_recycled_constraints, 143
add_space_dimensions_and_embed, 154
add_space_dimensions_and_project, 155
affine_image, 148
affine_preimage, 148
bounded_affine_image, 150
bounded_affine_preimage, 151
bounds_from_above, 139
bounds_from_below, 139
Box, 135–138
CC76_narrowing_assign, 154
CC76_widening_assign, 153
concatenate_assign, 155
constrains, 138
contains, 141

difference_assign, 147
drop_some_non_integer_points, 152
euclidean_distance_assign, 159, 160
expand_space_dimension, 156
fold_space_dimensions, 157
frequency, 141
generalized_affine_image, 149, 150
generalized_affine_preimage, 149, 150
get_interval, 157
get_lower_bound, 157
get_upper_bound, 158
intersection_assign, 147
is_disjoint_from, 142
l_infinity_distance_assign, 160
limited_CC76_extrapolation_assign, 153
map_space_dimensions, 156
maximize, 139, 140
minimize, 140
operator<<, 158
operator==, 158
propagate_constraint, 145
propagate_constraints, 146
rectilinear_distance_assign, 159
refine_with_congruence, 145
refine_with_congruences, 145
refine_with_constraint, 144
refine_with_constraints, 144
relation_with, 138, 139
remove_higher_space_dimensions, 156
remove_space_dimensions, 155
set_interval, 157
simplify_using_context_assign, 148
strictly_contains, 142
time_elapse_assign, 151
unconstrain, 146
upper_bound_assign, 147
upper_bound_assign_if_exact, 147
wrap_assign, 151

Parma_Polyhedra_Library::C_Polyhedron, 161
C_Polyhedron, 163–166
poly_hull_assign_if_exact, 166

Parma_Polyhedra_Library::Checked_Number, 167
abs_assign, 178
add_mul_assign, 179
assign_r, 176, 177
ceil_assign, 177, 178
classify, 175
cmp, 181
construct, 176
div_2exp_assign, 179
exact_div_assign, 180
external_memory_in_bytes, 177
floor_assign, 177
gcd_assign, 179

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 504

gcdext_assign, 179
input, 182
is_infinity, 176
is_integer, 176
is_minus_infinity, 176
is_not_a_number, 176
is_plus_infinity, 176
lcm_assign, 179
mul_2exp_assign, 179
neg_assign, 178
operator<, 181
operator<<, 181
operator<=, 181
operator>, 180
operator>>, 183
operator>=, 180
operator+, 177
operator-, 177
operator==, 180
output, 181
raw_value, 184
sgn, 181
sqrt_assign, 180
sub_mul_assign, 179
swap, 183
total_memory_in_bytes, 177
trunc_assign, 178

Parma_Polyhedra_Library::Congruence, 186
coefficient, 190
Congruence, 190
is_equality, 191
is_inconsistent, 191
is_proper_congruence, 191
is_tautological, 191
normalize, 192
operator<<, 192
operator/, 192
operator/=, 190
operator==, 192
operator%=, 193
sign_normalize, 191
strong_normalize, 192
swap, 193

Parma_Polyhedra_Library::Congruence_System,
193

add_unit_rows_and_columns, 197
Congruence_System, 197
insert, 197
operator<<, 198
swap, 198

Parma_Polyhedra_Library::Congruence_-
System::const_iterator, 202

Parma_Polyhedra_Library::Congruences_-
Reduction, 198

product_reduce, 199
Parma_Polyhedra_Library::Constraint, 204

coefficient, 210
Constraint, 210
is_equivalent_to, 211
is_inconsistent, 210
is_tautological, 210
operator<, 213
operator<<, 214
operator<=, 212, 213
operator>, 212, 213
operator>=, 211, 212
operator==, 211, 213
swap, 214
Type, 209

Parma_Polyhedra_Library::Constraint_System, 214
operator<<, 217
operator==, 217
swap, 218

Parma_Polyhedra_Library::Constraint_-
System::const_iterator, 200

Parma_Polyhedra_Library::Constraints_Reduction,
218

product_reduce, 219
Parma_Polyhedra_Library::Determinate, 219

has_nontrivial_weakening, 221
operator<<, 222
operator==, 221
swap, 222

Parma_Polyhedra_Library::Domain_Product, 222
Parma_Polyhedra_Library::Generator, 222

closure_point, 229
coefficient, 229
divisor, 230
euclidean_distance_assign, 232
is_equivalent_to, 230
l_infinity_distance_assign, 232, 233
line, 228
operator<<, 230, 233
operator==, 230
point, 229
ray, 228
rectilinear_distance_assign, 230, 231
swap, 230
Type, 228

Parma_Polyhedra_Library::Generator_System, 234
ascii_load, 237
OK, 237
operator<<, 238
swap, 238

Parma_Polyhedra_Library::Generator_-
System::const_iterator, 201

Parma_Polyhedra_Library::GMP_Integer, 238
abs_assign, 240

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 505

add_mul_assign, 241
div_2exp_assign, 241
exact_div_assign, 242
external_memory_in_bytes, 240
gcd_assign, 241
gcdext_assign, 241
lcm_assign, 241
mul_2exp_assign, 241
neg_assign, 240
raw_value, 240
rem_assign, 240
sqrt_assign, 242
sub_mul_assign, 241
total_memory_in_bytes, 240

Parma_Polyhedra_Library::Grid, 242
add_congruence, 261
add_congruences, 262
add_constraint, 262
add_constraints, 263
add_grid_generator, 261
add_grid_generators, 264
add_recycled_congruences, 262
add_recycled_constraints, 263
add_recycled_grid_generators, 265
add_space_dimensions_and_embed, 274
add_space_dimensions_and_project, 274
affine_image, 267
affine_preimage, 267
bounded_affine_image, 269
bounded_affine_preimage, 270
bounds_from_above, 258
bounds_from_below, 258
concatenate_assign, 274
congruence_widening_assign, 272
constrains, 257
contains, 260
difference_assign, 266
drop_some_non_integer_points, 271
expand_space_dimension, 276
fold_space_dimensions, 276
frequency, 260
generalized_affine_image, 268, 269
generalized_affine_preimage, 268, 269
generator_widening_assign, 272
Grid, 253–257
hash_code, 277
intersection_assign, 266
is_discrete, 257
is_disjoint_from, 257
is_topologically_closed, 257
limited_congruence_extrapolation_assign, 273
limited_extrapolation_assign, 273
limited_generator_extrapolation_assign, 273
map_space_dimensions, 275

maximize, 258, 259
minimize, 259
OK, 261
operator<<, 277
operator==, 277
refine_with_congruence, 263
refine_with_congruences, 264
refine_with_constraint, 264
refine_with_constraints, 264
remove_higher_space_dimensions, 275
remove_space_dimensions, 275
simplify_using_context_assign, 267
strictly_contains, 261
swap, 277
time_elapse_assign, 270
unconstrain, 265
upper_bound_assign, 266
upper_bound_assign_if_exact, 266
widening_assign, 272
wrap_assign, 270

Parma_Polyhedra_Library::Grid_Certificate, 278
compare, 278

Parma_Polyhedra_Library::Grid_-
Certificate::Compare, 185

Parma_Polyhedra_Library::Grid_Generator, 279
coefficient, 285
coefficient_swap, 285
divisor, 285
grid_line, 284
grid_point, 284
is_equivalent_to, 285
operator<<, 286
operator==, 286
parameter, 284
swap, 286
Type, 284

Parma_Polyhedra_Library::Grid_Generator_-
System, 286

ascii_load, 291
insert, 291
OK, 291
operator<<, 291
operator==, 291
swap, 291

Parma_Polyhedra_Library::Grid_Generator_-
System::const_iterator, 203

Parma_Polyhedra_Library::H79_Certificate, 292
compare, 293

Parma_Polyhedra_Library::H79_-
Certificate::Compare, 185

Parma_Polyhedra_Library::Interval, 293
div_assign, 296
empty_intersection_assign, 295
mul_assign, 296

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 506

refine_existential, 296
refine_universal, 296
simplify_using_context_assign, 295
swap, 297

Parma_Polyhedra_Library::IO_Operators, 86
wrap_string, 86

Parma_Polyhedra_Library::Is_Checked, 297
Parma_Polyhedra_Library::Is_Checked<

Checked_Number< T, P > >, 297
Parma_Polyhedra_Library::Is_Native_Or_-

Checked, 298
Parma_Polyhedra_Library::Linear_Expression, 298

add_mul_assign, 306
Linear_Expression, 302, 303
operator<<, 307
operator∗, 305
operator∗=, 306
operator+, 303, 304, 306, 307
operator+=, 305
operator-, 304, 305
operator-=, 306
sub_mul_assign, 306
swap, 307

Parma_Polyhedra_Library::MIP_Problem, 307
add_constraint, 314
add_constraints, 314
add_space_dimensions_and_embed, 313
add_to_integer_space_dimensions, 313
clear, 313
Control_Parameter_Name, 311
Control_Parameter_Value, 311
evaluate_objective_function, 315
feasible_point, 315
is_satisfiable, 314
MIP_Problem, 311–313
operator<<, 316
optimal_value, 316
optimizing_point, 315
set_objective_function, 314
solve, 315
swap, 316

Parma_Polyhedra_Library::NNC_Polyhedron, 316
NNC_Polyhedron, 318–321
poly_hull_assign_if_exact, 322

Parma_Polyhedra_Library::No_Reduction, 322
product_reduce, 323

Parma_Polyhedra_Library::Octagonal_Shape, 323
add_congruence, 341
add_congruences, 341
add_constraint, 340
add_constraints, 340
add_recycled_congruences, 341
add_recycled_constraints, 340
add_space_dimensions_and_embed, 351

add_space_dimensions_and_project, 352
affine_image, 345
affine_preimage, 345
BHMZ05_widening_assign, 350
bounded_affine_image, 346
bounded_affine_preimage, 347
bounds_from_above, 337
bounds_from_below, 337
CC76_extrapolation_assign, 349, 350
CC76_narrowing_assign, 351
concatenate_assign, 352
constrains, 337
contains, 335
difference_assign, 344
drop_some_non_integer_points, 349
euclidean_distance_assign, 356
expand_space_dimension, 353
fold_space_dimensions, 354
frequency, 339
generalized_affine_image, 345, 346
generalized_affine_preimage, 347
hash_code, 354
integer_upper_bound_assign_if_exact, 344
intersection_assign, 343
is_disjoint_from, 336
l_infinity_distance_assign, 356, 357
limited_BHMZ05_extrapolation_assign, 350
limited_CC76_extrapolation_assign, 351
map_space_dimensions, 353
maximize, 337, 338
minimize, 338, 339
Octagonal_Shape, 333–335
operator<<, 355
operator==, 355
rectilinear_distance_assign, 355, 356
refine_fp_interval_abstract_store, 354
refine_with_congruence, 342
refine_with_congruences, 342
refine_with_constraint, 341
refine_with_constraints, 342
relation_with, 336
remove_higher_space_dimensions, 353
remove_space_dimensions, 352
simplify_using_context_assign, 344
strictly_contains, 336
swap, 357
time_elapse_assign, 348
unconstrain, 343
upper_bound_assign, 343
upper_bound_assign_if_exact, 344
wrap_assign, 348

Parma_Polyhedra_Library::Partially_Reduced_-
Product, 357

add_congruence, 374

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 507

add_congruences, 375
add_constraint, 374
add_constraints, 376
add_recycled_congruences, 376
add_recycled_constraints, 377
add_space_dimensions_and_embed, 383
add_space_dimensions_and_project, 384
affine_image, 379
affine_preimage, 379
bounded_affine_image, 381
bounded_affine_preimage, 382
bounds_from_above, 371
bounds_from_below, 371
concatenate_assign, 384
constrains, 371
contains, 373
difference_assign, 378
drop_some_non_integer_points, 383
expand_space_dimension, 385
fold_space_dimensions, 386
generalized_affine_image, 379, 380
generalized_affine_preimage, 380, 381
hash_code, 386
intersection_assign, 378
is_disjoint_from, 371
map_space_dimensions, 385
maximize, 371, 372
minimize, 372, 373
operator<<, 386
operator==, 386
Partially_Reduced_Product, 366–370
refine_with_congruence, 375
refine_with_congruences, 375
refine_with_constraint, 374
refine_with_constraints, 376
remove_higher_space_dimensions, 384
remove_space_dimensions, 384
strictly_contains, 374
swap, 387
time_elapse_assign, 382
unconstrain, 377
upper_bound_assign, 378
upper_bound_assign_if_exact, 378
widening_assign, 382

Parma_Polyhedra_Library::PIP_Decision_Node,
387

Parma_Polyhedra_Library::PIP_Problem, 389
add_constraint, 400
add_constraints, 400
add_space_dimensions_and_embed, 399
add_to_parameter_space_dimensions, 400
clear, 399
Control_Parameter_Name, 398
Control_Parameter_Value, 398

get_big_parameter_dimension, 402
is_satisfiable, 401
operator<<, 402
optimizing_solution, 401
PIP_Problem, 399
print_solution, 401
solution, 401
solve, 401
swap, 402

Parma_Polyhedra_Library::PIP_Solution_Node,
402

generate_cut, 405
parametric_values, 404
PIP_Solution_Node, 404
update_solution, 404

Parma_Polyhedra_Library::PIP_Solution_-
Node::No_Constraints, 322

Parma_Polyhedra_Library::PIP_Tree_Node, 405
compatibility_check, 410
constraints, 408
operator<<, 410
print, 409
print_tree, 410
solve, 409
update_tableau, 409

Parma_Polyhedra_Library::PIP_Tree_-
Node::Artificial_Parameter, 87

Artificial_Parameter, 89
operator<<, 89
operator==, 89

Parma_Polyhedra_Library::Pointset_Powerset, 411
add_congruence, 427
add_congruences, 427
add_constraint, 426
add_constraints, 426
add_disjunct, 426
affine_image, 430
affine_preimage, 430
approximate_partition, 438
BGP99_extrapolation_assign, 434
BHZ03_widening_assign, 435
bounded_affine_image, 432
bounded_affine_preimage, 433
bounds_from_above, 421
bounds_from_below, 422
check_containment, 438
concatenate_assign, 435
constrains, 421
contains, 424
difference_assign, 429
drop_some_non_integer_points, 429
expand_space_dimension, 436
fold_space_dimensions, 437
generalized_affine_image, 431, 432

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 508

generalized_affine_preimage, 431, 432
geometrically_covers, 424
geometrically_equals, 424
hash_code, 425
intersection_assign, 429
is_disjoint_from, 421
linear_partition, 437
map_space_dimensions, 436
maximize, 422
minimize, 423
pairwise_reduce, 434
Pointset_Powerset, 418–420
refine_with_congruence, 427
refine_with_congruences, 428
refine_with_constraint, 426
refine_with_constraints, 427
relation_with, 425
remove_higher_space_dimensions, 436
remove_space_dimensions, 435
simplify_using_context_assign, 430
strictly_contains, 425
swap, 438
time_elapse_assign, 433
unconstrain, 428
widen_fun_ref, 437
wrap_assign, 433

Parma_Polyhedra_Library::Poly_Con_Relation,
439

operator<<, 441
operator-, 440
operator==, 440
operator&&, 440

Parma_Polyhedra_Library::Poly_Gen_Relation,
441

operator<<, 443
operator-, 442
operator==, 442
operator&&, 442

Parma_Polyhedra_Library::Polyhedron, 443
add_congruence, 461
add_congruences, 463
add_constraint, 460
add_constraints, 461
add_generator, 461
add_generators, 462
add_recycled_congruences, 463
add_recycled_constraints, 461
add_recycled_generators, 462
add_space_dimensions_and_embed, 473
add_space_dimensions_and_project, 473
affine_image, 466
affine_preimage, 466
BHRZ03_widening_assign, 470
bounded_affine_image, 468

bounded_affine_preimage, 468
bounded_BHRZ03_extrapolation_assign, 471
bounded_H79_extrapolation_assign, 472
bounds_from_above, 457
bounds_from_below, 457
concatenate_assign, 474
constrains, 457
contains, 460
drop_some_non_integer_points, 470, 476
expand_space_dimension, 475
fold_space_dimensions, 475
frequency, 459
generalized_affine_image, 466, 467
generalized_affine_preimage, 467, 468
H79_widening_assign, 472
hash_code, 476
intersection_assign, 465
is_disjoint_from, 457
limited_BHRZ03_extrapolation_assign, 471
limited_H79_extrapolation_assign, 472
map_space_dimensions, 474
maximize, 457, 458
minimize, 458, 459
OK, 460
operator<<, 477
poly_difference_assign, 465
poly_hull_assign, 465
Polyhedron, 454–456
refine_with_congruence, 463
refine_with_congruences, 464
refine_with_constraint, 463
refine_with_constraints, 464
relation_with, 456
remove_higher_space_dimensions, 474
remove_space_dimensions, 474
simplify_using_context_assign, 465
strictly_contains, 460
swap, 476, 477
time_elapse_assign, 469
unconstrain, 464
wrap_assign, 469

Parma_Polyhedra_Library::Powerset, 477
add_non_bottom_disjunct_preserve_-

reduction, 483
iterator, 482
omega_reduce, 483
operator<<, 484
operator==, 484
pairwise_apply_assign, 483
Sequence, 482
swap, 484
upper_bound_assign, 483
upper_bound_assign_if_exact, 483

Parma_Polyhedra_Library::Recycle_Input, 484

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 509

Parma_Polyhedra_Library::Shape_Preserving_-
Reduction, 485

product_reduce, 485
Parma_Polyhedra_Library::Smash_Reduction, 486

product_reduce, 487
Parma_Polyhedra_Library::Throwable, 487
Parma_Polyhedra_Library::Variable, 487

less, 490
operator<<, 490
space_dimension, 489
Variable, 489

Parma_Polyhedra_Library::Variable::Compare, 184
Parma_Polyhedra_Library::Variables_Set, 490

operator<<, 491
Variables_Set, 491

Partially_Reduced_Product
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 366–370
PIP_Problem

Parma_Polyhedra_Library::PIP_Problem, 399
PIP_Problem_Status

PPL_CXX_interface, 68
PIP_Solution_Node

Parma_Polyhedra_Library::PIP_Solution_-
Node, 404

PIVOT_ROW_STRATEGY
Parma_Polyhedra_Library::PIP_Problem, 398

PIVOT_ROW_STRATEGY_FIRST
Parma_Polyhedra_Library::PIP_Problem, 398

PIVOT_ROW_STRATEGY_MAX_COLUMN
Parma_Polyhedra_Library::PIP_Problem, 398

POINT
Parma_Polyhedra_Library::Generator, 228
Parma_Polyhedra_Library::Grid_Generator,

284
point

Parma_Polyhedra_Library::Generator, 229
Pointset_Powerset

Parma_Polyhedra_Library::Pointset_-
Powerset, 418–420

poly_difference_assign
Parma_Polyhedra_Library::Polyhedron, 465

poly_hull_assign
Parma_Polyhedra_Library::Polyhedron, 465

poly_hull_assign_if_exact
Parma_Polyhedra_Library::C_Polyhedron,

166
Parma_Polyhedra_Library::NNC_Polyhedron,

322
Polyhedron

Parma_Polyhedra_Library::Polyhedron, 454–
456

POLYNOMIAL_COMPLEXITY
PPL_CXX_interface, 67

PPL_CXX_interface
ANY_COMPLEXITY, 67
BITS_128, 67
BITS_16, 67
BITS_32, 67
BITS_64, 67
BITS_8, 67
EMPTY, 66
EQUAL, 67
GREATER_OR_EQUAL, 67
GREATER_THAN, 67
LESS_OR_EQUAL, 67
LESS_THAN, 67
MAXIMIZATION, 67
MINIMIZATION, 67
NOT_EQUAL, 67
OPTIMIZED_MIP_PROBLEM, 69
OPTIMIZED_PIP_PROBLEM, 69
OVERFLOW_IMPOSSIBLE, 68
OVERFLOW_UNDEFINED, 68
OVERFLOW_WRAPS, 68
POLYNOMIAL_COMPLEXITY, 67
ROUND_DOWN, 68
ROUND_IGNORE, 68
ROUND_NOT_NEEDED, 68
ROUND_STRICT_RELATION, 68
ROUND_UP, 68
SIGNED_2_COMPLEMENT, 68
SIMPLEX_COMPLEXITY, 67
UNBOUNDED_MIP_PROBLEM, 69
UNFEASIBLE_MIP_PROBLEM, 69
UNFEASIBLE_PIP_PROBLEM, 69
UNIVERSE, 66
UNSIGNED, 68
V_CVT_STR_UNK, 66
V_DIV_ZERO, 66
V_EMPTY, 66
V_EQ, 66
V_EQ_MINUS_INFINITY, 66
V_EQ_PLUS_INFINITY, 66
V_GE, 66
V_GT, 66
V_GT_MINUS_INFINITY, 66
V_GT_SUP, 66
V_INF_ADD_INF, 66
V_INF_DIV_INF, 66
V_INF_MOD, 66
V_INF_MUL_ZERO, 66
V_INF_SUB_INF, 66
V_LE, 66
V_LGE, 66
V_LT, 66
V_LT_INF, 66
V_LT_PLUS_INFINITY, 66

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 510

V_MOD_ZERO, 66
V_NAN, 66
V_NE, 66
V_OVERFLOW, 66
V_SQRT_NEG, 66
V_UNKNOWN_NEG_OVERFLOW, 66
V_UNKNOWN_POS_OVERFLOW, 66
V_UNREPRESENTABLE, 66

PPL_CXX_interface
abandon_expensive_computations, 69
Bounded_Integer_Type_Overflow, 68
Bounded_Integer_Type_Representation, 67
Bounded_Integer_Type_Width, 67
Coefficient, 65
Complexity_Class, 67
Degenerate_Element, 66
dimension_type, 65
memory_size_type, 65
MIP_Problem_Status, 69
Optimization_Mode, 67
PIP_Problem_Status, 68
PPL_VERSION, 65
PPL_VERSION_MAJOR, 64
PPL_VERSION_MINOR, 64
PPL_VERSION_REVISION, 64
Relation_Symbol, 66
Result, 66
Rounding_Dir, 68

PPL_VERSION
PPL_CXX_interface, 65

PPL_VERSION_MAJOR
PPL_CXX_interface, 64

PPL_VERSION_MINOR
PPL_CXX_interface, 64

PPL_VERSION_REVISION
PPL_CXX_interface, 64

PRICING
Parma_Polyhedra_Library::MIP_Problem,

311
PRICING_STEEPEST_EDGE_EXACT

Parma_Polyhedra_Library::MIP_Problem,
311

PRICING_STEEPEST_EDGE_FLOAT
Parma_Polyhedra_Library::MIP_Problem,

311
PRICING_TEXTBOOK

Parma_Polyhedra_Library::MIP_Problem,
311

print
Parma_Polyhedra_Library::PIP_Tree_Node,

409
print_solution

Parma_Polyhedra_Library::PIP_Problem, 401
print_tree

Parma_Polyhedra_Library::PIP_Tree_Node,
410

product_reduce
Parma_Polyhedra_Library::Congruences_-

Reduction, 199
Parma_Polyhedra_Library::Constraints_-

Reduction, 219
Parma_Polyhedra_Library::No_Reduction,

323
Parma_Polyhedra_Library::Shape_-

Preserving_Reduction, 485
Parma_Polyhedra_Library::Smash_Reduction,

487
propagate_constraint

Parma_Polyhedra_Library::Box, 145
propagate_constraints

Parma_Polyhedra_Library::Box, 146

raw_value
Parma_Polyhedra_Library::Checked_Number,

184
Parma_Polyhedra_Library::GMP_Integer, 240

RAY
Parma_Polyhedra_Library::Generator, 228

ray
Parma_Polyhedra_Library::Generator, 228

rectilinear_distance_assign
Parma_Polyhedra_Library::BD_Shape, 123
Parma_Polyhedra_Library::Box, 159
Parma_Polyhedra_Library::Generator, 230,

231
Parma_Polyhedra_Library::Octagonal_Shape,

355, 356
refine_existential

Parma_Polyhedra_Library::Interval, 296
refine_fp_interval_abstract_store

Parma_Polyhedra_Library::Octagonal_Shape,
354

refine_universal
Parma_Polyhedra_Library::Interval, 296

refine_with_congruence
Parma_Polyhedra_Library::BD_Shape, 108
Parma_Polyhedra_Library::Box, 145
Parma_Polyhedra_Library::Grid, 263
Parma_Polyhedra_Library::Octagonal_Shape,

342
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 375
Parma_Polyhedra_Library::Pointset_-

Powerset, 427
Parma_Polyhedra_Library::Polyhedron, 463

refine_with_congruences
Parma_Polyhedra_Library::BD_Shape, 109
Parma_Polyhedra_Library::Box, 145

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 511

Parma_Polyhedra_Library::Grid, 264
Parma_Polyhedra_Library::Octagonal_Shape,

342
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 375
Parma_Polyhedra_Library::Pointset_-

Powerset, 428
Parma_Polyhedra_Library::Polyhedron, 464

refine_with_constraint
Parma_Polyhedra_Library::BD_Shape, 108
Parma_Polyhedra_Library::Box, 144
Parma_Polyhedra_Library::Grid, 264
Parma_Polyhedra_Library::Octagonal_Shape,

341
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 374
Parma_Polyhedra_Library::Pointset_-

Powerset, 426
Parma_Polyhedra_Library::Polyhedron, 463

refine_with_constraints
Parma_Polyhedra_Library::BD_Shape, 109
Parma_Polyhedra_Library::Box, 144
Parma_Polyhedra_Library::Grid, 264
Parma_Polyhedra_Library::Octagonal_Shape,

342
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 376
Parma_Polyhedra_Library::Pointset_-

Powerset, 427
Parma_Polyhedra_Library::Polyhedron, 464

Relation_Symbol
PPL_CXX_interface, 66

relation_with
Parma_Polyhedra_Library::BD_Shape, 105,

106
Parma_Polyhedra_Library::Box, 138, 139
Parma_Polyhedra_Library::Octagonal_Shape,

336
Parma_Polyhedra_Library::Pointset_-

Powerset, 425
Parma_Polyhedra_Library::Polyhedron, 456

rem_assign
Parma_Polyhedra_Library::GMP_Integer, 240

remove_higher_space_dimensions
Parma_Polyhedra_Library::BD_Shape, 120
Parma_Polyhedra_Library::Box, 156
Parma_Polyhedra_Library::Grid, 275
Parma_Polyhedra_Library::Octagonal_Shape,

353
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 384
Parma_Polyhedra_Library::Pointset_-

Powerset, 436
Parma_Polyhedra_Library::Polyhedron, 474

remove_space_dimensions
Parma_Polyhedra_Library::BD_Shape, 120
Parma_Polyhedra_Library::Box, 155
Parma_Polyhedra_Library::Grid, 275
Parma_Polyhedra_Library::Octagonal_Shape,

352
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 384
Parma_Polyhedra_Library::Pointset_-

Powerset, 435
Parma_Polyhedra_Library::Polyhedron, 474

restore_pre_PPL_rounding
Parma_Polyhedra_Library, 80

Result
PPL_CXX_interface, 66

Result_Class
Parma_Polyhedra_Library, 78

Result_Relation
Parma_Polyhedra_Library, 78

ROUND_DOWN
PPL_CXX_interface, 68

ROUND_IGNORE
PPL_CXX_interface, 68

ROUND_NOT_NEEDED
PPL_CXX_interface, 68

ROUND_STRICT_RELATION
PPL_CXX_interface, 68

ROUND_UP
PPL_CXX_interface, 68

Rounding_Dir
PPL_CXX_interface, 68

Sequence
Parma_Polyhedra_Library::Powerset, 482

set_interval
Parma_Polyhedra_Library::Box, 157

set_irrational_precision
Parma_Polyhedra_Library, 80

set_objective_function
Parma_Polyhedra_Library::MIP_Problem,

314
set_rounding_for_PPL

Parma_Polyhedra_Library, 79
sgn

Parma_Polyhedra_Library::Checked_Number,
181

sign_normalize
Parma_Polyhedra_Library::Congruence, 191

SIGNED_2_COMPLEMENT
PPL_CXX_interface, 68

SIMPLEX_COMPLEXITY
PPL_CXX_interface, 67

simplify_using_context_assign
Parma_Polyhedra_Library::BD_Shape, 111

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 512

Parma_Polyhedra_Library::Box, 148
Parma_Polyhedra_Library::Grid, 267
Parma_Polyhedra_Library::Interval, 295
Parma_Polyhedra_Library::Octagonal_Shape,

344
Parma_Polyhedra_Library::Pointset_-

Powerset, 430
Parma_Polyhedra_Library::Polyhedron, 465

solution
Parma_Polyhedra_Library::PIP_Problem, 401

solve
Parma_Polyhedra_Library::MIP_Problem,

315
Parma_Polyhedra_Library::PIP_Problem, 401
Parma_Polyhedra_Library::PIP_Tree_Node,

409
space_dimension

Parma_Polyhedra_Library::Variable, 489
sqrt_assign

Parma_Polyhedra_Library::Checked_Number,
180

Parma_Polyhedra_Library::GMP_Integer, 242
std, 87
STRICT_INEQUALITY

Parma_Polyhedra_Library::Constraint, 210
strictly_contains

Parma_Polyhedra_Library::BD_Shape, 105
Parma_Polyhedra_Library::Box, 142
Parma_Polyhedra_Library::Grid, 261
Parma_Polyhedra_Library::Octagonal_Shape,

336
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 374
Parma_Polyhedra_Library::Pointset_-

Powerset, 425
Parma_Polyhedra_Library::Polyhedron, 460

strong_normalize
Parma_Polyhedra_Library::Congruence, 192

sub_mul_assign
Parma_Polyhedra_Library::Checked_Number,

179
Parma_Polyhedra_Library::GMP_Integer, 241
Parma_Polyhedra_Library::Linear_-

Expression, 306
swap

Parma_Polyhedra_Library::BD_Shape, 125
Parma_Polyhedra_Library::Checked_Number,

183
Parma_Polyhedra_Library::Congruence, 193
Parma_Polyhedra_Library::Congruence_-

System, 198
Parma_Polyhedra_Library::Constraint, 214
Parma_Polyhedra_Library::Constraint_-

System, 218

Parma_Polyhedra_Library::Determinate, 222
Parma_Polyhedra_Library::Generator, 230
Parma_Polyhedra_Library::Generator_-

System, 238
Parma_Polyhedra_Library::Grid, 277
Parma_Polyhedra_Library::Grid_Generator,

286
Parma_Polyhedra_Library::Grid_Generator_-

System, 291
Parma_Polyhedra_Library::Interval, 297
Parma_Polyhedra_Library::Linear_-

Expression, 307
Parma_Polyhedra_Library::MIP_Problem,

316
Parma_Polyhedra_Library::Octagonal_Shape,

357
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 387
Parma_Polyhedra_Library::PIP_Problem, 402
Parma_Polyhedra_Library::Pointset_-

Powerset, 438
Parma_Polyhedra_Library::Polyhedron, 476,

477
Parma_Polyhedra_Library::Powerset, 484

termination_test_MS
Parma_Polyhedra_Library, 80

termination_test_MS_2
Parma_Polyhedra_Library, 81

time_elapse_assign
Parma_Polyhedra_Library::BD_Shape, 114
Parma_Polyhedra_Library::Box, 151
Parma_Polyhedra_Library::Grid, 270
Parma_Polyhedra_Library::Octagonal_Shape,

348
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 382
Parma_Polyhedra_Library::Pointset_-

Powerset, 433
Parma_Polyhedra_Library::Polyhedron, 469

total_memory_in_bytes
Parma_Polyhedra_Library::Checked_Number,

177
Parma_Polyhedra_Library::GMP_Integer, 240

trunc_assign
Parma_Polyhedra_Library::Checked_Number,

178
Type

Parma_Polyhedra_Library::Constraint, 209
Parma_Polyhedra_Library::Generator, 228
Parma_Polyhedra_Library::Grid_Generator,

284

UNBOUNDED_MIP_PROBLEM

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 513

PPL_CXX_interface, 69
unconstrain

Parma_Polyhedra_Library::BD_Shape, 109,
110

Parma_Polyhedra_Library::Box, 146
Parma_Polyhedra_Library::Grid, 265
Parma_Polyhedra_Library::Octagonal_Shape,

343
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 377
Parma_Polyhedra_Library::Pointset_-

Powerset, 428
Parma_Polyhedra_Library::Polyhedron, 464

UNFEASIBLE_MIP_PROBLEM
PPL_CXX_interface, 69

UNFEASIBLE_PIP_PROBLEM
PPL_CXX_interface, 69

UNIVERSE
PPL_CXX_interface, 66

UNSIGNED
PPL_CXX_interface, 68

update_solution
Parma_Polyhedra_Library::PIP_Solution_-

Node, 404
update_tableau

Parma_Polyhedra_Library::PIP_Tree_Node,
409

upper_bound_assign
Parma_Polyhedra_Library::BD_Shape, 110
Parma_Polyhedra_Library::Box, 147
Parma_Polyhedra_Library::Grid, 266
Parma_Polyhedra_Library::Octagonal_Shape,

343
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 378
Parma_Polyhedra_Library::Powerset, 483

upper_bound_assign_if_exact
Parma_Polyhedra_Library::BD_Shape, 110
Parma_Polyhedra_Library::Box, 147
Parma_Polyhedra_Library::Grid, 266
Parma_Polyhedra_Library::Octagonal_Shape,

344
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 378
Parma_Polyhedra_Library::Powerset, 483

V_CVT_STR_UNK
PPL_CXX_interface, 66

V_DIV_ZERO
PPL_CXX_interface, 66

V_EMPTY
PPL_CXX_interface, 66

V_EQ
PPL_CXX_interface, 66

V_EQ_MINUS_INFINITY
PPL_CXX_interface, 66

V_EQ_PLUS_INFINITY
PPL_CXX_interface, 66

V_GE
PPL_CXX_interface, 66

V_GT
PPL_CXX_interface, 66

V_GT_MINUS_INFINITY
PPL_CXX_interface, 66

V_GT_SUP
PPL_CXX_interface, 66

V_INF_ADD_INF
PPL_CXX_interface, 66

V_INF_DIV_INF
PPL_CXX_interface, 66

V_INF_MOD
PPL_CXX_interface, 66

V_INF_MUL_ZERO
PPL_CXX_interface, 66

V_INF_SUB_INF
PPL_CXX_interface, 66

V_LE
PPL_CXX_interface, 66

V_LGE
PPL_CXX_interface, 66

V_LT
PPL_CXX_interface, 66

V_LT_INF
PPL_CXX_interface, 66

V_LT_PLUS_INFINITY
PPL_CXX_interface, 66

V_MOD_ZERO
PPL_CXX_interface, 66

V_NAN
PPL_CXX_interface, 66

V_NE
PPL_CXX_interface, 66

V_OVERFLOW
PPL_CXX_interface, 66

V_SQRT_NEG
PPL_CXX_interface, 66

V_UNKNOWN_NEG_OVERFLOW
PPL_CXX_interface, 66

V_UNKNOWN_POS_OVERFLOW
PPL_CXX_interface, 66

V_UNREPRESENTABLE
PPL_CXX_interface, 66

Variable
Parma_Polyhedra_Library::Variable, 489

Variables_Set
Parma_Polyhedra_Library::Variables_Set, 491

VC_MINUS_INFINITY
Parma_Polyhedra_Library, 78

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 514

VC_NAN
Parma_Polyhedra_Library, 78

VC_NORMAL
Parma_Polyhedra_Library, 78

VC_PLUS_INFINITY
Parma_Polyhedra_Library, 78

VR_EMPTY
Parma_Polyhedra_Library, 79

VR_EQ
Parma_Polyhedra_Library, 79

VR_GE
Parma_Polyhedra_Library, 79

VR_GT
Parma_Polyhedra_Library, 79

VR_LE
Parma_Polyhedra_Library, 79

VR_LGE
Parma_Polyhedra_Library, 79

VR_LT
Parma_Polyhedra_Library, 79

VR_NE
Parma_Polyhedra_Library, 79

widen_fun_ref
Parma_Polyhedra_Library::Pointset_-

Powerset, 437
widening_assign

Parma_Polyhedra_Library::Grid, 272
Parma_Polyhedra_Library::Partially_-

Reduced_Product, 382
wrap_assign

Parma_Polyhedra_Library::BD_Shape, 115
Parma_Polyhedra_Library::Box, 151
Parma_Polyhedra_Library::Grid, 270
Parma_Polyhedra_Library::Octagonal_Shape,

348
Parma_Polyhedra_Library::Pointset_-

Powerset, 433
Parma_Polyhedra_Library::Polyhedron, 469

wrap_string
Parma_Polyhedra_Library::IO_Operators, 86

The Parma Polyhedra Library User’s Manual (version 0.11). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

	General Information on the PPL
	The Main Features
	Upward Approximation
	Approximating Integers
	Convex Polyhedra
	Representations of Convex Polyhedra
	Operations on Convex Polyhedra
	Intervals and Boxes
	Weakly-Relational Shapes
	Rational Grids
	Operations on Rational Grids
	The Powerset Construction
	Operations on the Powerset Construction
	The Pointset Powerset Domain
	Using the Library
	Bibliography

	GNU General Public License
	GNU Free Documentation License
	Module Index
	Modules

	Namespace Index
	Namespace List

	Class Index
	Class Hierarchy

	Class Index
	Class List

	Module Documentation
	C++ Language Interface

	Namespace Documentation
	Parma_Polyhedra_Library Namespace Reference
	Parma_Polyhedra_Library::IO_Operators Namespace Reference
	std Namespace Reference

	Class Documentation
	Parma_Polyhedra_Library::PIP_Tree_Node::Artificial_Parameter Class Reference
	Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference
	Parma_Polyhedra_Library::BHRZ03_Certificate Class Reference
	Parma_Polyhedra_Library::Box< ITV > Class Template Reference
	Parma_Polyhedra_Library::C_Polyhedron Class Reference
	Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference
	Parma_Polyhedra_Library::Variable::Compare Struct Reference
	Parma_Polyhedra_Library::BHRZ03_Certificate::Compare Struct Reference
	Parma_Polyhedra_Library::H79_Certificate::Compare Struct Reference
	Parma_Polyhedra_Library::Grid_Certificate::Compare Struct Reference
	Parma_Polyhedra_Library::Congruence Class Reference
	Parma_Polyhedra_Library::Congruence_System Class Reference
	Parma_Polyhedra_Library::Congruences_Reduction< D1, D2 > Class Template Reference
	Parma_Polyhedra_Library::Constraint_System::const_iterator Class Reference
	Parma_Polyhedra_Library::Generator_System::const_iterator Class Reference
	Parma_Polyhedra_Library::Congruence_System::const_iterator Class Reference
	Parma_Polyhedra_Library::Grid_Generator_System::const_iterator Class Reference
	Parma_Polyhedra_Library::Constraint Class Reference
	Parma_Polyhedra_Library::Constraint_System Class Reference
	Parma_Polyhedra_Library::Constraints_Reduction< D1, D2 > Class Template Reference
	Parma_Polyhedra_Library::Determinate< PSET > Class Template Reference
	Parma_Polyhedra_Library::Domain_Product< D1, D2 > Class Template Reference
	Parma_Polyhedra_Library::Generator Class Reference
	Parma_Polyhedra_Library::Generator_System Class Reference
	Parma_Polyhedra_Library::GMP_Integer Class Reference
	Parma_Polyhedra_Library::Grid Class Reference
	Parma_Polyhedra_Library::Grid_Certificate Class Reference
	Parma_Polyhedra_Library::Grid_Generator Class Reference
	Parma_Polyhedra_Library::Grid_Generator_System Class Reference
	Parma_Polyhedra_Library::H79_Certificate Class Reference
	Parma_Polyhedra_Library::Interval< Boundary, Info > Class Template Reference
	Parma_Polyhedra_Library::Is_Checked< T > Struct Template Reference
	Parma_Polyhedra_Library::Is_Checked< Checked_Number< T, P > > Struct Template Reference
	Parma_Polyhedra_Library::Is_Native_Or_Checked< T > Struct Template Reference
	Parma_Polyhedra_Library::Linear_Expression Class Reference
	Parma_Polyhedra_Library::MIP_Problem Class Reference
	Parma_Polyhedra_Library::NNC_Polyhedron Class Reference
	Parma_Polyhedra_Library::PIP_Solution_Node::No_Constraints Struct Reference
	Parma_Polyhedra_Library::No_Reduction< D1, D2 > Class Template Reference
	Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference
	Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template Reference
	Parma_Polyhedra_Library::PIP_Decision_Node Class Reference
	Parma_Polyhedra_Library::PIP_Problem Class Reference
	Parma_Polyhedra_Library::PIP_Solution_Node Class Reference
	Parma_Polyhedra_Library::PIP_Tree_Node Class Reference
	Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference
	Parma_Polyhedra_Library::Poly_Con_Relation Class Reference
	Parma_Polyhedra_Library::Poly_Gen_Relation Class Reference
	Parma_Polyhedra_Library::Polyhedron Class Reference
	Parma_Polyhedra_Library::Powerset< D > Class Template Reference
	Parma_Polyhedra_Library::Recycle_Input Struct Reference
	Parma_Polyhedra_Library::Shape_Preserving_Reduction< D1, D2 > Class Template Reference
	Parma_Polyhedra_Library::Smash_Reduction< D1, D2 > Class Template Reference
	Parma_Polyhedra_Library::Throwable Class Reference
	Parma_Polyhedra_Library::Variable Class Reference
	Parma_Polyhedra_Library::Variables_Set Class Reference

