GNU Fortran Internals

For ccc version 10.3.0

(GCC)

The gfortran team

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301, USA

Copyright (©) 2007-2020 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:

A GNU Manual

(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

1 Introduction 1
2 Code that Interacts with the User........................ 3
3 Frontend Data Structures 5
4 Internals of Fortran 2003 OOP Features.................. 11
5 Generating the intermediate language for later stages........ 13
6 The LibGFortran Runtime Library 15
GNU Free Documentation License 17

Table of Contents

1 Introduction................ 1
2 Code that Interacts with the User............ 3
2.1 Command-Line Options 3
2.2 Error Handling....... ... i 3

3 Frontend Data Structures................... ... 5
3.1 gfc_code ... o)
3.1.1 TF Blocks . oo 6

312 L00DS - et ettt 6

3.1.3 SELECT Statementsccouiuiiiiiiineniiannnn... 6

3.1.4 BLOCK and ASSOCIATE\ttt 6

3.2 g eXPT 7
3.2 1 Constants........ooiuiiiii 7

3.2.2 OPeratorsttt 7

3.2.3 Function Calls...... ... 7

3.2.4 Array- and Structure-Constructors......................... 8

3.2.5 Null. ..o 8

3.2.6 Variables and Reference Expressions....................... 8

3.2.7 Constant Substring References.............. 9

4 Internals of Fortran 2003 OOP Features..... 11
4.1 Type-bound Procedures.............. ... i 11
4.1.1 Specific Bindings 11

4.1.2 Generic Bindings............o i 11

4.1.3 Calls to Type-bound Procedures.......................... 11

4.2 Type-bound Operators...........oouuiiiiiiieiiieeninann. 12

5 Generating the intermediate language for later

Stages. ... 13

5.1 Basic data structures. ... 13
5.2 Converting EXpressons to tree.........ooviiiiiieeniinn . 13
5.3 Translating statements........ it 14
5.4 Accessing declarations........ ... i 14

6 The LibGFortran Runtime Library 15
6.1 Symbol Versioning 15
GNU Free Documentation License............... 17
ADDENDUM: How to use this License for your documents 24

iii

Chapter 1: Introduction 1

1 Introduction

This manual documents the internals of gfortran, the GNU Fortran compiler.

At present, this manual is very much a work in progress, containing miscellaneous notes
about the internals of the compiler. It is hoped that at some point in the future it will
become a reasonably complete guide; in the interim, GNU Fortran developers are strongly
encouraged to contribute to it as a way of keeping notes while working on the compiler.

Chapter 2: Code that Interacts with the User 3

2 Code that Interacts with the User

2.1 Command-Line Options

Command-line options for gfortran involve four interrelated pieces within the Fortran
compiler code.

The relevant command-line flag is defined in ‘lang.opt’, according to the documentation
in Section “Options” in GNU Compiler Collection Internals. This is then processed by the
overall GCC machinery to create the code that enables gfortran and gcc to recognize the
option in the command-line arguments and call the relevant handler function.

This generated code calls the gfc_handle_option code in ‘options.c’ with an enu-
merator variable indicating which option is to be processed, and the relevant integer or
string values associated with that option flag. Typically, gfc_handle_option uses these
arguments to set global flags which record the option states.

The global flags that record the option states are stored in the gfc_option_t struct,
which is defined in ‘gfortran.h’. Before the options are processed, initial values for these
flags are set in gfc_init_option in ‘options.c’; these become the default values for the
options.

2.2 Error Handling

The GNU Fortran compiler’s parser operates by testing each piece of source code against
a variety of matchers. In some cases, if these matchers do not match the source code,
they will store an error message in a buffer. If the parser later finds a matcher that does
correctly match the source code, then the buffered error is discarded. However, if the
parser cannot find a match, then the buffered error message is reported to the user. This
enables the compiler to provide more meaningful error messages even in the many cases
where (erroneous) Fortran syntax is ambiguous due to things like the absence of reserved
keywords.

As an example of how this works, consider the following line:
IF = 3

Hypothetically, this may get passed to the matcher for an IF statement. Since this could
plausibly be an erroneous IF statement, the matcher will buffer an error message reporting
the absence of an expected ‘(’ following an IF. Since no matchers reported an error-free
match, however, the parser will also try matching this against a variable assignment. When
IF is a valid variable, this will be parsed as an assignment statement, and the error discarded.
However, when IF is not a valid variable, this buffered error message will be reported to
the user.

The error handling code is implemented in ‘error.c’. FErrors are normally entered
into the buffer with the gfc_error function. Warnings go through a similar buffering
process, and are entered into the buffer with gfc_warning. There is also a special-purpose
function, gfc_notify_std, for things which have an error/warning status that depends on
the currently-selected language standard.

The gfc_error_check function checks the buffer for errors, reports the error message to
the user if one exists, clears the buffer, and returns a flag to the user indicating whether or

4 GNU Fortran Compiler Internals

not an error existed. To check the state of the buffer without changing its state or reporting
the errors, the gfc_error_flag_test function can be used. The gfc_clear_error function
will clear out any errors in the buffer, without reporting them. The gfc_warning_check
and gfc_clear_warning functions provide equivalent functionality for the warning buffer.

Only one error and one warning can be in the buffers at a time, and buffering another will
overwrite the existing one. In cases where one may wish to work on a smaller piece of source
code without disturbing an existing error state, the gfc_push_error, gfc_pop_error, and
gfc_free_error mechanism exists to implement a stack for the error buffer.

For cases where an error or warning should be reported immediately rather than buffered,
the gfc_error_now and gfc_warning_now functions can be used. Normally, the compiler
will continue attempting to parse the program after an error has occurred, but if this is
not appropriate, the gfc_fatal_error function should be used instead. For errors that are
always the result of a bug somewhere in the compiler, the gfc_internal_error function

should be used.

The syntax for the strings used to produce the error/warning message in the various error
and warning functions is similar to the printf syntax, with ‘/’-escapes to insert variable
values. The details, and the allowable codes, are documented in the error_print function
in ‘error.c’.

Chapter 3: Frontend Data Structures 5

3 Frontend Data Structures

This chapter should describe the details necessary to understand how the various gfc_* data
are used and interact. In general it is advisable to read the code in ‘dump-parse-tree.c’ as
its routines should exhaust all possible valid combinations of content for these structures.

3.1 gfc_code

The executable statements in a program unit are represented by a nested chain of gfc_
code structures. The type of statement is identified by the op member of the structure, the
different possible values are enumerated in gfc_exec_op. A special member of this enum
is EXEC_NOP which is used to represent the various END statements if they carry a label.
Depending on the type of statement some of the other fields will be filled in. Fields that are
generally applicable are the next and here fields. The former points to the next statement
in the current block or is NULL if the current statement is the last in a block, here points
to the statement label of the current statement.

If the current statement is one of IF, DO, SELECT it starts a block, i.e. a nested level
in the program. In order to represent this, the block member is set to point to a gfc_
code structure whose next member starts the chain of statements inside the block; this
structure’s op member should be set to the same value as the parent structure’s op member.
The SELECT and IF statements may contain various blocks (the chain of ELSE IF and ELSE
blocks or the various CASEs, respectively). These chains are linked-lists formed by the block
members.

Consider the following example code:

IF (foo < 20) THEN
PRINT *, "Too small"
foo = 20

ELSEIF (foo > 50) THEN
PRINT *, "Too large"

foo = 50
ELSE

PRINT *, "Good"
END IF

This statement-block will be represented in the internal gfortran tree as follows, were
the horizontal link-chains are those induced by the next members and vertical links down
are those of block. ‘==|" and ‘--|’ mean NULL pointers to mark the end of a chain:

. ==> JF ==

|
+--> IF foo < 20 ==> PRINT *, "Too small" ==> foo = 20 ==|

I

+--> IF foo > 50 ==> PRINT *, "Too large" ==> foo = 50 ==

I
+--> ELSE ==> PRINT *, "Good" ==|
|

+e- |

6 GNU Fortran Compiler Internals

3.1.1 IF Blocks

Conditionals are represented by gfc_code structures with their op member set to EXEC_TIF.
This structure’s block member must point to another gfc_code node that is the header of
the if-block. This header’s op member must be set to EXEC_IF, too, its expr member holds
the condition to check for, and its next should point to the code-chain of the statements to
execute if the condition is true.

If in addition an ELSEIF or ELSE block is present, the block member of the if-block-
header node points to yet another gfc_code structure that is the header of the elseif- or
else-block. Its structure is identical to that of the if-block-header, except that in case of an
ELSE block without a new condition the expr member should be NULL. This block can itself
have its block member point to the next ELSEIF or ELSE block if there’s a chain of them.

3.1.2 Loops

DO loops are stored in the tree as gfc_code nodes with their op set to EXEC_DO for a DO loop
with iterator variable and to EXEC_DO_WHILE for infinite DOs and DO WHILE blocks. Their
block member should point to a gfc_code structure heading the code-chain of the loop
body; its op member should be set to EXEC_DO or EXEC_DO_WHILE, too, respectively.

For DO WHILE loops, the loop condition is stored on the top gfc_code structure’s expr
member; DO forever loops are simply DO WHILE loops with a constant . TRUE. loop condition
in the internal representation.

Similarly, DO loops with an iterator have instead of the condition their ext.iterator
member set to the correct values for the loop iterator variable and its range.

3.1.3 SELECT Statements

A SELECT block is introduced by a gfc_code structure with an op member of EXEC_SELECT
and expr containing the expression to evaluate and test. Its block member starts a list of
gfc_code structures linked together by their block members that stores the various CASE
parts.

Each CASE node has its op member set to EXEC_SELECT, too, its next member points to
the code-chain to be executed in the current case-block, and extx.case_list contains the
case-values this block corresponds to. The block member links to the next case in the list.

3.1.4 BLOCK and ASSOCIATE

The code related to a BLOCK statement is stored inside an gfc_code structure (say ¢) with
c.op set to EXEC_BLOCK. The gfc_namespace holding the locally defined variables of the
BLOCK is stored in c.ext.block.ns. The code inside the construct is in c.code.

ASSOCIATE constructs are based on BLOCK and thus also have the internal storage struc-
ture described above (including EXEC_BLOCK). However, for them c.ext.block.assoc is set
additionally and points to a linked list of gfc_association_list structures. Those struc-
tures basically store a link of associate-names to target expressions. The associate-names
themselves are still also added to the BLOCK’s namespace as ordinary symbols, but they
have their gfc_symbol’s member assoc set also pointing to the association-list structure.
This way associate-names can be distinguished from ordinary variables and their target
expressions identified.

Chapter 3: Frontend Data Structures 7

For association to expressions (as opposed to variables), at the very beginning of the
BLOCK construct assignments are automatically generated to set the corresponding variables
to their target expressions’ values, and later on the compiler simply disallows using such
associate-names in contexts that may change the value.

3.2 gfc_expr

Expressions and “values”, including constants, variable-, array- and component-references
as well as complex expressions consisting of operators and function calls are internally
represented as one or a whole tree of gf c_expr objects. The member expr_type specifies the
overall type of an expression (for instance, EXPR_CONSTANT for constants or EXPR_VARIABLE
for variable references). The members ts and rank as well as shape, which can be NULL,
specify the type, rank and, if applicable, shape of the whole expression or expression tree of
which the current structure is the root. where is the locus of this expression in the source
code.

Depending on the flavor of the expression being described by the object (that is, the
value of its expr_type member), the corresponding structure in the value union will usually
contain additional data describing the expression’s value in a type-specific manner. The
ref member is used to build chains of (array-, component- and substring-) references if the
expression in question contains such references, see below for details.

3.2.1 Constants

Scalar constants are represented by gfc_expr nodes with their expr_type set to EXPR_
CONSTANT. The constant’s value shall already be known at compile-time and is stored in
the logical, integer, real, complex or character struct inside value, depending on the
constant’s type specification.

3.2.2 Operators

Operator-expressions are expressions that are the result of the execution of some operator
on one or two operands. The expressions have an expr_type of EXPR_OP. Their value.op
structure contains additional data.

opl and optionally op2 if the operator is binary point to the two operands, and operator
or uop describe the operator that should be evaluated on these operands, where uop de-
scribes a user-defined operator.

3.2.3 Function Calls

If the expression is the return value of a function-call, its expr_type is set to EXPR_
FUNCTION, and symtree must point to the symtree identifying the function to be called.
value.function.actual holds the actual arguments given to the function as a linked list
of gfc_actual_arglist nodes.

The other members of value.function describe the function being called in more detail,
containing a link to the intrinsic symbol or user-defined function symbol if the call is to an
intrinsic or external function, respectively. These values are determined during resolution-
phase from the structure’s symtree member.

A special case of function calls are “component calls” to type-bound procedures; those
have the expr_type EXPR_COMPCALL with value.compcall containing the argument list and

8 GNU Fortran Compiler Internals

the procedure called, while symtree and ref describe the object on which the procedure was
called in the same way as a EXPR_VARIABLE expression would. See Section 4.1 [Type-bound
Procedures], page 11.

3.2.4 Array- and Structure-Constructors

Array- and structure-constructors (one could probably call them “array-” and “derived-type
constants”) are gfc_expr structures with their expr_type member set to EXPR_ARRAY or
EXPR_STRUCTURE, respectively. For structure constructors, symtree points to the derived-
type symbol for the type being constructed.

The values for initializing each array element or structure component are stored as
linked-list of gfc_constructor nodes in the value.constructor member.

3.2.5 Null

NULL is a special value for pointers; it can be of different base types. Such a NULL value
is represented in the internal tree by a gfc_expr node with expr_type EXPR_NULL. If
the base type of the NULL expression is known, it is stored in ts (that’s for instance the
case for default-initializers of ALLOCATABLE components), but this member can also be set
to BT_UNKNOWN if the information is not available (for instance, when the expression is a
pointer-initializer NULL()).

3.2.6 Variables and Reference Expressions

Variable references are gfc_expr structures with their expr_type set to EXPR_VARIABLE;
their symtree should point to the variable that is referenced.

For this type of expression, it’s also possible to chain array-, component- or substring-
references to the original expression to get something like ‘struct¥component (2:5)’, where
component is either an array or a CHARACTER member of struct that is of some derived-
type. Such a chain of references is achieved by a linked list headed by ref of the gfc_expr
node. For the example above it would be (‘==|" is the last NULL pointer):

EXPR_VARIABLE(struct) ==> REF_COMPONENT (component) ==> REF_ARRAY(2:5) ==

If component is a string rather than an array, the last element would be a REF_SUBSTRING
reference, of course. If the variable itself or some component referenced is an array and the
expression should reference the whole array rather than being followed by an array-element
or -section reference, a REF_ARRAY reference must be built as the last element in the chain
with an array-reference type of AR_FULL. Consider this example code:

TYPE :: mytype
INTEGER :: array(42)
END TYPE mytype

TYPE(mytype) :: variable
INTEGER :: local_array(5)

CALL do_something (variablejarray, local_array)
The gfc_expr nodes representing the arguments to the ‘do_something’ call will have a
reference-chain like this:

EXPR_VARIABLE(variable) ==> REF_COMPONENT (array) ==> REF_ARRAY(FULL) ==
EXPR_VARIABLE(local_array) ==> REF_ARRAY(FULL) ==

Chapter 3: Frontend Data Structures 9

3.2.7 Constant Substring References

EXPR_SUBSTRING is a special type of expression that encodes a substring reference of a
constant string, as in the following code snippet:
x = "abcde"(1:2)
In this case, value.character contains the full string’s data as if it was a string constant,
but the ref member is also set and points to a substring reference as described in the
subsection above.

Chapter 4: Internals of Fortran 2003 OOP Features 11

4 Internals of Fortran 2003 OOP Features

4.1 Type-bound Procedures

Type-bound procedures are stored in the tb_sym_root of the namespace f2k_derived
associated with the derived-type symbol as gfc_symtree nodes. The name and symbol of
these symtrees corresponds to the binding-name of the procedure, i.e. the name that is used
to call it from the context of an object of the derived-type.

In addition, this type of symtrees stores in n.tb a struct of type gfc_typebound_proc
containing the additional data needed: The binding attributes (like PASS and NOPASS, NON_
OVERRIDABLE or the access-specifier), the binding’s target(s) and, if the current binding
overrides or extends an inherited binding of the same name, overridden points to this
binding’s gfc_typebound_proc structure.

4.1.1 Specific Bindings

For specific bindings (declared with PROCEDURE), if they have a passed-object argument, the
passed-object dummy argument is first saved by its name, and later during resolution phase
the corresponding argument is looked for and its position remembered as pass_arg_num in
gfc_typebound_proc. The binding’s target procedure is pointed-to by u.specific.

DEFERRED bindings are just like ordinary specific bindings, except that their deferred
flag is set of course and that u.specific points to their “interface” defining symbol (might
be an abstract interface) instead of the target procedure.

At the moment, all type-bound procedure calls are statically dispatched and transformed
into ordinary procedure calls at resolution time; their actual argument list is updated to
include at the right position the passed-object argument, if applicable, and then a simple
procedure call to the binding’s target procedure is built. To handle dynamic dispatch in
the future, this will be extended to allow special code generation during the trans-phase to
dispatch based on the object’s dynamic type.

4.1.2 Generic Bindings

Bindings declared as GENERIC store the specific bindings they target as a linked list us-
ing nodes of type gfc_tbp_generic in u.generic. For each specific target, the parser
records its symtree and during resolution this symtree is bound to the corresponding gfc_
typebound_proc structure of the specific target.

Calls to generic bindings are handled entirely in the resolution-phase, where for the
actual argument list present the matching specific binding is found and the call’s target
procedure (value.compcall.tbp) is re-pointed to the found specific binding and this call
is subsequently handled by the logic for specific binding calls.

4.1.3 Calls to Type-bound Procedures

Calls to type-bound procedures are stored in the parse-tree as gfc_expr nodes of type
EXPR_COMPCALL. Their value.compcall.actual saves the actual argument list of the call
and value.compcall.tbp points to the gfc_typebound_proc structure of the binding to
be called. The object in whose context the procedure was called is saved by combination of
symtree and ref, as if the expression was of type EXPR_VARIABLE.

12 GNU Fortran Compiler Internals

For code like this:
CALL myobj’%procedure (argl, arg2)

the CALL is represented in the parse-tree as a gfc_code node of type EXEC_COMPCALL. The
expr member of this node holds an expression of type EXPR_COMPCALL of the same structure
as mentioned above except that its target procedure is of course a SUBROUTINE and not a
FUNCTION.

Expressions that are generated internally (as expansion of a type-bound operator call)
may also use additional flags and members. value.compcall.ignore_pass signals that
even though a PASS attribute may be present the actual argument list should not be up-
dated because it already contains the passed-object. value.compcall.base_object over-
rides, if it is set, the base-object (that is normally stored in symtree and ref as men-
tioned above); this is needed because type-bound operators can be called on a base-object
that need not be of type EXPR_VARIABLE and thus representable in this way. Finally, if
value.compcall.assign is set, the call was produced in expansion of a type-bound assign-
ment; this means that proper dependency-checking needs to be done when relevant.

4.2 Type-bound Operators

Type-bound operators are in fact basically just GENERIC procedure bindings and are repre-
sented much in the same way as those (see Section 4.1 [Type-bound Procedures|, page 11).

They come in two flavours: User-defined operators (like .MYOPERATOR.) are stored in
the £2k_derived namespace’s tb_uop_root symtree exactly like ordinary type-bound pro-
cedures are stored in tb_sym_root; their symtrees’ names are the operator-names (e.g.
‘myoperator’ in the example). Intrinsic operators on the other hand are stored in the
namespace’s array member tb_op indexed by the intrinsic operator’s enum value. Those
need not be packed into gfc_symtree structures and are only gfc_typebound_proc in-
stances.

When an operator call or assignment is found that cannot be handled in another way
(i.e. neither matches an intrinsic nor interface operator definition) but that contains a
derived-type expression, all type-bound operators defined on that derived-type are checked
for a match with the operator call. If there’s indeed a relevant definition, the operator call is
replaced with an internally generated GENERIC type-bound procedure call to the respective
definition and that call is further processed.

Chapter 5: Generating the intermediate language for later stages. 13

5 Generating the intermediate language for later
stages.

This chapter deals with the transformation of gfortran’s frontend data structures to the
intermediate language used by the later stages of the compiler, the so-called middle end.

Data structures relating to this are found in the source files ‘trans*.h’ and ‘trans-*.c’.

5.1 Basic data structures

Gfortran creates GENERIC as an intermediate language for the middle-end. Details about
GENERIC can be found in the GCC manual.

The basic data structure of GENERIC is a tree. Everything in GENERIC is a tree,
including types and statements. Fortunately for the gfortran programmer, tree variables
are garbage-collected, so doing memory management for them is not necessary.

tree expressions are built using functions such as, for example, fold_build2_loc. For
two tree variables a and b, both of which have the type gfc_arry_index_type, calculation
¢ = a * b would be done by
c = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type, a, b);
The types have to agree, otherwise internal compiler errors will occur at a later stage.
Expressions can be converted to a different type using fold_convert.

Accessing individual members in the tree structures should not be done. Rather, access
should be done via macros.

One basic data structure is the stmtblock_t struct. This is used for holding a list of
statements, expressed as tree expressions. If a block is created using gfc_start_block, it
has its own scope for variables; if it is created using gfc_init_block, it does not have its
own scope.

It is possible to

e Add an expression to the end of a block using gfc_add_expr_to_block
e Add an expression to the beginning of a block using void gfc_prepend_expr_to_block

e Make a block into a single tree using gfc_finish_block. For example, this is needed
to put the contents of a block into the if or else branch of a COND_EXPR.

Variables are also tree expressions, they can be created using gfc_create_var. Assign-
ing to a variable can be done with gfc_add_modify.

An example: Creating a default integer type variable in the current scope with the prefix
“everything” in the stmt_block block and assigning the value 42 would be

tree var, *block;

/* Initialize block somewhere here. */

var = gfc_create_var (integer_type_node, "everything");
gfc_add_modify (block, var, build_int_cst (integer_type_node, 42));

5.2 Converting Expressons to tree

Converting expressions to tree is done by functions called gfc_conv_*.

The central data structure for a GENERIC expression is the gfc_se structure. Its expr
member is a tree that holds the value of the expression. A gfc_se structure is initialized
using gfc_init_se; it needs to be embedded in an outer gfc_se.

14 GNU Fortran Compiler Internals

Evaluating Fortran expressions often require things to be done before and after evalu-
ation of the expression, for example code for the allocation of a temporary variable and
its subsequent deallocation. Therefore, gfc_se contains the members pre and post, which
point to stmt_block blocks for code that needs to be executed before and after evaluation
of the expression.

When using a local gfc_se to convert some expression, it is often necessary to add the
generated pre and post blocks to the pre or post blocks of the outer gfc_se. Code like
this (lifted from ‘trans-expr.c’) is fairly common:

gfc_se cont_se;
tree cont_var;

/* cont_var = is_contiguous (expr); . */
gfc_init_se (&cont_se, parmse);
gfc_conv_is_contiguous_expr (&cont_se, expr);
gfc_add_block_to_block (&se->pre, &(&cont_se)->pre);
gfc_add_modify (&se->pre, cont_var, cont_se.expr);
gfc_add_block_to_block (&se->pre, &(&cont_se)->post);

Conversion functions which need a gfc_se structure will have a corresponding argument.

gfc_se also contains pointers to a gfc_ss and a gfc_loopinfo structure. These are
needed by the scalarizer.

5.3 Translating statements

Translating statements to tree is done by functions called gfc_trans_*. These functions
usually get passed a gfc_code structure, evaluate any expressions and then return a tree
structure.

5.4 Accessing declarations

gfc_symbol, gfc_charlen and other front-end structures contain a backend_decl variable,
which contains the tree used for accessing that entity in the middle-end.

Accessing declarations is usually done by functions called gfc_getx.

Chapter 6: The LibGFortran Runtime Library 15

6 The LibGFortran Runtime Library

6.1 Symbol Versioning

In general, this capability exists only on a few platforms, thus there is a need for configure
magic so that it is used only on those targets where it is supported.

The central concept in symbol versioning is the so-called map file, which specifies the
version node(s) exported symbols are labeled with. Also, the map file is used to hide local
symbols.

Some relevant references:
e GNU 1d manual
e ELF Symbol Versioning - Ulrich Depper
e How to Write Shared Libraries - Ulrich Drepper (see Chapter 3)

If one adds a new symbol to a library that should be exported, the new symbol should be
mentioned in the map file and a new version node defined, e.g., if one adds a new symbols
foo and bar to libgfortran for the next GCC release, the following should be added to the
map file:

GFORTRAN_1.1 {
global:
foo;
bar;

} GFORTRAN_1.0;

where GFORTRAN_1.0 is the version node of the current release, and GFORTRAN_1.1 is the
version node of the next release where foo and bar are made available.

If one wants to change an existing interface, it is possible by using some asm trickery
(from the 1d manual referenced above):
_asm__(".symver original_foo,fo0@");
__asm__(".symver old_foo,foo@VERS_1.1");

__asm__(".symver old_fool,foo@VERS_1.2");
_asm__(".symver new_foo,foo@VERS_2.0");

In this example, foo@ represents the symbol foo bound to the unspecified base version
of the symbol. The source file that contains this example would define 4 C functions:
original_foo, old_foo, 0ld_fool, and new_foo.

In this case the map file must contain foo in VERS_1.1 and VERS_1.2 as well as in
VERS_2.0.

https://sourceware.org/binutils/docs/ld/VERSION.html
https://www.akkadia.org/drepper/symbol-versioning
https://www.akkadia.org/drepper/dsohowto.pdf

GNU Free Documentation License 17

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpo