GNAT User’s Guide

GNAT, The GNU Ada Development Environment
For Gcce version 4.9.4

(GCC)

AdaCore

Copyright (©) 1995-2014 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts and with
no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free

Documentation License”.

About This Guide 1

About This Guide

This guide describes the use of GNAT, a compiler and software development toolset for the
full Ada programming language. It documents the features of the compiler and tools, and
explains how to use them to build Ada applications.

GNAT implements Ada 95, Ada 2005 and Ada 2012, and it may also be invoked in

Ada 83 compatibility mode. By default, GNAT assumes Ada 2012, but you can override
with a compiler switch (see Section 3.2.9 [Compiling Different Versions of Ada|, page 83)
to explicitly specify the language version. Throughout this manual, references to “Ada”
without a year suffix apply to all Ada 95/2005/2012 versions of the language.

What This Guide Contains

This guide contains the following chapters:

Chapter 1 [Getting Started with GNAT], page 5, describes how to get started compiling
and running Ada programs with the GNAT Ada programming environment.

Chapter 2 [The GNAT Compilation Model], page 13, describes the compilation model
used by GNAT.

Chapter 3 [Compiling with gec], page 41, describes how to compile Ada programs with
gcc, the Ada compiler.

Chapter 4 [Binding with gnatbind|, page 97, describes how to perform binding of Ada
programs with gnatbind, the GNAT binding utility.

Chapter 5 [Linking with gnatlink]|, page 107, describes gnatlink, a program that pro-
vides for linking using the GNAT run-time library to construct a program. gnatlink
can also incorporate foreign language object units into the executable.

Chapter 6 [The GNAT Make Program gnatmake|, page 111, describes gnatmake, a
utility that automatically determines the set of sources needed by an Ada compilation
unit, and executes the necessary compilations binding and link.

Chapter 7 [Improving Performance|, page 121, shows various techniques for making
your Ada program run faster or take less space and describes the effect of the compiler’s
optimization switch. It also describes unused subprogram/data elimination.

Chapter 8 [Renaming Files with gnatchop|, page 137, describes gnatchop, a utility that
allows you to preprocess a file that contains Ada source code, and split it into one or
more new files, one for each compilation unit.

Chapter 9 [Configuration Pragmas|, page 141, describes the configuration pragmas
handled by GNAT.

Chapter 10 [Handling Arbitrary File Naming Conventions with gnatname], page 145,
shows how to override the default GNAT file naming conventions, either for an indi-
vidual unit or globally.
Chapter 11 [GNAT Project Manager|, page 149, describes how to use project files to
organize large projects.

Chapter 13 [The Cross-Referencing Tools gnatxref and gnatfind], page 221, discusses
gnatxref and gnatfind, two tools that provide an easy way to navigate through
sources.

GNAT User’s Guide

Chapter 14 [File Name Krunching with gnatkr|, page 231, describes the gnatkr file
name krunching utility, used to handle shortened file names on operating systems with
a limit on the length of names.

Chapter 15 [Preprocessing with gnatprep], page 235, describes gnatprep, a preproces-
sor utility that allows a single source file to be used to generate multiple or parameter-
ized source files by means of macro substitution.

Chapter 16 [The GNAT Library Browser gnatls], page 239, describes gnatls, a utility
that displays information about compiled units, including dependences on the corre-
sponding sources files, and consistency of compilations.

Chapter 17 [Cleaning Up with gnatclean], page 243, describes gnatclean, a utility to
delete files that are produced by the compiler, binder and linker.

Chapter 18 [GNAT and Libraries|, page 245, describes the process of creating and using
Libraries with GNAT. It also describes how to recompile the GNAT run-time library.
Chapter 19 [Using the GNU make Utility|, page 253, describes some techniques for
using the GNAT toolset in Makefiles.

Chapter 20 [Memory Management Issues|, page 259, describes some useful predefined
storage pools and in particular the GNAT Debug Pool facility, which helps detect
incorrect memory references.

Chapter 21 [Stack Related Facilities], page 263, describes some useful tools associated
with stack checking and analysis.

Chapter 22 [Performing Dimensionality Analysis in GNAT], page 265, describes the
Ada 2012 facilities used in GNAT to declare dimensioned objects, and to verify that
uses of these objects are consistent with their given physical dimensions (so that meters
cannot be assigned to kilograms, and so on).

Chapter 23 [Generating Ada Bindings for C and C++ headers], page 267, describes how
to generate automatically Ada bindings from C and C++ headers.

Chapter 24 [Other Utility Programs|, page 273, discusses several other GNAT utilities,
including gnathtml.

Chapter 25 [Code Coverage and Profiling], page 277, describes how to perform a struc-
tural coverage and profile the execution of Ada programs.

Chapter 26 [Running and Debugging Ada Programs|, page 281, describes how to run
and debug Ada programs.

Appendix A [Platform-Specific Information for the Run-Time Libraries|, page 297,
describes the various run-time libraries supported by GNAT on various platforms and
explains how to choose a particular library.

Appendix B [Example of Binder Output File|, page 303, shows the source code for the
binder output file for a sample program.

Appendix C [Elaboration Order Handling in GNAT], page 317, describes how GNAT
helps you deal with elaboration order issues.

Appendix D [Overflow Check Handling in GNAT], page 345, describes how GNAT
helps you deal with arithmetic overflow issues.

Appendix E [Conditional Compilation]|, page 351, describes how to model conditional
compilation, both with Ada in general and with GNAT facilities in particular.

About This Guide 3

Appendix F [Inline Assembler|, page 357, shows how to use the inline assembly facility
in an Ada program.

Appendix G [Compatibility and Porting Guide|, page 367, contains sections on compat-
ibility of GNAT with other Ada development environments (including Ada 83 systems),
to assist in porting code from those environments.

Appendix H [Microsoft Windows Topics|, page 377, presents information relevant to
the Microsoft Windows platform.

Appendix I [Mac OS Topics|, page 399, presents information relevant to Apple’s OS X
platform.

What You Should Know before Reading This Guide

This guide assumes a basic familiarity with the Ada 95 language, as described in the Inter-
national Standard ANSI/ISO/IEC-8652:1995, January 1995. It does not require knowledge
of the new features introduced by Ada 2005, (officially known as ISO/IEC 8652:1995 with
Technical Corrigendum 1 and Amendment 1). Both reference manuals are included in the
GNAT documentation package.

Related Information

For further information about related tools, refer to the following documents:

See Section “About This Guide” in GNAT Reference Manual, which contains all ref-
erence material for the GNAT implementation of Ada.

Using the GNAT Programming Studio, which describes the GPS Integrated Develop-
ment Environment.

GNAT Programming Studio Tutorial, which introduces the main GPS features through
examples.

Ada 95 Reference Manual, which contains reference material for the Ada 95 program-
ming language.

Ada 2005 Reference Manual, which contains reference material for the Ada 2005 pro-
gramming language.

See Section “Debugging with GDB” in Debugging with GDB, for all details on the use
of the GNU source-level debugger.

See Section “The extensible self-documenting text editor” in GNU Emacs Manual, for
full information on the extensible editor and programming environment Emacs.

Conventions

Following are examples of the typographical and graphic conventions used in this guide:

Functions, utility program names, standard names, and classes.
‘Option flags’

‘File names’, ‘button names’; and ‘field names’.

Variables, environment variables, and metasyntactic variables.
Emphasis.

[optional information or parameters]

4 GNAT User’s Guide

e Examples are described by text

and then shown this way.

Commands that are entered by the user are preceded in this manual by the characters “$ ”
(dollar sign followed by space). If your system uses this sequence as a prompt, then the
commands will appear exactly as you see them in the manual. If your system uses some

other prompt, then the command will appear with the $ replaced by whatever prompt
character you are using.

Full file names are shown with the “/” character as the directory separator; e.g.,
‘parent-dir/subdir/myfile.adb’. If you are using GNAT on a Windows platform, please
note that the “\” character should be used instead.

Chapter 1: Getting Started with GNAT 5

1 Getting Started with GNAT

This chapter describes some simple ways of using GNAT to build executable Ada programs.
Section 1.1 [Running GNAT], page 5, through Section 1.4 [Using the gnatmake Utility],
page 8, show how to use the command line environment. Section 1.5 [Introduction to
GPS], page 8, provides a brief introduction to the GNAT Programming Studio, a visually-
oriented Integrated Development Environment for GNAT. GPS offers a graphical “look and
feel”, support for development in other programming languages, comprehensive browsing
features, and many other capabilities. For information on GPS please refer to Using the
GNAT Programming Studio.

1.1 Running GNAT

Three steps are needed to create an executable file from an Ada source file:
1. The source file(s) must be compiled.
2. The file(s) must be bound using the GNAT binder.
3. All appropriate object files must be linked to produce an executable.
All three steps are most commonly handled by using the gnatmake utility program that,

given the name of the main program, automatically performs the necessary compilation,
binding and linking steps.

1.2 Running a Simple Ada Program

Any text editor may be used to prepare an Ada program. (If Emacs is used, the optional
Ada mode may be helpful in laying out the program.) The program text is a normal text
file. We will assume in our initial example that you have used your editor to prepare the
following standard format text file:

with Ada.Text_IO; use Ada.Text_IO;
procedure Hello is
begin
Put_Line ("Hello WORLD!");
end Hello;

This file should be named ‘hello.adb’. With the normal default file naming conventions,
GNAT requires that each file contain a single compilation unit whose file name is the unit
name, with periods replaced by hyphens; the extension is ‘ads’ for a spec and ‘adb’ for a
body. You can override this default file naming convention by use of the special pragma
Source_File_Name (see Section 2.4 [Using Other File Names], page 17). Alternatively, if
you want to rename your files according to this default convention, which is probably more
convenient if you will be using GNAT for all your compilations, then the gnatchop utility
can be used to generate correctly-named source files (see Chapter 8 [Renaming Files with

gnatchop], page 137).

You can compile the program using the following command ($ is used as the command
prompt in the examples in this document):
$ gcc -c hello.adb

6 GNAT User’s Guide

gecc is the command used to run the compiler. This compiler is capable of compiling
programs in several languages, including Ada and C. It assumes that you have given it an
Ada program if the file extension is either ‘.ads’ or ‘.adb’, and it will then call the GNAT
compiler to compile the specified file.

The ‘-¢’ switch is required. It tells gcc to only do a compilation. (For C programs, gcc
can also do linking, but this capability is not used directly for Ada programs, so the ‘-c’
switch must always be present.)

This compile command generates a file ‘hello.o’, which is the object file corresponding
to your Ada program. It also generates an “Ada Library Information” file ‘hello.ali’,
which contains additional information used to check that an Ada program is consistent.
To build an executable file, use gnatbind to bind the program and gnatlink to link it.
The argument to both gnatbind and gnatlink is the name of the ‘ALI’ file, but the default
extension of *.ali’ can be omitted. This means that in the most common case, the argument
is simply the name of the main program:

$ gnatbind hello
$ gnatlink hello

A simpler method of carrying out these steps is to use gnatmake, a master program that
invokes all the required compilation, binding and linking tools in the correct order. In
particular, gnatmake automatically recompiles any sources that have been modified since
they were last compiled, or sources that depend on such modified sources, so that “version
skew” is avoided.

$ gnatmake hello.adb

The result is an executable program called ‘hello’, which can be run by entering:

$ hello
assuming that the current directory is on the search path for executable programs.

and, if all has gone well, you will see

Hello WORLD!

appear in response to this command.

1.3 Running a Program with Multiple Units

Consider a slightly more complicated example that has three files: a main program, and
the spec and body of a package:

Chapter 1: Getting Started with GNAT 7

-

package Greetings is
procedure Hello;
procedure Goodbye;
end Greetings;

with Ada.Text_I0; use Ada.Text_IO;
package body Greetings is
procedure Hello is
begin
Put_Line ("Hello WORLD!");
end Hello;

procedure Goodbye is
begin
Put_Line ("Goodbye WORLD!");
end Goodbye;
end Greetings;

with Greetings;

procedure Gmain is

begin
Greetings.Hello;
Greetings.Goodbye;

end Gmain;

=

/

Following the one-unit-per-file rule, place this program in the following three separate files:

‘greetings.ads’
spec of package Greetings

‘greetings.adb’
body of package Greetings

‘gmain.adb’
body of main program

To build an executable version of this program, we could use four separate steps to compile,
bind, and link the program, as follows:

$ gcc -c gmain.adb

$ gcc -c greetings.adb

$ gnatbind gmain

$ gnatlink gmain
Note that there is no required order of compilation when using GNAT. In particular it
is perfectly fine to compile the main program first. Also, it is not necessary to compile
package specs in the case where there is an accompanying body; you only need to compile
the body. If you want to submit these files to the compiler for semantic checking and not
code generation, then use the ‘-gnatc’ switch:

$ gcc -c greetings.ads -gnatc
Although the compilation can be done in separate steps as in the above example, in practice
it is almost always more convenient to use the gnatmake tool. All you need to know in this

case is the name of the main program’s source file. The effect of the above four commands
can be achieved with a single one:

$ gnatmake gmain.adb

In the next section we discuss the advantages of using gnatmake in more detail.

8 GNAT User’s Guide

1.4 Using the gnatmake Utility

If you work on a program by compiling single components at a time using gcc, you typically
keep track of the units you modify. In order to build a consistent system, you compile not
only these units, but also any units that depend on the units you have modified. For exam-
ple, in the preceding case, if you edit ‘gmain.adb’, you only need to recompile that file. But
if you edit ‘greetings.ads’, you must recompile both ‘greetings.adb’ and ‘gmain.adb’,
because both files contain units that depend on ‘greetings.ads’.

gnatbind will warn you if you forget one of these compilation steps, so that it is im-
possible to generate an inconsistent program as a result of forgetting to do a compilation.
Nevertheless it is tedious and error-prone to keep track of dependencies among units. One
approach to handle the dependency-bookkeeping is to use a makefile. However, makefiles
present maintenance problems of their own: if the dependencies change as you change the
program, you must make sure that the makefile is kept up-to-date manually, which is also
an error-prone process.

The gnatmake utility takes care of these details automatically. Invoke it using either one
of the following forms:

$ gnatmake gmain.adb
$ gnatmake gmain

The argument is the name of the file containing the main program; you may omit the ex-
tension. gnatmake examines the environment, automatically recompiles any files that need
recompiling, and binds and links the resulting set of object files, generating the executable
file, ‘gmain’. In a large program, it can be extremely helpful to use gnatmake, because
working out by hand what needs to be recompiled can be difficult.

Note that gnatmake takes into account all the Ada rules that establish dependencies
among units. These include dependencies that result from inlining subprogram bodies, and
from generic instantiation. Unlike some other Ada make tools, gnatmake does not rely on
the dependencies that were found by the compiler on a previous compilation, which may
possibly be wrong when sources change. gnatmake determines the exact set of dependencies
from scratch each time it is run.

1.5 Introduction to GPS

Although the command line interface (gnatmake, etc.) alone is sufficient, a graphical In-
teractive Development Environment can make it easier for you to compose, navigate, and
debug programs. This section describes the main features of GPS (“GNAT Programming
Studio”), the GNAT graphical IDE. You will see how to use GPS to build and debug an
executable, and you will also learn some of the basics of the GNAT “project” facility.

GPS enables you to do much more than is presented here; e.g., you can produce a
call graph, interface to a third-party Version Control System, and inspect the generated
assembly language for a program. Indeed, GPS also supports languages other than Ada.
Such additional information, and an explanation of all of the GPS menu items. may be found
in the on-line help, which includes a user’s guide and a tutorial (these are also accessible
from the GNAT startup menu).

Chapter 1: Getting Started with GNAT 9

1.5.1 Building a New Program with GPS

GPS invokes the GNAT compilation tools using information contained in a project (also
known as a project file): a collection of properties such as source directories, identities of
main subprograms, tool switches, etc., and their associated values. See Chapter 11 [GNAT
Project Manager], page 149 for details. In order to run GPS, you will need to either create
a new project or else open an existing one.

This section will explain how you can use GPS to create a project, to associate Ada
source files with a project, and to build and run programs.

1. Creating a project

Invoke GPS, either from the command line or the platform’s IDE. After it starts, GPS
will display a “Welcome” screen with three radio buttons:

e Start with default project in directory
e Create new project with wizard
e (Open existing project

Select Create new project with wizard and press OK. A new window will appear. In
the text box labeled with Enter the name of the project to create, type ‘sample’
as the project name. In the next box, browse to choose the directory in which you
would like to create the project file. After selecting an appropriate directory, press
Forward.

A window will appear with the title Version Control System Configuration. Simply
press Forward.

A window will appear with the title Please select the source directories for
this project. The directory that you specified for the project file will be selected by
default as the one to use for sources; simply press Forward.

A window will appear with the title Please select the build directory for this
project. The directory that you specified for the project file will be selected by default
for object files and executables; simply press Forward.

A window will appear with the title Please select the main units for this
project. You will supply this information later, after creating the source file. Simply
press Forward for now.
A window will appear with the title Please select the switches to build the
project. Press Apply. This will create a project file named ‘sample.prj’ in the
directory that you had specified.
2. Creating and saving the source file

After you create the new project, a GPS window will appear, which is partitioned into
two main sections:

o A Workspace area, initially greyed out, which you will use for creating and editing

source files

e Directly below, a Messages area, which initially displays a “Welcome” message.
(If the Messages area is not visible, drag its border upward to expand it.)

Select File on the menu bar, and then the New command. The Workspace area will
become white, and you can now enter the source program explicitly. Type the following
text

10

GNAT User’s Guide

with Ada.Text_IO; use Ada.Text_IO;
procedure Hello is
begin
Put_Line("Hello from GPS!");
end Hello;
Select File, then Save As, and enter the source file name ‘hello.adb’. The file will be

saved in the same directory you specified as the location of the default project file.
Updating the project file

You need to add the new source file to the project. To do this, select the Project
menu and then Edit project properties. Click the Main files tab on the left, and
then the Add button. Choose ‘hello.adb’ from the list, and press Open. The project
settings window will reflect this action. Click OK.

Building and running the program

In the main GPS window, now choose the Build menu, then Make, and select
‘hello.adb’. The Messages window will display the resulting invocations of gcc,
gnatbind, and gnatlink (reflecting the default switch settings from the project file
that you created) and then a “successful compilation/build” message.

To run the program, choose the Build menu, then Run, and select hello. An Arguments
Selection window will appear. There are no command line arguments, so just click OK.

The Messages window will now display the program’s output (the string Hello from
GPS), and at the bottom of the GPS window a status update is displayed (Run: hello).
Close the GPS window (or select File, then Exit) to terminate this GPS session.

1.5.2 Simple Debugging with GPS

This section illustrates basic debugging techniques (setting breakpoints, examin-
ing/modifying variables, single stepping).

1.

Opening a project
Start GPS and select Open existing project; browse to specify the project file
‘sample.prj’ that you had created in the earlier example.

Creating a source file

Select File, then New, and type in the following program:

with Ada.Text_I0; use Ada.Text_IO0;
procedure Example is
Line : String (1..80);
N : Natural;
begin
Put_Line("Type a line of text at each prompt; an empty line to exit");
loop
Put(": n);
Get_Line (Line, N);
Put_Line (Line (1..N));
exit when N=0;
end loop;
end Example;

Select File, then Save as, and enter the file name ‘example.adb’.
Updating the project file

Add Example as a new main unit for the project:

Chapter 1: Getting Started with GNAT 11

Select Project, then Edit Project Properties.

b. Select the Main files tab, click Add, then select the file ‘example.adb’ from the

C.

list, and click Open. You will see the file name appear in the list of main units
Click 0K

4. Building/running the executable

To build the executable select Build, then Make, and then choose ‘example.adb’.

Run the program to see its effect (in the Messages area). Each line that you enter is
displayed; an empty line will cause the loop to exit and the program to terminate.

5. Debugging the program

Note that the ‘-g’ switches to gcc and gnatlink, which are required for debugging,
are on by default when you create a new project. Thus unless you intentionally remove
these settings, you will be able to debug any program that you develop using GPS.

a.

Initializing
Select Debug, then Initialize, then ‘example’
Setting a breakpoint

After performing the initialization step, you will observe a small icon to the right
of each line number. This serves as a toggle for breakpoints; clicking the icon will
set a breakpoint at the corresponding line (the icon will change to a red circle with

[

an “x”), and clicking it again will remove the breakpoint / reset the icon.

For purposes of this example, set a breakpoint at line 10 (the statement Put_Line
(Line (1..N));

Starting program execution

Select Debug, then Run. When the Program Arguments window appears, click
0K. A console window will appear; enter some line of text, e.g. abcde, at the
prompt. The program will pause execution when it gets to the breakpoint, and
the corresponding line is highlighted.

Ezamining a variable

Move the mouse over one of the occurrences of the variable N. You will see the
value (5) displayed, in “tool tip” fashion. Right click on N, select Debug, then
select Display N. You will see information about N appear in the Debugger Data
pane, showing the value as 5.

Assigning a new value to a variable

Right click on the N in the Debugger Data pane, and select Set value of N. When
the input window appears, enter the value 4 and click 0K. This value does not
automatically appear in the Debugger Data pane; to see it, right click again on
the N in the Debugger Data pane and select Update value. The new value, 4, will
appear in red.

Single stepping

Select Debug, then Next. This will cause the next statement to be executed, in
this case the call of Put_Line with the string slice. Notice in the console window
that the displayed string is simply abcd and not abcde which you had entered.
This is because the upper bound of the slice is now 4 rather than 5.

12

GNAT User’s Guide

g. Removing a breakpoint

Toggle the breakpoint icon at line 10.

h. Resuming execution from a breakpoint

Select Debug, then Continue. The program will reach the next iteration of the
loop, and wait for input after displaying the prompt. This time, just hit the Enter
key. The value of N will be 0, and the program will terminate. The console window
will disappear.

Chapter 2: The GNAT Compilation Model 13

2 The GNAT Compilation Model

This chapter describes the compilation model used by GNAT. Although similar to that
used by other languages, such as C and C++, this model is substantially different from the
traditional Ada compilation models, which are based on a library. The model is initially
described without reference to the library-based model. If you have not previously used an
Ada compiler, you need only read the first part of this chapter. The last section describes
and discusses the differences between the GNAT model and the traditional Ada compiler
models. If you have used other Ada compilers, this section will help you to understand
those differences, and the advantages of the GNAT model.

2.1 Source Representation

Ada source programs are represented in standard text files, using Latin-1 coding. Latin-1 is
an 8-bit code that includes the familiar 7-bit ASCII set, plus additional characters used for
representing foreign languages (see Section 2.2 [Foreign Language Representation], page 13
for support of non-USA character sets). The format effector characters are represented
using their standard ASCII encodings, as follows:

VT Vertical tab, 16#0B#

HT Horizontal tab, 16#09#
CR Carriage return, 16#0D#
LF Line feed, 16#0A#

FF Form feed, 16#0C#

Source files are in standard text file format. In addition, GNAT will recognize a wide
variety of stream formats, in which the end of physical lines is marked by any of the
following sequences: LF, CR, CR-LF, or LF-CR. This is useful in accommodating files that
are imported from other operating systems.

The end of a source file is normally represented by the physical end of file. However, the
control character 16#1A# (SUB) is also recognized as signalling the end of the source file.
Again, this is provided for compatibility with other operating systems where this code is
used to represent the end of file.

Each file contains a single Ada compilation unit, including any pragmas associated with
the unit. For example, this means you must place a package declaration (a package spec)
and the corresponding body in separate files. An Ada compilation (which is a sequence of
compilation units) is represented using a sequence of files. Similarly, you will place each
subunit or child unit in a separate file.

2.2 Foreign Language Representation

GNAT supports the standard character sets defined in Ada as well as several other non-
standard character sets for use in localized versions of the compiler (see Section 3.2.10
[Character Set Control], page 84).

14 GNAT User’s Guide

2.2.1 Latin-1

The basic character set is Latin-1. This character set is defined by ISO standard 8859,
part 1. The lower half (character codes 16#00# ... 16#7F#) is identical to standard ASCII
coding, but the upper half is used to represent additional characters. These include extended
letters used by European languages, such as French accents, the vowels with umlauts used
in German, and the extra letter A-ring used in Swedish.

For a complete list of Latin-1 codes and their encodings, see the source file of library
unit Ada.Characters.Latin_1 in file ‘a-chlatl.ads’. You may use any of these extended
characters freely in character or string literals. In addition, the extended characters that
represent letters can be used in identifiers.

2.2.2 Other 8-Bit Codes
GNAT also supports several other 8-bit coding schemes:

ISO 8859-2 (Latin-2)
Latin-2 letters allowed in identifiers, with uppercase and lowercase equivalence.

ISO 8859-3 (Latin-3)
Latin-3 letters allowed in identifiers, with uppercase and lowercase equivalence.

ISO 8859-4 (Latin-4)
Latin-4 letters allowed in identifiers, with uppercase and lowercase equivalence.

ISO 8859-5 (Cyrillic)
ISO 8859-5 letters (Cyrillic) allowed in identifiers, with uppercase and lowercase
equivalence.

ISO 8859-15 (Latin-9)
ISO 8859-15 (Latin-9) letters allowed in identifiers, with uppercase and lower-
case equivalence

IBM PC (code page 437)
This code page is the normal default for PCs in the U.S. It corresponds to the
original IBM PC character set. This set has some, but not all, of the extended
Latin-1 letters, but these letters do not have the same encoding as Latin-1. In
this mode, these letters are allowed in identifiers with uppercase and lowercase
equivalence.

IBM PC (code page 850)
This code page is a modification of 437 extended to include all the Latin-1
letters, but still not with the usual Latin-1 encoding. In this mode, all these
letters are allowed in identifiers with uppercase and lowercase equivalence.

Full Upper 8-bit
Any character in the range 80-FF allowed in identifiers, and all are considered
distinct. In other words, there are no uppercase and lowercase equivalences in
this range. This is useful in conjunction with certain encoding schemes used for
some foreign character sets (e.g., the typical method of representing Chinese
characters on the PC).

Chapter 2: The GNAT Compilation Model 15

No Upper-Half
No upper-half characters in the range 80-FF are allowed in identifiers. This
gives Ada 83 compatibility for identifier names.

For precise data on the encodings permitted, and the uppercase and lowercase equivalences
that are recognized, see the file ‘csets.adb’ in the GNAT compiler sources. You will need
to obtain a full source release of GNAT to obtain this file.

2.2.3 Wide Character Encodings

GNAT allows wide character codes to appear in character and string literals, and also
optionally in identifiers, by means of the following possible encoding schemes:

Hex Coding
In this encoding, a wide character is represented by the following five character
sequence:
ESCabcd

Where a, b, c, d are the four hexadecimal characters (using uppercase letters)
of the wide character code. For example, ESC A345 is used to represent the
wide character with code 16#A345#. This scheme is compatible with use of the
full Wide_Character set.

Upper-Half Coding
The wide character with encoding 16#abcd# where the upper bit is on (in other
words, “a” is in the range 8-F) is represented as two bytes, 16#ab# and 16#cd#.
The second byte cannot be a format control character, but is not required to
be in the upper half. This method can be also used for shift-JIS or EUC, where
the internal coding matches the external coding.

Shift JIS Coding
A wide character is represented by a two-character sequence, 16#ab# and
16#cd#, with the restrictions described for upper-half encoding as described
above. The internal character code is the corresponding JIS character
according to the standard algorithm for Shift-JIS conversion. Only characters
defined in the JIS code set table can be used with this encoding method.

EUC Coding
A wide character is represented by a two-character sequence 16#ab# and
16#cd#, with both characters being in the upper half. The internal character
code is the corresponding JIS character according to the EUC encoding
algorithm. Only characters defined in the JIS code set table can be used with
this encoding method.

UTF-8 Coding
A wide character is represented using UCS Transformation Format 8 (UTF-8)
as defined in Annex R of ISO 10646-1/Am.2. Depending on the character value,
the representation is a one, two, or three byte sequence:

16#0000#-16#007f#: 2#0xxxxxxX#
16#0080#-16#07ff#: 2#110xxxxx# 2#10xxxXXXXH#
16#0800#—-16#ffff#: 2#1110xxxx# 2#10xxxxxx# 2#10xxXXXXH#

16 GNAT User’s Guide

where the xxx bits correspond to the left-padded bits of the 16-bit character
value. Note that all lower half ASCII characters are represented as ASCII
bytes and all upper half characters and other wide characters are represented
as sequences of upper-half (The full UTF-8 scheme allows for encoding 31-bit
characters as 6-byte sequences, but in this implementation, all UTF-8 sequences
of four or more bytes length will be treated as illegal).

Brackets Coding
In this encoding, a wide character is represented by the following eight character
sequence:
["abca"]

Where a, b, c, d are the four hexadecimal characters (using uppercase letters)
of the wide character code. For example, [“A345”] is used to represent the wide
character with code 16#A345#. It is also possible (though not required) to use
the Brackets coding for upper half characters. For example, the code 16#A3#
can be represented as [€“A3’°].

This scheme is compatible with use of the full Wide_Character set, and is also
the method used for wide character encoding in the standard ACVC (Ada
Compiler Validation Capability) test suite distributions.

Note: Some of these coding schemes do not permit the full use of the Ada character set.
For example, neither Shift JIS, nor EUC allow the use of the upper half of the Latin-1 set.

2.3 File Naming Rules

The default file name is determined by the name of the unit that the file contains. The
name is formed by taking the full expanded name of the unit and replacing the separating
dots with hyphens and using lowercase for all letters.

An exception arises if the file name generated by the above rules starts with one of the
characters ‘a’; ‘g’, ‘i’, or ‘s’, and the second character is a minus. In this case, the character
tilde is used in place of the minus. The reason for this special rule is to avoid clashes with
the standard names for child units of the packages System, Ada, Interfaces, and GNAT,
which use the prefixes ‘s-’, ‘a-’, ‘i-’, and ‘g-’, respectively.

The file extension is ‘.ads’ for a spec and ‘.adb’ for a body. The following list shows

some examples of these rules.

‘main.ads’
Main (spec)
‘main.adb’

Main (body)

‘arith_functions.ads’
Arith_Functions (package spec)

‘arith_functions.adb’
Arith_Functions (package body)

‘func-spec.ads’
Func.Spec (child package spec)

Chapter 2: The GNAT Compilation Model 17

‘func-spec.adb’
Func.Spec (child package body)

‘main-sub.adb’

Sub (subunit of Main)

‘a"bad.adb’
A.Bad (child package body)

Following these rules can result in excessively long file names if corresponding unit names
are long (for example, if child units or subunits are heavily nested). An option is available
to shorten such long file names (called file name “krunching”). This may be particularly
useful when programs being developed with GNAT are to be used on operating systems
with limited file name lengths. See Section 14.2 [Using gnatkr|, page 231.

Of course, no file shortening algorithm can guarantee uniqueness over all possible unit
names; if file name krunching is used, it is your responsibility to ensure no name clashes
occur. Alternatively you can specify the exact file names that you want used, as described
in the next section. Finally, if your Ada programs are migrating from a compiler with a
different naming convention, you can use the gnatchop utility to produce source files that
follow the GNAT naming conventions. (For details see Chapter 8 [Renaming Files with
gnatchop|, page 137.)

Note: in the case of Windows NT/XP or OpenVMS operating systems, case is not significant.
So for example on Windows XP if the canonical name is main-sub.adb, you can use the file
name Main-Sub.adb instead. However, case is significant for other operating systems, so
for example, if you want to use other than canonically cased file names on a Unix system,
you need to follow the procedures described in the next section.

2.4 Using Other File Names

In the previous section, we have described the default rules used by GNAT to determine the
file name in which a given unit resides. It is often convenient to follow these default rules,
and if you follow them, the compiler knows without being explicitly told where to find all
the files it needs.

However, in some cases, particularly when a program is imported from another Ada
compiler environment, it may be more convenient for the programmer to specify which file
names contain which units. GNAT allows arbitrary file names to be used by means of the
Source_File_Name pragma. The form of this pragma is as shown in the following examples:

pragma Source_File_Name (My_Utilities.Stacks,
Spec_File_Name => "myutilst_a.ada");

pragma Source_File_name (My_Utilities.Stacks,
Body_File_Name => "myutilst.ada");

As shown in this example, the first argument for the pragma is the unit name (in this
example a child unit). The second argument has the form of a named association. The
identifier indicates whether the file name is for a spec or a body; the file name itself is given
by a string literal.

18 GNAT User’s Guide

The source file name pragma is a configuration pragma, which means that normally it
will be placed in the ‘gnat.adc’ file used to hold configuration pragmas that apply to a
complete compilation environment. For more details on how the ‘gnat.adc’ file is created
and used see Section 9.1 [Handling of Configuration Pragmas]|, page 142.

GNAT allows completely arbitrary file names to be specified using the source file name
pragma. However, if the file name specified has an extension other than ‘.ads’ or ‘.adb’ it
is necessary to use a special syntax when compiling the file. The name in this case must
be preceded by the special sequence ‘-x’ followed by a space and the name of the language,
here ada, as in:

$ gcc -c¢ -x ada peculiar_file_name.sim

gnatmake handles non-standard file names in the usual manner (the non-standard file name
for the main program is simply used as the argument to gnatmake). Note that if the
extension is also non-standard, then it must be included in the gnatmake command, it may
not be omitted.

2.5 Alternative File Naming Schemes

In the previous section, we described the use of the Source_File_Name pragma to allow
arbitrary names to be assigned to individual source files. However, this approach requires
one pragma for each file, and especially in large systems can result in very long ‘gnat.adc’
files, and also create a maintenance problem.

GNAT also provides a facility for specifying systematic file naming schemes other than
the standard default naming scheme previously described. An alternative scheme for naming
is specified by the use of Source_File_Name pragmas having the following format:

pragma Source_File_Name (
Spec_File_Name => FILE_NAME_PATTERN
[,Casing => CASING_SPEC
[,Dot_Replacement => STRING_LITERAL));

pragma Source_File_Name (
Body_File_Name => FILE_NAME_PATTERN
[,Casing => CASING_SPEC
[,Dot_Replacement => STRING_LITERAL));

pragma Source_File_Name (
Subunit_File_Name => FILE_NAME_PATTERN

[,Casing => CASING_SPEC]
[,Dot_Replacement => STRING_LITERALD;
FILE_NAME_PATTERN ::= STRING_LITERAL
CASING_SPEC ::= Lowercase | Uppercase | Mixedcase

The FILE_NAME_PATTERN string shows how the file name is constructed. It contains a single
asterisk character, and the unit name is substituted systematically for this asterisk. The
optional parameter Casing indicates whether the unit name is to be all upper-case letters,
all lower-case letters, or mixed-case. If no Casing parameter is used, then the default is all
lower-case.

The optional Dot _Replacement string is used to replace any periods that occur in subunit
or child unit names. If no Dot_Replacement argument is used then separating dots appear
unchanged in the resulting file name. Although the above syntax indicates that the Casing

Chapter 2: The GNAT Compilation Model 19

argument must appear before the Dot_Replacement argument, but it is also permissible to
write these arguments in the opposite order.

As indicated, it is possible to specify different naming schemes for bodies, specs, and
subunits. Quite often the rule for subunits is the same as the rule for bodies, in which
case, there is no need to give a separate Subunit_File_Name rule, and in this case the
Body_File_name rule is used for subunits as well.

The separate rule for subunits can also be used to implement the rather unusual case
of a compilation environment (e.g. a single directory) which contains a subunit and a child
unit with the same unit name. Although both units cannot appear in the same partition,
the Ada Reference Manual allows (but does not require) the possibility of the two units
coexisting in the same environment.

The file name translation works in the following steps:

e If there is a specific Source_File_Name pragma for the given unit, then this is always
used, and any general pattern rules are ignored.

e If there is a pattern type Source_File_Name pragma that applies to the unit, then the
resulting file name will be used if the file exists. If more than one pattern matches, the
latest one will be tried first, and the first attempt resulting in a reference to a file that
exists will be used.

e If no pattern type Source_File_Name pragma that applies to the unit for which the
corresponding file exists, then the standard GNAT default naming rules are used.

As an example of the use of this mechanism, consider a commonly used scheme in which
file names are all lower case, with separating periods copied unchanged to the resulting file
name, and specs end with ‘.1.ada’, and bodies end with ‘.2.ada’. GNAT will follow this
scheme if the following two pragmas appear:

pragma Source_File_Name
(Spec_File_Name => "x.1.ada");

pragma Source_File_Name
(Body_File_Name => "*.2.ada");

The default GNAT scheme is actually implemented by providing the following default prag-
mas internally:

pragma Source_File_Name

(Spec_File_Name => "#*.ads", Dot_Replacement => "-");
pragma Source_File_Name

(Body_File_Name => "*.adb", Dot_Replacement => "-");

Our final example implements a scheme typically used with one of the Ada 83 compilers,
where the separator character for subunits was “__” (two underscores), specs were identified
by adding ‘_.ADA’, bodies by adding ‘.ADA’, and subunits by adding ‘.SEP’. All file names
were upper case. Child units were not present of course since this was an Ada 83 compiler,
but it seems reasonable to extend this scheme to use the same double underscore separator
for child units.

pragma Source_File_Name
(Spec_File_Name => "x_.ADA",
Dot_Replacement => "__",
Casing = Uppercase);

pragma Source_File_Name
(Body_File_Name => "*.ADA",
Dot_Replacement => "__",

20 GNAT User’s Guide

Casing = Uppercase);

pragma Source_File_Name
(Subunit_File_Name => "x SEP",
Dot_Replacement => "__",

Casing = Uppercase) ;

2.6 Generating Object Files

An Ada program consists of a set of source files, and the first step in compiling the program
is to generate the corresponding object files. These are generated by compiling a subset of
these source files. The files you need to compile are the following;:

e If a package spec has no body, compile the package spec to produce the object file for
the package.

e If a package has both a spec and a body, compile the body to produce the object file
for the package. The source file for the package spec need not be compiled in this case
because there is only one object file, which contains the code for both the spec and
body of the package.

e For a subprogram, compile the subprogram body to produce the object file for the
subprogram. The spec, if one is present, is as usual in a separate file, and need not be
compiled.

e In the case of subunits, only compile the parent unit. A single object file is generated
for the entire subunit tree, which includes all the subunits.

e Compile child units independently of their parent units (though, of course, the spec of
all the ancestor unit must be present in order to compile a child unit).

e Compile generic units in the same manner as any other units. The object files in
this case are small dummy files that contain at most the flag used for elaboration
checking. This is because GNAT always handles generic instantiation by means of
macro expansion. However, it is still necessary to compile generic units, for dependency
checking and elaboration purposes.

The preceding rules describe the set of files that must be compiled to generate the object
files for a program. Each object file has the same name as the corresponding source file,
except that the extension is ‘.o’ as usual.

You may wish to compile other files for the purpose of checking their syntactic and
semantic correctness. For example, in the case where a package has a separate spec and
body, you would not normally compile the spec. However, it is convenient in practice to
compile the spec to make sure it is error-free before compiling clients of this spec, because
such compilations will fail if there is an error in the spec.

GNAT provides an option for compiling such files purely for the purposes of checking
correctness; such compilations are not required as part of the process of building a program.
To compile a file in this checking mode, use the ‘-gnatc’ switch.

2.7 Source Dependencies

A given object file clearly depends on the source file which is compiled to produce it. Here
we are using depends in the sense of a typical make utility; in other words, an object file
depends on a source file if changes to the source file require the object file to be recompiled.

Chapter 2: The GNAT Compilation Model 21

In addition to this basic dependency, a given object may depend on additional source files
as follows:

e If a file being compiled with’s a unit X, the object file depends on the file containing
the spec of unit X. This includes files that are with’ed implicitly either because they
are parents of with’ed child units or they are run-time units required by the language
constructs used in a particular unit.

o If a file being compiled instantiates a library level generic unit, the object file depends
on both the spec and body files for this generic unit.

e If a file being compiled instantiates a generic unit defined within a package, the object
file depends on the body file for the package as well as the spec file.

e If a file being compiled contains a call to a subprogram for which pragma Inline applies
and inlining is activated with the ‘~gnatn’ switch, the object file depends on the file
containing the body of this subprogram as well as on the file containing the spec. Note
that for inlining to actually occur as a result of the use of this switch, it is necessary
to compile in optimizing mode.

The use of ‘-gnatN’ activates inlining optimization that is performed by the front end
of the compiler. This inlining does not require that the code generation be optimized.
Like ‘~gnatn’, the use of this switch generates additional dependencies.

When using a gee-based back end (in practice this means using any version of GNAT
other than the JGNAT, NET or GNAAMP versions), then the use of ‘-gnatN’ is
deprecated, and the use of ‘-gnatn’ is preferred. Historically front end inlining was
more extensive than the gce back end inlining, but that is no longer the case.

e If an object file ‘0’ depends on the proper body of a subunit through inlining or instan-
tiation, it depends on the parent unit of the subunit. This means that any modification
of the parent unit or one of its subunits affects the compilation of ‘0’.

e The object file for a parent unit depends on all its subunit body files.

e The previous two rules meant that for purposes of computing dependencies and recom-
pilation, a body and all its subunits are treated as an indivisible whole.

These rules are applied transitively: if unit A with’s unit B, whose elaboration calls an
inlined procedure in package C, the object file for unit A will depend on the body of C,
in file ‘c.adb’.

The set of dependent files described by these rules includes all the files on which the
unit is semantically dependent, as dictated by the Ada language standard. However,
it is a superset of what the standard describes, because it includes generic, inline, and
subunit dependencies.

An object file must be recreated by recompiling the corresponding source file if any
of the source files on which it depends are modified. For example, if the make utility
is used to control compilation, the rule for an Ada object file must mention all the
source files on which the object file depends, according to the above definition. The
determination of the necessary recompilations is done automatically when one uses
gnatmake.

22 GNAT User’s Guide

2.8 The Ada Library Information Files

Fach compilation actually generates two output files. The first of these is the normal
object file that has a ‘.o’ extension. The second is a text file containing full dependency
information. It has the same name as the source file, but an ‘.ali’ extension. This file is
known as the Ada Library Information (‘ALI’) file. The following information is contained
in the ‘ALI’ file.

e Version information (indicates which version of GNAT was used to compile the unit(s)
in question)

e Main program information (including priority and time slice settings, as well as the
wide character encoding used during compilation).

e List of arguments used in the gcc command for the compilation

e Attributes of the unit, including configuration pragmas used, an indication of whether
the compilation was successful, exception model used etc.

e A list of relevant restrictions applying to the unit (used for consistency) checking.

e Categorization information (e.g. use of pragma Pure).

e Information on all with’ed units, including presence of Elaborate or Elaborate_All
pragmas.

e Information from any Linker_Options pragmas used in the unit

e Information on the use of Body_Version or Version attributes in the unit.

e Dependency information. This is a list of files, together with time stamp and checksum

information. These are files on which the unit depends in the sense that recompilation
is required if any of these units are modified.

e Cross-reference data. Contains information on all entities referenced in the unit. Used
by tools like gnatxref and gnatfind to provide cross-reference information.

For a full detailed description of the format of the ‘ALI’ file, see the source of the body of
unit Lib.Writ, contained in file ‘1ib-writ.adb’ in the GNAT compiler sources.

2.9 Binding an Ada Program

When using languages such as C and C++, once the source files have been compiled the only
remaining step in building an executable program is linking the object modules together.
This means that it is possible to link an inconsistent version of a program, in which two
units have included different versions of the same header.

The rules of Ada do not permit such an inconsistent program to be built. For example,
if two clients have different versions of the same package, it is illegal to build a program
containing these two clients. These rules are enforced by the GNAT binder, which also
determines an elaboration order consistent with the Ada rules.

The GNAT binder is run after all the object files for a program have been created. It
is given the name of the main program unit, and from this it determines the set of units
required by the program, by reading the corresponding ALI files. It generates error messages
if the program is inconsistent or if no valid order of elaboration exists.

If no errors are detected, the binder produces a main program, in Ada by default, that
contains calls to the elaboration procedures of those compilation unit that require them,

Chapter 2: The GNAT Compilation Model 23

followed by a call to the main program. This Ada program is compiled to generate the object
file for the main program. The name of the Ada file is ‘b~ xxx.adb’ (with the corresponding
spec ‘b~ xxx.ads’) where xxx is the name of the main program unit.

Finally, the linker is used to build the resulting executable program, using the object
from the main program from the bind step as well as the object files for the Ada units of
the program.

2.10 Mixed Language Programming

This section describes how to develop a mixed-language program, specifically one that
comprises units in both Ada and C.

2.10.1 Interfacing to C

Interfacing Ada with a foreign language such as C involves using compiler directives to
import and/or export entity definitions in each language—using extern statements in C,
for instance, and the Import, Export, and Convention pragmas in Ada. A full treatment
of these topics is provided in Appendix B, section 1 of the Ada Reference Manual.

There are two ways to build a program using GNAT that contains some Ada sources
and some foreign language sources, depending on whether or not the main subprogram is
written in Ada. Here is a source example with the main subprogram in Ada:

/* filel.c */
#include <stdio.h>

void print_num (int num)

{
printf ("num is %d.\n", num);
return;

}
/* file2.c */

/* num_from_Ada is declared in my_main.adb */
extern int num_from_Ada;

int get_num (void)
{
return num_from_Ada;

}

-- my_main.adb
procedure My_Main is

-- Declare then export an Integer entity called num_from_Ada
My_Num : Integer := 10;
pragma Export (C, My_Num, "num_from_Ada");

-- Declare an Ada function spec for Get_Num, then use
-- C function get_num for the implementation.
function Get_Num return Integer;

pragma Import (C, Get_Num, "get_num");

-- Declare an Ada procedure spec for Print_Num, then use
-- C function print_num for the implementation.
procedure Print_Num (Num : Integer);

24 GNAT User’s Guide

pragma Import (C, Print_Num, "print_num");

begin
Print_Num (Get_Num) ;
end My_Main;
1. To build this example, first compile the foreign language files to generate object files:
gcec -c filel.c
gcc -c file2.c
2. Then, compile the Ada units to produce a set of object files and ALI files:

gnatmake -c my_main.adb

3. Run the Ada binder on the Ada main program:

gnatbind my_main.ali

4. Link the Ada main program, the Ada objects and the other language objects:

gnatlink my_main.ali filel.o file2.o

The last three steps can be grouped in a single command:
gnatmake my_main.adb -largs filel.o file2.o

If the main program is in a language other than Ada, then you may have more than one
entry point into the Ada subsystem. You must use a special binder option to generate
callable routines that initialize and finalize the Ada units (see Section 4.2.6 [Binding with
Non-Ada Main Programs]|, page 104). Calls to the initialization and finalization routines
must be inserted in the main program, or some other appropriate point in the code. The
call to initialize the Ada units must occur before the first Ada subprogram is called, and
the call to finalize the Ada units must occur after the last Ada subprogram returns. The
binder will place the initialization and finalization subprograms into the ‘b~xxx.adb’ file
where they can be accessed by your C sources. To illustrate, we have the following example:

/* main.c */

extern void adainit (void);

extern void adafinal (void);

extern int add (int, int);
extern int sub (int, int);

int main (int argc, char *argv[])
{
int a =21, b =7;

adainit();

/* Should print "21 + 7 = 28" */
printf ("%d + %d = %d\n", a, b, add (a, b));
/* Should print "21 - 7 = 14" */
printf ("%d - %d = %d\n", a, b, sub (a, b));

adafinal();
}

-- unitl.ads

package Unitl is
function Add (A, B : Integer) return Integer;
pragma Export (C, Add, "add");

end Unitl;

-- unitl.adb

Chapter 2: The GNAT Compilation Model 25

package body Unitl is
function Add (A, B : Integer) return Integer is
begin
return A + B;
end Add;
end Unitl;

-- unit2.ads

package Unit2 is
function Sub (A, B : Integer) return Integer;
pragma Export (C, Sub, "sub");

end Unit2;

-- unit2.adb
package body Unit2 is
function Sub (A, B : Integer) return Integer is
begin
return A - B;
end Sub;
end Unit2;
The build procedure for this application is similar to the last example’s. First, compile
the foreign language files to generate object files:

gcc -c main.c

Next, compile the Ada units to produce a set of object files and ALI files:

gnatmake -c unitl.adb
gnatmake -c unit2.adb

Run the Ada binder on every generated ALI file. Make sure to use the ‘-n’ option to
specify a foreign main program:
gnatbind -n unitl.ali unit2.ali

Link the Ada main program, the Ada objects and the foreign language objects. You
need only list the last ALI file here:

gnatlink unit2.ali main.o -o exec_file

This procedure yields a binary executable called ‘exec_file’.

Depending on the circumstances (for example when your non-Ada main object does not
provide symbol main), you may also need to instruct the GNAT linker not to include the
standard startup objects by passing the ‘-nostartfiles’ switch to gnatlink.

2.10.2 Calling Conventions

GNAT follows standard calling sequence conventions and will thus interface to any other
language that also follows these conventions. The following Convention identifiers are rec-
ognized by GNAT:

Ada

This indicates that the standard Ada calling sequence will be used and all Ada
data items may be passed without any limitations in the case where GNAT is
used to generate both the caller and callee. It is also possible to mix GNAT
generated code and code generated by another Ada compiler. In this case,
the data types should be restricted to simple cases, including primitive types.
Whether complex data types can be passed depends on the situation. Probably
it is safe to pass simple arrays, such as arrays of integers or floats. Records
may or may not work, depending on whether both compilers lay them out

26

Assembler

Asm

COBOL

Default

External

GNAT User’s Guide

identically. Complex structures involving variant records, access parameters,
tasks, or protected types, are unlikely to be able to be passed.

Note that in the case of GNAT running on a platform that supports HP Ada 83,
a higher degree of compatibility can be guaranteed, and in particular records are
laid out in an identical manner in the two compilers. Note also that if output
from two different compilers is mixed, the program is responsible for dealing
with elaboration issues. Probably the safest approach is to write the main
program in the version of Ada other than GNAT, so that it takes care of its own
elaboration requirements, and then call the GNAT-generated adainit procedure
to ensure elaboration of the GNAT components. Consult the documentation of
the other Ada compiler for further details on elaboration.

However, it is not possible to mix the tasking run time of GNAT and HP Ada
83, All the tasking operations must either be entirely within GNAT compiled
sections of the program, or entirely within HP Ada 83 compiled sections of the
program.

Specifies assembler as the convention. In practice this has the same effect as
convention Ada (but is not equivalent in the sense of being considered the same
convention).

Equivalent to Assembler.

Data will be passed according to the conventions described in section B.4 of the
Ada Reference Manual.

Data will be passed according to the conventions described in section B.3 of the
Ada Reference Manual.

A note on interfacing to a C “varargs” function:

e In C, varargs allows a function to take a variable number of arguments.
There is no direct equivalent in this to Ada. One approach that can be
used is to create a C wrapper for each different profile and then interface
to this C wrapper. For example, to print an int value using printf, create
a C function printfi that takes two arguments, a pointer to a string and
an int, and calls printf. Then in the Ada program, use pragma Import
to interface to printfi.

e [t may work on some platforms to directly interface to a varargs function
by providing a specific Ada profile for a particular call. However, this
does not work on all platforms, since there is no guarantee that the calling
sequence for a two argument normal C function is the same as for calling
a varargs C function with the same two arguments.

Equivalent to C.
Equivalent to C.

C_Plus_Plus (or CPP)

This stands for C++. For most purposes this is identical to C. See the separate
description of the specialized GNAT pragmas relating to C++ interfacing for
further details.

Chapter 2: The GNAT Compilation Model 27

Fortran

Intrinsic

Stdcall

DLL
Win32

Data will be passed according to the conventions described in section B.5 of the
Ada Reference Manual.

This applies to an intrinsic operation, as defined in the Ada Reference Manual.
If a pragma Import (Intrinsic) applies to a subprogram, this means that the
body of the subprogram is provided by the compiler itself, usually by means of
an efficient code sequence, and that the user does not supply an explicit body
for it. In an application program, the pragma may be applied to the following
sets of names:

e Rotate_Left, Rotate_Right, Shift_Left, Shift_Right, Shift_Right_Arithmetic.|j
The corresponding subprogram declaration must have two formal param-
eters. The first one must be a signed integer type or a modular type with
a binary modulus, and the second parameter must be of type Natural.
The return type must be the same as the type of the first argument. The
size of this type can only be 8, 16, 32, or 64.

e Binary arithmetic operators: “+7 “7 “¥7 «/” The corresponding operator
declaration must have parameters and result type that have the same root
numeric type (for example, all three are long_float types). This simplifies
the definition of operations that use type checking to perform dimensional
checks:

type Distance is new Long_Float;

type Time is new Long_Float;

type Velocity is new Long_Float;

function "/" (D : Distance; T : Time)

return Velocity;

pragma Import (Intrinsic, "/");
This common idiom is often programmed with a generic definition and an
explicit body. The pragma makes it simpler to introduce such declara-
tions. It incurs no overhead in compilation time or code size, because it is
implemented as a single machine instruction.

e General subprogram entities, to bind an Ada subprogram declaration to a
compiler builtin by name with back-ends where such interfaces are avail-
able. A typical example is the set of “__builtin” functions exposed by the
GCC back-end, as in the following example:

function builtin_sqrt (F : Float) return Float;

pragma Import (Intrinsic, builtin_sqrt, "__builtin_sqrtf");
Most of the GCC builtins are accessible this way, and as for other import
conventions (e.g. C), it is the user’s responsibility to ensure that the Ada
subprogram profile matches the underlying builtin expectations.

This is relevant only to Windows XP/2000/NT implementations of GNAT, and
specifies that the Stdcall calling sequence will be used, as defined by the NT
API. Nevertheless, to ease building cross-platform bindings this convention will
be handled as a C calling convention on non-Windows platforms.

This is equivalent to Stdcall.
This is equivalent to Stdcall.

28 GNAT User’s Guide

Stubbed This is a special convention that indicates that the compiler should provide a
stub body that raises Program_Error.

GNAT additionally provides a useful pragma Convention_Identifier that can be used
to parameterize conventions and allow additional synonyms to be specified. For example
if you have legacy code in which the convention identifier Fortran77 was used for Fortran,
you can use the configuration pragma:

pragma Convention_Identifier (Fortran77, Fortran);

And from now on the identifier Fortran77 may be used as a convention identifier (for example
in an Import pragma) with the same meaning as Fortran.

2.11 Building Mixed Ada and C++ Programs

A programmer inexperienced with mixed-language development may find that building an
application containing both Ada and C++ code can be a challenge. This section gives a
few hints that should make this task easier. The first section addresses the differences
between interfacing with C and interfacing with C++. The second section looks into the
delicate problem of linking the complete application from its Ada and C++ parts. The last
section gives some hints on how the GNAT run-time library can be adapted in order to
allow inter-language dispatching with a new C++ compiler.

2.11.1 Interfacing to C++

GNAT supports interfacing with the G++ compiler (or any C++ compiler gener-
ating code that is compatible with the G++ Application Binary Interface —see
http://www.codesourcery.com/archives/cxx-abi).

Interfacing can be done at 3 levels: simple data, subprograms, and classes. In the first
two cases, GNAT offers a specific Convention C_Plus_Plus (or CPP) that behaves exactly
like Convention C. Usually, C++ mangles the names of subprograms. To generate proper
mangled names automatically, see Chapter 23 [Generating Ada Bindings for C and C++
headers|, page 267). This problem can also be addressed manually in two ways:

e by modifying the C++ code in order to force a C convention using the extern "C"
syntax.

e by figuring out the mangled name (using e.g. nm) and using it as the Link_Name
argument of the pragma import.

Interfacing at the class level can be achieved by using the GNAT specific pragmas such
as CPP_Constructor. See Section “Interfacing to C++” in GNAT Reference Manual, for
additional information.

2.11.2 Linking a Mixed C++ & Ada Program

Usually the linker of the C++ development system must be used to link mixed applications
because most C++ systems will resolve elaboration issues (such as calling constructors on
global class instances) transparently during the link phase. GNAT has been adapted to
ease the use of a foreign linker for the last phase. Three cases can be considered:

1. Using GNAT and G++ (GNU C++ compiler) from the same GCC installation: The C++
linker can simply be called by using the C++ specific driver called g++.

Chapter 2: The GNAT Compilation Model 29

Note that if the C++ code uses inline functions, you will need to compile your C++ code
with the -fkeep-inline-functions switch in order to provide an existing function
implementation that the Ada code can link with.

$ g++ -c -fkeep-inline-functions filel.C

$ g++ -c -fkeep-inline-functions file2.C

$ gnatmake ada_unit -largs filel.o file2.o0 --LINK=g++

2. Using GNAT and G++ from two different GCC installations: If both compilers are on

the PATH, the previous method may be used. It is important to note that environment
variables such as C_INCLUDE_PATH, GCC_EXEC_PREFIX, BINUTILS_ROOT, and GCC_ROOT
will affect both compilers at the same time and may make one of the two compilers
operate improperly if set during invocation of the wrong compiler. It is also very
important that the linker uses the proper ‘libgcc.a’ GCC library — that is, the one from
the C++ compiler installation. The implicit link command as suggested in the gnatmake
command from the former example can be replaced by an explicit link command with
the full-verbosity option in order to verify which library is used:

$ gnatbind ada_unit

$ gnatlink -v -v ada_unit filel.o file2.o0 --LINK=c++
If there is a problem due to interfering environment variables, it can be worked around
by using an intermediate script. The following example shows the proper script to use
when GNAT has not been installed at its default location and g++ has been installed
at its default location:

$ cat ./my_script

#!/bin/sh

unset BINUTILS_ROOT

unset GCC_ROOT

c++ $*

$ gnatlink -v -v ada_unit filel.o file2.o --LINK=./my_script

3. Using a non-GNU C++ compiler: The commands previously described can be used to

insure that the C++ linker is used. Nonetheless, you need to add a few more parameters
to the link command line, depending on the exception mechanism used.

If the setjmp/longjmp exception mechanism is used, only the paths to the libgcc
libraries are required:

$ cat ./my_script

#!/bin/sh

CC $* ‘gcc -print-file-name=libgcc.a‘ ‘gcc -print-file-name=libgcc_eh.a‘
$ gnatlink ada_unit filel.o file2.o --LINK=./my_script

Where CC is the name of the non-GNU C++ compiler.

If the zero cost exception mechanism is used, and the platform supports automatic
registration of exception tables (e.g. Solaris), paths to more objects are required:

$ cat ./my_script

#!/bin/sh

CC ‘gcc -print-file-name=crtbegin.o‘ $* \

‘gcc -print-file-name=libgcc.a‘ ‘gcc -print-file-name=libgcc_eh.a‘ \
‘gcc -print-file-name=crtend.o

$ gnatlink ada_unit filel.o file2.o --LINK=./my_script

If the zero cost exception mechanism is used, and the platform doesn’t support au-

tomatic registration of exception tables (e.g. HP-UX or AIX), the simple approach
described above will not work and a pre-linking phase using GNAT will be necessary.

30 GNAT User’s Guide

Another alternative is to use the gprbuild multi-language builder which has a large
knowledge base and knows how to link Ada and C++ code together automatically in most
cases.

2.11.3 A Simple Example

The following example, provided as part of the GNAT examples, shows how to achieve
procedural interfacing between Ada and C++ in both directions. The C++ class A has
two methods. The first method is exported to Ada by the means of an extern C wrapper
function. The second method calls an Ada subprogram. On the Ada side, The C++ calls
are modelled by a limited record with a layout comparable to the C++ class. The Ada
subprogram, in turn, calls the C++ method. So, starting from the C++ main program, the
process passes back and forth between the two languages.

Here are the compilation commands:

$ gnatmake -c simple_cpp_interface

$ g++ -c cpp_main.C

$ g+t+ —c ex7.C

$ gnatbind -n simple_cpp_interface

$ gnatlink simple_cpp_interface -o cpp_main --LINK=g++
-lstdc++ ex7.o cpp_main.o

Here are the corresponding sources:

//cpp_main.C
#include "ex7.h"

extern "C" {
void adainit (void);
void adafinal (void);
void methodl (A *t);
}

void methodl (A *t)
{

t->methodl ();
}

int main ()

{
A obj;
adainit ();
obj.method2 (3030);
adafinal ();

}

//ex7.h

class Origin {

public:
int o_value;
};
class A : public Origin {
public:

void methodl (void);
void method2 (int v);

Chapter 2: The GNAT Compilation Model

AQ;
int a_value;

};
//ex7.C

#include "ex7.h"
#include <stdio.h>

extern "C" { void ada_method2 (A *t, int v);}

void A::methodl (void)

{
a_value = 2020;
printf ("in A::methodl, a_value = %d \n",a_value);

}
void A::method2 (int v)
{
ada_method2 (this, v);
printf ("in A::method2, a_value = %d \n",a_value);
}
A::A(void)
{

a_value = 1010;
printf ("in A::A, a_value = %d \n",a_value);

}

-- Ada sources
package body Simple_Cpp_Interface is

procedure Ada_Method2 (This : in out A; V : Integer) is
begin

Methodl (This);

This.A_Value := V;
end Ada_Method2;

end Simple_Cpp_Interface;

with System;
package Simple_Cpp_Interface is
type A is limited
record
Vptr : System.Address;
0_Value : Integer;
A_Value : Integer;
end record;
pragma Convention (C, A);

procedure Methodl (This : in out A);
pragma Import (C, Methodl);

procedure Ada_Method2 (This : in out A; V : Integer);
pragma Export (C, Ada_Method?2);

end Simple_Cpp_Interface;

32 GNAT User’s Guide

2.11.4 Interfacing with C++ constructors

In order to interface with C++ constructors GNAT provides the pragma CPP_
Constructor (See Section “Interfacing to C++” in GNAT Reference Manual, for additional
information). In this section we present some common uses of C++ constructors in
mixed-languages programs in GNAT.

Let us assume that we need to interface with the following C++ class:

class Root {
public:
int a_value;
int Db_value;
virtual int Get_Value ();

Root () ; // Default constructor
Root(int v); // 1st non-default constructor
Root(int v, int w); // 2nd non-default constructor

};
For this purpose we can write the following package spec (further information on how
to build this spec is available in Section 2.11.5 [Interfacing with C++ at the Class Level],
page 34 and Chapter 23 [Generating Ada Bindings for C and C++ headers], page 267).

with Interfaces.C; use Interfaces.C;
package Pkg_Root is
type Root is tagged limited record
A_Value : int;
B_Value : int;
end record;
pragma Import (CPP, Root);

function Get_Value (Obj : Root) return int;
pragma Import (CPP, Get_Value);

function Constructor return Root;
pragma Cpp_Constructor (Constructor, "_ZN4RootClEv");

function Constructor (v : Integer) return Root;
pragma Cpp_Constructor (Constructor, "_ZN4RootClEi");

function Constructor (v, w : Integer) return Root;
pragma Cpp_Constructor (Constructor, "_ZN4RootClEii");
end Pkg_Root;

On the Ada side the constructor is represented by a function (whose name is arbitrary)
that returns the classwide type corresponding to the imported C++ class. Although the
constructor is described as a function, it is typically a procedure with an extra implicit
argument (the object being initialized) at the implementation level. GNAT issues the
appropriate call, whatever it is, to get the object properly initialized.

Constructors can only appear in the following contexts:
e On the right side of an initialization of an object of type T.
e On the right side of an initialization of a record component of type T.
e In an Ada 2005 limited aggregate.
e In an Ada 2005 nested limited aggregate.

e In an Ada 2005 limited aggregate that initializes an object built in place by an extended
return statement.

Chapter 2: The GNAT Compilation Model 33

In a declaration of an object whose type is a class imported from C++, either the default
C++ constructor is implicitly called by GNAT, or else the required C++ constructor must
be explicitly called in the expression that initializes the object. For example:

0bj1 : Root;

0Obj2 : Root := Constructor;

O0bj3 : Root := Comstructor (v => 10);

Obj4 : Root := Comstructor (30, 40);

The first two declarations are equivalent: in both cases the default C++ constructor is
invoked (in the former case the call to the constructor is implicit, and in the latter case
the call is explicit in the object declaration). 0bj3 is initialized by the C++ non-default
constructor that takes an integer argument, and 0bj4 is initialized by the non-default C++
constructor that takes two integers.

Let us derive the imported C++ class in the Ada side. For example:

type DT is new Root with record
C_Value : Natural := 2009;
end record;

In this case the components DT inherited from the C++ side must be initialized by a
C++ constructor, and the additional Ada components of type DT are initialized by GNAT.
The initialization of such an object is done either by default, or by means of a function
returning an aggregate of type DT, or by means of an extension aggregate.

0bj5 : DT;
Obj6 : DT := Function_Returning DT (50);
0bj7 : DT := (Constructor (30,40) with C_Value => 50);

The declaration of 0bj5 invokes the default constructors: the C++ default constructor of
the parent type takes care of the initialization of the components inherited from Root, and
GNAT takes care of the default initialization of the additional Ada components of type DT
(that is, C_Value is initialized to value 2009). The order of invocation of the constructors is
consistent with the order of elaboration required by Ada and C++. That is, the constructor
of the parent type is always called before the constructor of the derived type.

Let us now consider a record that has components whose type is imported from C++.
For example:

type Recl is limited record
Datal : Root := Comnstructor (10);
Value : Natural := 1000;

end record;

type Rec2 (D : Integer := 20) is limited record
Rec : Reci;
Data2 : Root := Constructor (D, 30);
end record;
The initialization of an object of type Rec2 will call the non-default C++ constructors
specified for the imported components. For example:

0bj8 : Rec2 (40);

Using Ada 2005 we can use limited aggregates to initialize an object invoking C++
constructors that differ from those specified in the type declarations. For example:

0bj9 : Rec2 := (Rec => (Datal => Comstructor (15, 16),
others => <>),
others => <>);

34 GNAT User’s Guide

The above declaration uses an Ada 2005 limited aggregate to initialize 0bj9, and the C++
constructor that has two integer arguments is invoked to initialize the Datal component
instead of the constructor specified in the declaration of type Rec1. In Ada 2005 the box in
the aggregate indicates that unspecified components are initialized using the expression (if
any) available in the component declaration. That is, in this case discriminant D is initialized
to value 20, Value is initialized to value 1000, and the non-default C++ constructor that
handles two integers takes care of initializing component Data2 with values 20, 30.

In Ada 2005 we can use the extended return statement to build the Ada equivalent to
C++ non-default constructors. For example:

function Constructor (V : Integer) return Rec2 is
begin
return Obj : Rec2 := (Rec => (Datal => Constructor (V, 20),
others => <>),
others => <>) do
-- Further actions required for construction of
-- objects of type Rec2

endll.:écord;
end Constructor;
In this example the extended return statement construct is used to build in place the
returned object whose components are initialized by means of a limited aggregate. Any
further action associated with the constructor can be placed inside the construct.

2.11.5 Interfacing with C++ at the Class Level

In this section we demonstrate the GNAT features for interfacing with C++ by means of
an example making use of Ada 2005 abstract interface types. This example consists of a
classification of animals; classes have been used to model our main classification of animals,
and interfaces provide support for the management of secondary classifications. We first
demonstrate a case in which the types and constructors are defined on the C++ side and
imported from the Ada side, and latter the reverse case.

The root of our derivation will be the Animal class, with a single private attribute (the
Age of the animal) and two public primitives to set and get the value of this attribute.

class Animal {
public:
virtual void Set_Age (int New_Age);
virtual int Age ();
private:
int Age_Count;
};
Abstract interface types are defined in C++ by means of classes with pure virtual func-
tions and no data members. In our example we will use two interfaces that provide support
for the common management of Carnivore and Domestic animals:

class Carnivore {
public:

virtual int Number_0f_Teeth () = 0;
};

class Domestic {
public:
virtual void Set_Owner (char* Name) = 0;

Chapter 2: The GNAT Compilation Model 35

}s

Using these declarations, we can now say that a Dog is an animal that is both Carnivore
and Domestic, that is:

class Dog : Animal, Carnivore, Domestic {
public:
virtual int Number_0f_Teeth ();
virtual void Set_Owner (char* Name);

Dog(); // Constructor
private:

int Tooth_Count;

char *0Owner;

};

In the following examples we will assume that the previous declarations are located in
a file named animals.h. The following package demonstrates how to import these C++
declarations from the Ada side:

with Interfaces.C.Strings; use Interfaces.C.Strings;
package Animals is
type Carnivore is interface;
pragma Convention (C_Plus_Plus, Carnivore);
function Number_0f_Teeth (X : Carnivore)
return Natural is abstract;

type Domestic is interface;
pragma Convention (C_Plus_Plus, Set_QOwner);
procedure Set_Owner

X : in out Domestic;

Name : Chars_Ptr) is abstract;

type Animal is tagged record
Age : Natural := 0;
end record;
pragma Import (C_Plus_Plus, Animal);

procedure Set_Age (X : in out Animal; Age : Integer);
pragma Import (C_Plus_Plus, Set_Age);

function Age (X : Animal) return Integer;
pragma Import (C_Plus_Plus, Age);

type Dog is new Animal and Carnivore and Domestic with record
Tooth_Count : Natural;
Owner : String (1 .. 30);

end record;

pragma Import (C_Plus_Plus, Dog);

function Number_0f_Teeth (A : Dog) return Integer;
pragma Import (C_Plus_Plus, Number_0f_Teeth);

procedure Set_Owner (A : in out Dog; Name : Chars_Ptr);
pragma Import (C_Plus_Plus, Set_Owner);

function New_Dog return Dog;

pragma CPP_Constructor (New_Dog);

pragma Import (CPP, New_Dog, "_ZN3DogC2Ev");
end Animals;

36 GNAT User’s Guide

Thanks to the compatibility between GNAT run-time structures and the C++ ABI,
interfacing with these C++ classes is easy. The only requirement is that all the primitives
and components must be declared exactly in the same order in the two languages.

Regarding the abstract interfaces, we must indicate to the GNAT compiler by means of
a pragma Convention (C_Plus_Plus), the convention used to pass the arguments to the
called primitives will be the same as for C++. For the imported classes we use pragma
Import with convention C_Plus_Plus to indicate that they have been defined on the C++
side; this is required because the dispatch table associated with these tagged types will be
built in the C++ side and therefore will not contain the predefined Ada primitives which
Ada would otherwise expect.

As the reader can see there is no need to indicate the C++ mangled names associated
with each subprogram because it is assumed that all the calls to these primitives will be
dispatching calls. The only exception is the constructor, which must be registered with the
compiler by means of pragma CPP_Constructor and needs to provide its associated C++
mangled name because the Ada compiler generates direct calls to it.

With the above packages we can now declare objects of type Dog on the Ada side and
dispatch calls to the corresponding subprograms on the C++ side. We can also extend the
tagged type Dog with further fields and primitives, and override some of its C++ primitives
on the Ada side. For example, here we have a type derivation defined on the Ada side that
inherits all the dispatching primitives of the ancestor from the C++ side.

with Animals; use Animals;
package Vaccinated_Animals is

type Vaccinated_Dog is new Dog with null record;

function Vaccination_Expired (A : Vaccinated_Dog) return Boolean;
end Vaccinated_Animals;

It is important to note that, because of the ABI compatibility, the programmer does
not need to add any further information to indicate either the object layout or the dispatch
table entry associated with each dispatching operation.

Now let us define all the types and constructors on the Ada side and export them to
C++, using the same hierarchy of our previous example:

with Interfaces.C.Strings;
use Interfaces.C.Strings;
package Animals is
type Carnivore is interface;
pragma Convention (C_Plus_Plus, Carnivore);
function Number_0f_Teeth (X : Carnivore)
return Natural is abstract;

type Domestic is interface;
pragma Convention (C_Plus_Plus, Set_Owner);
procedure Set_Owner

X : in out Domestic;

Name : Chars_Ptr) is abstract;

type Animal is tagged record
Age : Natural := 0;
end record;
pragma Convention (C_Plus_Plus, Animal);

procedure Set_Age (X : in out Animal; Age : Integer);

Chapter 2: The GNAT Compilation Model 37

pragma Export (C_Plus_Plus, Set_Age);

function Age (X : Animal) return Integer;
pragma Export (C_Plus_Plus, Age);

type Dog is new Animal and Carnivore and Domestic with record
Tooth_Count : Natural;
Owner : String (1 .. 30);

end record;

pragma Convention (C_Plus_Plus, Dog);

function Number_0f_Teeth (A : Dog) return Integer;
pragma Export (C_Plus_Plus, Number_0f_Teeth);

procedure Set_Owner (A : in out Dog; Name : Chars_Ptr);
pragma Export (C_Plus_Plus, Set_Owner);

function New_Dog return Dog’Class;
pragma Export (C_Plus_Plus, New_Dog);
end Animals;

Compared with our previous example the only difference is the use of pragma Export to
indicate to the GNAT compiler that the primitives will be available to C++. Thanks to the
ABI compatibility, on the C++ side there is nothing else to be done; as explained above,
the only requirement is that all the primitives and components are declared in exactly the
same order.

For completeness, let us see a brief C++ main program that uses the declarations available
in animals.h (presented in our first example) to import and use the declarations from the
Ada side, properly initializing and finalizing the Ada run-time system along the way:

#include "animals.h"
#include <iostream>
using namespace std;

void Check_Carnivore (Carnivore *obj) {...
void Check_Domestic (Domestic *obj) {.
void Check_Animal (Animal *obj) {...
void Check_Dog (Dog *obj) {

SRS

extern "C" {
void adainit (void);
void adafinal (void);
Dog* new_dog Q) ;

}

void test ()

{
Dog *obj = new_dog(); // Ada constructor
Check_Carnivore (obj); // Check secondary DT
Check_Domestic (obj); // Check secondary DT
Check_Animal (obj); // Check primary DT
Check_Dog (obj); // Check primary DT

}

int main ()

{
adainit (); test(); adafinal ();
return O;

38 GNAT User’s Guide

}

2.12 Comparison between GNAT and C/C++ Compilation
Models

The GNAT model of compilation is close to the C and C++ models. You can think of Ada
specs as corresponding to header files in C. As in C, you don’t need to compile specs; they
are compiled when they are used. The Ada with is similar in effect to the #include of a C
header.

One notable difference is that, in Ada, you may compile specs separately to check them
for semantic and syntactic accuracy. This is not always possible with C headers because
they are fragments of programs that have less specific syntactic or semantic rules.

The other major difference is the requirement for running the binder, which performs two
important functions. First, it checks for consistency. In C or C++, the only defense against
assembling inconsistent programs lies outside the compiler, in a makefile, for example. The
binder satisfies the Ada requirement that it be impossible to construct an inconsistent
program when the compiler is used in normal mode.

The other important function of the binder is to deal with elaboration issues. There
are also elaboration issues in C++ that are handled automatically. This automatic handling
has the advantage of being simpler to use, but the C++ programmer has no control over
elaboration. Where gnatbind might complain there was no valid order of elaboration, a
C++ compiler would simply construct a program that malfunctioned at run time.

2.13 Comparison between GNAT and Conventional Ada
Library Models

This section is intended for Ada programmers who have used an Ada compiler implementing
the traditional Ada library model, as described in the Ada Reference Manual.

In GNAT, there is no “library” in the normal sense. Instead, the set of source files
themselves acts as the library. Compiling Ada programs does not generate any centralized
information, but rather an object file and a ALI file, which are of interest only to the binder
and linker. In a traditional system, the compiler reads information not only from the source
file being compiled, but also from the centralized library. This means that the effect of a
compilation depends on what has been previously compiled. In particular:

e When a unit is with’ed, the unit seen by the compiler corresponds to the version of
the unit most recently compiled into the library.

e Inlining is effective only if the necessary body has already been compiled into the
library.

e Compiling a unit may obsolete other units in the library.

In GNAT, compiling one unit never affects the compilation of any other units because the
compiler reads only source files. Only changes to source files can affect the results of a
compilation. In particular:

e When a unit is with’ed, the unit seen by the compiler corresponds to the source version
of the unit that is currently accessible to the compiler.

Chapter 2: The GNAT Compilation Model 39

e Inlining requires the appropriate source files for the package or subprogram bodies to
be available to the compiler. Inlining is always effective, independent of the order in
which units are complied.

e Compiling a unit never affects any other compilations. The editing of sources may
cause previous compilations to be out of date if they depended on the source file being
modified.

The most important result of these differences is that order of compilation is never significant
in GNAT. There is no situation in which one is required to do one compilation before
another. What shows up as order of compilation requirements in the traditional Ada library
becomes, in GNAT, simple source dependencies; in other words, there is only a set of rules
saying what source files must be present when a file is compiled.

Chapter 3: Compiling with gcc 41

3 Compiling with gcc

This chapter discusses how to compile Ada programs using the gcc command. It also
describes the set of switches that can be used to control the behavior of the compiler.

3.1 Compiling Programs

The first step in creating an executable program is to compile the units of the program
using the gcc command. You must compile the following files:

e the body file (‘.adb’) for a library level subprogram or generic subprogram
e the spec file (‘.ads’) for a library level package or generic package that has no body
e the body file (‘.adb’) for a library level package or generic package that has a body

You need not compile the following files
e the spec of a library unit which has a body

e subunits

because they are compiled as part of compiling related units. GNAT package specs when
the corresponding body is compiled, and subunits when the parent is compiled.

If you attempt to compile any of these files, you will get one of the following error
messages (where fIf is the name of the file you compiled):

cannot generate code for file fff (package spec)
to check package spec, use -gnatc

cannot generate code for file fff (missing subunits)
to check parent unit, use -gnatc

cannot generate code for file fff (subprogram spec)
to check subprogram spec, use -gnatc

cannot generate code for file fff (subunit)

to check subunit, use -gnatc
As indicated by the above error messages, if you want to submit one of these files to the
compiler to check for correct semantics without generating code, then use the ‘-gnatc’
switch.

The basic command for compiling a file containing an Ada unit is
$ gcc -c [switches| ‘file name’
where file name is the name of the Ada file (usually having an extension ‘.ads’ for a spec
or ‘.adb’ for a body). You specify the ‘-c’ switch to tell gcc to compile, but not link, the
file. The result of a successful compilation is an object file, which has the same name as the
source file but an extension of ‘.o’ and an Ada Library Information (ALI) file, which also
has the same name as the source file, but with ‘.ali’ as the extension. GNAT creates these
two output files in the current directory, but you may specify a source file in any directory
using an absolute or relative path specification containing the directory information.

gcc is actually a driver program that looks at the extensions of the file arguments and
loads the appropriate compiler. For example, the GNU C compiler is ‘ccl’, and the Ada
compiler is ‘gnat1’. These programs are in directories known to the driver program (in
some configurations via environment variables you set), but need not be in your path. The

42 GNAT User’s Guide

gcc driver also calls the assembler and any other utilities needed to complete the generation
of the required object files.

It is possible to supply several file names on the same gcc command. This causes gcc
to call the appropriate compiler for each file. For example, the following command lists two
separate files to be compiled:

$ gcc -c x.adb y.adb
calls gnat1 (the Ada compiler) twice to compile ‘x.adb’ and ‘y.adb’. The compiler generates
two object files ‘x.0” and ‘y.o’” and the two ALI files ‘x.ali’ and ‘y.ali’. Any switches
apply to all the files listed,

3.2 Switches for gcc

The gcc command accepts switches that control the compilation process. These switches
are fully described in this section. First we briefly list all the switches, in alphabetical order,
then we describe the switches in more detail in functionally grouped sections.

More switches exist for GCC than those documented here, especially for specific tar-
gets. However, their use is not recommended as they may change code generation in ways
that are incompatible with the Ada run-time library, or can cause inconsistencies between
compilation units.

‘~b target’
Compile your program to run on target, which is the name of a system config-
uration. You must have a GNAT cross-compiler built if target is not the same
as your host system.

‘-Bdir’ Load compiler executables (for example, gnatl, the Ada compiler) from dir
instead of the default location. Only use this switch when multiple versions of
the GNAT compiler are available. See Section “Options for Directory Search”
in Using the GNU Compiler Collection (GCC), for further details. You would
normally use the ‘-b’ or ‘-V’ switch instead.

-c Compile. Always use this switch when compiling Ada programs.

Note: for some other languages when using gcc, notably in the case of C and
C++, it is possible to use use gcc without a ‘-c’ switch to compile and link
in one step. In the case of GNAT, you cannot use this approach, because the
binder must be run and gcc cannot be used to run the GNAT binder.

‘~fcallgraph-info[=su,dal’

Makes the compiler output callgraph information for the program, on a per-
file basis. The information is generated in the VCG format. It can be deco-
rated with additional, per-node and/or per-edge information, if a list of comma-
separated markers is additionally specified. When the su marker is specified,
the callgraph is decorated with stack usage information; it is equivalent to
‘~-fstack-usage’. When the da marker is specified, the callgraph is decorated
with information about dynamically allocated objects.

‘~fdump-scos’
Generates SCO (Source Coverage Obligation) information in the ALI file. This
information is used by advanced coverage tools. See unit ‘SCOs’ in the compiler
sources for details in files ‘scos.ads’ and ‘scos.adb’.

Chapter 3: Compiling with gcc 43

‘~fdump-xref’

‘~flto[=n|’

Generates cross reference information in GLI files for C and C++ sources. The
GLI files have the same syntax as the ALI files for Ada, and can be used for
source navigation in IDEs and on the command line using e.g. gnatxref and
the ‘—--ext=gli’ switch.

Enables Link Time Optimization. This switch must be used in conjunction
with the traditional ‘-0x’ switches and instructs the compiler to defer most
optimizations until the link stage. The advantage of this approach is that the
compiler can do a whole-program analysis and choose the best interprocedural
optimization strategy based on a complete view of the program, instead of a
fragmentary view with the usual approach. This can also speed up the compi-
lation of huge programs and reduce the size of the final executable, compared
with a per-unit compilation with full inlining across modules enabled with the
‘~gnatn2’ switch. The drawback of this approach is that it may require much
more memory. The switch, as well as the accompanying ‘-0x’ switches, must
be specified both for the compilation and the link phases. If the n parameter is
specified, the optimization and final code generation at link time are executed
using n parallel jobs by means of an installed make program.

‘~fno-inline’

Suppresses all inlining, even if other optimization or inlining switches are set.
This includes suppression of inlining that results from the use of the pragma
Inline_Always. Any occurrences of pragma Inline or Inline_Always are
ignored, and ‘-gnatn’ and ‘-gnatN’ have no effects if this switch is present.
Note that inlining can also be suppressed on a finer-grained basis with pragma
No_Inline.

‘~fno-inline-functions’

Suppresses automatic inlining of subprograms, which is enabled if ‘03’ is used.

‘~fno-inline-small-functions’

Suppresses automatic inlining of small subprograms, which is enabled if ‘-02’
is used.

‘~fno-inline-functions-called-once’

Suppresses inlining of subprograms local to the unit and called once from within
it, which is enabled if ‘-01’ is used.

‘~fno-ivopts’

Suppresses high-level loop induction variable optimizations, which are enabled
if ‘-01’ is used. These optimizations are generally profitable but, for some
specific cases of loops with numerous uses of the iteration variable that follow
a common pattern, they may end up destroying the regularity that could be
exploited at a lower level and thus producing inferior code.

‘~fno-strict-aliasing’

Causes the compiler to avoid assumptions regarding non-aliasing of objects of
different types. See Section 7.1.8 [Optimization and Strict Aliasing], page 128
for details.

44

GNAT User’s Guide

‘~fstack-check’

Activates stack checking. See Section 21.1 [Stack Overflow Checking], page 263
for details.

‘~-fstack-usage’

‘-gnat83’
‘-gnat95’
‘-gnat05b’

‘-gnat2005’

‘-gnat12’

‘-gnat2012’

‘-gnata’

‘-gnatA’
‘-gnatb’
‘-gnatB’

‘~gnatc’

Makes the compiler output stack usage information for the program, on a per-
subprogram basis. See Section 21.2 [Static Stack Usage Analysis|, page 263 for
details.

Generate debugging information. This information is stored in the object file
and copied from there to the final executable file by the linker, where it can be
read by the debugger. You must use the ‘-g’ switch if you plan on using the
debugger.

Enforce Ada 83 restrictions.
Enforce Ada 95 restrictions.

Allow full Ada 2005 features.

Allow full Ada 2005 features (same as ‘-gnat05’)

Allow full Ada 2012 features (same as ‘-gnat12’)

Assertions enabled. Pragma Assert and pragma Debug to be activated. Note
that these pragmas can also be controlled using the configuration pragmas
Assertion_Policy and Debug_Policy. It also activates pragmas Check,
Precondition, and Postcondition. Note that these pragmas can also be
controlled using the configuration pragma Check_Policy. In Ada 2012, it
also activates all assertions defined in the RM as aspects: preconditions,
postconditions, type invariants and (sub)type predicates. In all Ada modes,
corresponding pragmas for type invariants and (sub)type predicates are also
activated.

Avoid processing ‘gnat.adc’. If a ‘gnat.adc’ file is present, it will be ignored.
Generate brief messages to ‘stderr’ even if verbose mode set.

Assume no invalid (bad) values except for "Valid attribute use (see Section 3.2.4
[Validity Checking], page 72).

Check syntax and semantics only (no code generation attempted). When the
compiler is invoked by gnatmake, if the switch ‘-~gnatc’ is only given to the
compiler (after ‘-cargs’ or in package Compiler of the project file, gnatmake
will fail because it will not find the object file after compilation. If gnatmake is
called with ‘-gnatc’ as a builder switch (before ‘-cargs’ or in package Builder
of the project file) then gnatmake will not fail because it will not look for
the object files after compilation, and it will not try to build and link. This
switch may not be given if a previous -gnatR switch has been given, since -
gnatR requires that the code generator be called to complete determination of
representation information.

Chapter 3:

‘~gnatC’

‘-gnatd’

‘-gnatD’

‘-gnatel’

Compiling with gcc 45

Generate CodePeer intermediate format (no code generation attempted). This
switch will generate an intermediate representation suitable for use by CodePeer
(‘.scil’ files). This switch is not compatible with code generation (it will,
among other things, disable some switches such as -gnatn, and enable others
such as -gnata).

Specify debug options for the compiler. The string of characters after the
‘~gnatd’ specify the specific debug options. The possible characters are 0-9,
a-z, A-7, optionally preceded by a dot. See compiler source file ‘debug.adb’ for
details of the implemented debug options. Certain debug options are relevant
to applications programmers, and these are documented at appropriate points
in this users guide.

Create expanded source files for source level debugging. This switch also sup-
press generation of cross-reference information (see ‘-gnatx’). Note that this
switch is not allowed if a previous -gnatR switch has been given, since these
two switches are not compatible.

Check that there is no aliasing between two parameters of the same subprogram.

‘-gnatec=path’

‘-gnateC’

‘-gnated’

Specify a configuration pragma file (the equal sign is optional) (see Section 9.2
[The Configuration Pragmas Files|, page 142).

Generate CodePeer messages in a compiler-like format. This switch is only
effective if ‘~gnatcC’ is also specified and requires an installation of CodePeer.

Disable atomic synchronization

‘~gnateDsymbol[=value|’

‘-gnatek’

‘-gnatef’
‘-gnateF’

‘-gnateG’

Defines a symbol, associated with value, for preprocessing. (see Section 3.2.17
[Integrated Preprocessing], page 92).

Generate extra information in exception messages. In particular, display extra
column information and the value and range associated with index and range
check failures, and extra column information for access checks. In cases where
the compiler is able to determine at compile time that a check will fail, it gives
a warning, and the extra information is not produced at run time.

Display full source path name in brief error messages.

Check for overflow on all floating-point operations, including those for uncon-
strained predefined types. See description of pragma Check_Float_0Overflow
in GNAT RM.

Save result of preprocessing in a text file.

‘-gnateinnn’

Set maximum number of instantiations during compilation of a single unit to
nnn. This may be useful in increasing the default maximum of 8000 for the
rare case when a single unit legitimately exceeds this limit.

‘~gnateIlnnn’

Indicates that the source is a multi-unit source and that the index of the unit
to compile is nnn. nnn needs to be a positive number and need to be a valid
index in the multi-unit source.

46

‘-gnatel’

‘-gnatel’

GNAT User’s Guide

This switch can be used with the static elaboration model to issue info mes-
sages showing where implicit pragma Elaborate and pragma Elaborate_All
are generated. This is useful in diagnosing elaboration circularities caused by
these implicit pragmas when using the static elaboration model. See See the
section in this guide on elaboration checking for further details. These messages
are not generated by default, and are intended only for temporary use when
debugging circularity problems.

This switch turns off the info messages about implicit elaboration pragmas.

‘-gnatem=path’

Specify a mapping file (the equal sign is optional) (see Section 3.2.16 [Units to
Sources Mapping Files|, page 91).

‘-gnatep=file’

‘-gnateP’

‘-gnateS’

Specify a preprocessing data file (the equal sign is optional) (see Section 3.2.17
[Integrated Preprocessing], page 92).

Turn categorization dependency errors into warnings. Ada requires that units
that WITH one another have compatible categories, for example a Pure unit
cannot WITH a Preelaborate unit. If this switch is used, these errors become
warnings (which can be ignored, or suppressed in the usual manner). This can
be useful in some specialized circumstances such as the temporary use of special
test software.

Synonym of ‘~fdump-scos’, kept for backwards compatibility.

‘-gnatet=path’

Generate target dependent information. The format of the output file is de-
scribed in the section about switch ‘~gnateT’.

‘-gnateT=path’

Read target dependent information, such as endianness or sizes and alignments
of base type. If this switch is passed, the default target dependent information
of the compiler is replaced by the one read from the input file. This is used by
tools other than the compiler, e.g. to do semantic analysis of programs that
will run on some other target than the machine on which the tool is run.

The following target dependent values should be defined, where Nat denotes a
natural integer value, Pos denotes a positive integer value, and fields marked
with a question mark are boolean fields, where a value of 0 is False, and a value
of 1 is True:

Bits_BE : Nat; -- Bits stored big-endian?
Bits_Per_Unit : Pos; -- Bits in a storage unit
Bits_Per_Word : Pos; -- Bits in a word

Bytes_BE : Nat; -- Bytes stored big-endian?
Char_Size : Pos; —-- Standard.Character’Size
Double_Float_Alignment : Nat; -- Alignment of double float
Double_Scalar_Alignment : Nat; -- Alignment of double length scalar
Double_Size : Pos; -- Standard.Long_Float’Size
Float_Size : Pos; -- Standard.Float’Size
Float_Words_BE : Nat; -- Float words stored big-endian?
Int_Size : Pos; —-- Standard.Integer’Size

Long_Double_Size : Pos; -- Standard.Long_Long_Float’Size

Chapter 3: Compiling with gcc 47

Long_Long_Size : Pos; -- Standard.Long_Long_Integer’Size
Long_Size : Pos; -- Standard.Long_Integer’Size
Maximum_Alignment : Pos; -- Maximum permitted alignment
Max_Unaligned_Field : Pos; -- Maximum size for unaligned bit field
Pointer_Size : Pos; —-- System.Address’Size

Short_Enums : Nat; -- Short foreign convention enums?
Short_Size : Pos; -- Standard.Short_Integer’Size
Strict_Alignment : Nat; -- Strict alignment?
System_Allocator_Alignment : Nat; -- Alignment for malloc calls
Wchar_T_Size : Pos; -- Interfaces.C.wchar_t’Size
Words_BE : Nat; -- Words stored big-endian?

The format of the input file is as follows. First come the values of the variables
defined above, with one line per value:

name value

where name is the name of the parameter, spelled out in full, and cased as in
the above list, and value is an unsigned decimal integer. Two or more blanks
separates the name from the value.

All the variables must be present, in alphabetical order (i.e. the same order as
the list above).

Then there is a blank line to separate the two parts of the file. Then come
the lines showing the floating-point types to be registered, with one line per
registered mode:

name digs float_rep size alignment

where name is the string name of the type (which can have single spaces embed-
ded in the name (e.g. long double), digs is the number of digits for the floating-
point type, float_rep is the float representation (I/V/A for IEEE-754-Binary,
Vax_Native, AAMP), size is the size in bits, alignment is the alignment in
bits. The name is followed by at least two blanks, fields are separated by at
least one blank, and a LF character immediately follows the alignment field.

Here is an example of a target parameterization file:

Bits_BE 0
Bits_Per_Unit 8
Bits_Per_Word 64
Bytes_BE 0
Char_Size 8
Double_Float_Alignment 0
Double_Scalar_Alignment 0
Double_Size 64
Float_Size 32
Float_Words_BE 0
Int_Size 64
Long_Double_Size 128
Long_Long_Size 64
Long_Size 64
Maximum_Alignment 16
Max_Unaligned_Field 64
Pointer_Size 64
Short_Size 16
Strict_Alignment 0
System_Allocator_Alignment 16
Wchar_T_Size 32

Words_BE 0

48

‘-gnateu’

‘~gnateV’

‘-gnateY’

‘~gnatE’

‘-gnatf’

‘-gnatF’

‘-gnatg’

‘-gnatG=nn’

‘~gnath’

‘-gnatic’

‘~gnatI’

‘-gnatjnn’

‘-gnatk=n’

‘~gnatl’

GNAT User’s Guide

float 15 I 64 64
double 15 I 64 64
long double 18 I 80 128
TF 33 I 128 128

Ignore unrecognized validity, warning, and style switches that appear after this
switch is given. This may be useful when compiling sources developed on a later
version of the compiler with an earlier version. Of course the earlier version
must support this switch.

Check validity of subprogram parameters.

Ignore all STYLE_CHECKS pragmas. Full legality checks are still carried out,
but the pragmas have no effect on what style checks are active. This allows all
style checking options to be controlled from the command line.

Full dynamic elaboration checks.

Full errors. Multiple errors per line, all undefined references, do not attempt to
suppress cascaded errors.

Externals names are folded to all uppercase.

Internal GNAT implementation mode. This should not be used for applica-
tions programs, it is intended only for use by the compiler and its run-time
library. For documentation, see the GNAT sources. Note that ‘-gnatg’ implies
‘-gnatwae’ and ‘-gnatyg’ so that all standard warnings and all standard style
options are turned on. All warnings and style messages are treated as errors.

List generated expanded code in source form.
Output usage information. The output is written to ‘stdout’.

Identifier character set (c=1/2/3/4/8/9/p/f/n/w). For details of the possible
selections for ¢, see Section 3.2.10 [Character Set Control], page 84.

Ignore representation clauses. When this switch is used, representation clauses
are treated as comments. This is useful when initially porting code where
you want to ignore rep clause problems, and also for compiling foreign code
(particularly for use with ASIS). The representation clauses that are ignored
are: enumeration_representation_clause, record_representation_clause, and
attribute_definition_clause for the following attributes: Address, Alignment,
Bit_Order, Component_Size, Machine_Radix, Object_Size, Size, Small,
Stream_Size, and Value_Size. Note that this option should be used only for
compiling — the code is likely to malfunction at run time.

Reformat error messages to fit on nn character lines

Limit file names to n (1-999) characters (k = krunch).

Output full source listing with embedded error messages.

Chapter 3: Compiling with gcc 49

‘~gnatL’

‘-gnatm=n’

Used in conjunction with -gnatG or -gnatD to intersperse original source lines
(as comment lines with line numbers) in the expanded source output.

Limit number of detected error or warning messages to n where n is in the range
1..999999. The default setting if no switch is given is 9999. If the number of
warnings reaches this limit, then a message is output and further warnings are
suppressed, but the compilation is continued. If the number of error messages
reaches this limit, then a message is output and the compilation is abandoned.
The equal sign here is optional. A value of zero means that no limit applies.

‘-gnatn[12]’

‘~gnatN’

‘-gnato??’

Activate inlining for subprograms for which pragma Inline is specified. This
inlining is performed by the GCC back-end. An optional digit sets the inlin-
ing level: 1 for moderate inlining across modules or 2 for full inlining across
modules. If no inlining level is specified, the compiler will pick it based on the
optimization level.

Activate front end inlining for subprograms for which pragma Inline is spec-
ified. This inlining is performed by the front end and will be visible in the
‘-gnatG’ output.

When using a gee-based back end (in practice this means using any version of
GNAT other than the JGNAT, .NET or GNAAMP versions), then the use of
‘~gnatN’ is deprecated, and the use of ‘~gnatn’ is preferred. Historically front
end inlining was more extensive than the gcc back end inlining, but that is no
longer the case.

Set default mode for handling generation of code to avoid intermediate arith-
metic overflow. Here ‘77’ is two digits, a single digit, or nothing. Each digit is
one of the digits ‘1’ through ‘3’

e 1: all intermediate overflows checked against base type (STRICT)

e 2: minimize intermediate overflows (MINIMIZED)

e 3: eliminate intermediate overflows (ELIMINATED)
If only one digit appears then it applies to all cases; if two digits are given, then
the first applies outside assertions, and the second within assertions.

If no digits follow the ‘~gnato’, then it is equivalent to ‘~gnatol11’, causing all
intermediate overflows to be handled in strict mode.

This switch also causes arithmetic overflow checking to be performed (as though
pragma Unsuppress (Overflow_Mode) has been specified.

The default if no option ‘~gnato’ is given is that overflow handling is in STRICT
mode (computations done using the base type), and that overflow checking is
suppressed.

Note that division by zero is a separate check that is not controlled by this
switch (division by zero checking is on by default).

See also Section D.3 [Specifying the Desired Mode|, page 347.

50

‘~gnatp’

Y

‘-gnat-p

‘-gnatP’

‘-gnatq’
‘~gnatQ’

‘-gnatr’

GNAT User’s Guide

Suppress all checks. See Section 3.2.6 [Run-Time Checks], page 80 for details.
This switch has no effect if cancelled by a subsequent ‘-gnat-p’ switch.

Cancel effect of previous ‘-gnatp’ switch.

Enable polling. This is required on some systems (notably Windows NT) to
obtain asynchronous abort and asynchronous transfer of control capability. See
Section “Pragma Polling” in GNAT Reference Manual, for full details.

Don’t quit. Try semantics, even if parse errors.
Don’t quit. Generate ‘ALI’ and tree files even if illegalities.

Treat pragma Restrictions as Restriction-Warnings.

‘-gnatR[0/1/2/3][s]]’

Output representation information for declared types and objects. Note that
this switch is not allowed if a previous —gnatD switch has been given, since these
two switches are not compatible. It is also not allowed if a previous -gnatc
switch has been given, since we must be generating code to be able to determine
representation information.

‘-gnatRm[s]’

‘-gnats’
‘~gnatSs’

‘-gnatt’

‘~-gnatTnnn’

‘-gnatu’
‘~gnatU’
‘-gnatv’

‘~gnatV’

‘-gnatwxxx’

‘-gnatWe’
‘-gnatx’
‘-gnatX’
‘~gnaty’

‘-gnatzm’

Output convention and parameter passing mechanisms for all subprograms.
This form is also incompatible with the use of -gnatc.

Syntax check only.
Print package Standard.

Generate tree output file.

All compiler tables start at nnn times usual starting size.

List units for this compilation.

Tag all error messages with the unique string “error:”

Verbose mode. Full error output with source lines to ‘stdout’.

Control level of validity checking (see Section 3.2.4 [Validity Checking], page 72).

Warning mode where xxx is a string of option letters that denotes the exact
warnings that are enabled or disabled (see Section 3.2.2 [Warning Message
Control], page 56).

Wide character encoding method (e=n/h/u/s/e/8).

Suppress generation of cross-reference information.

Enable GNAT implementation extensions and latest Ada version.
Enable built-in style checks (see Section 3.2.5 [Style Checking], page 74).

Distribution stub generation and compilation (m=r/c for receiver/caller stubs).

Chapter 3: Compiling with gcc 51

‘-Idir’

Direct GNAT to search the dir directory for source files needed by the current
compilation (see Section 3.3 [Search Paths and the Run-Time Library (RTL)],
page 94).

Except for the source file named in the command line, do not look for source
files in the directory containing the source file named in the command line (see
Section 3.3 [Search Paths and the Run-Time Library (RTL)], page 94).

‘-mbig-switch’

‘~o0 file’

‘-nostdinc’

‘-nostdlib’

‘-0[11]7

This standard gcc switch causes the compiler to use larger offsets in its jump
table representation for case statements. This may result in less efficient code,
but is sometimes necessary (for example on HP-UX targets) in order to compile
large and/or nested case statements.

This switch is used in gcc to redirect the generated object file and its associated
ALT file. Beware of this switch with GNAT, because it may cause the object
file and ALI file to have different names which in turn may confuse the binder
and the linker.

Inhibit the search of the default location for the GNAT Run Time Library
(RTL) source files.

Inhibit the search of the default location for the GNAT Run Time Library
(RTL) ALI files.

n controls the optimization level.

n=20 No optimization, the default setting if no ‘-0’ appears

n=1 Normal optimization, the default if you specify ‘-0’ without an
operand. A good compromise between code quality and compila-
tion time.

n =2 Extensive optimization, may improve execution time, possibly at

the cost of substantially increased compilation time.

n=3 Same as ‘-02’, and also includes inline expansion for small subpro-
grams in the same unit.

n=s Optimize space usage

See also Section 7.1.3 [Optimization Levels], page 122.

‘-pass-exit-codes’

Catch exit codes from the compiler and use the most meaningful as exit status.

‘--RTS=rts-path’

Specifies the default location of the runtime library. Same meaning as the
equivalent gnatmake flag (see Section 6.2 [Switches for gnatmake], page 112).

Used in place of ‘-c’ to cause the assembler source file to be generated, using
‘.8’ as the extension, instead of the object file. This may be useful if you need
to examine the generated assembly code.

52

GNAT User’s Guide

‘~fverbose—-asm’

Used in conjunction with ‘=8’ to cause the generated assembly code file to be
annotated with variable names, making it significantly easier to follow.

-V Show commands generated by the gcc driver. Normally used only for debug-
ging purposes or if you need to be sure what version of the compiler you are
executing.

-V ver’ Execute ver version of the compiler. This is the gcc version, not the GNAT
version.

‘~w Turn off warnings generated by the back end of the compiler. Use of this switch

also causes the default for front end warnings to be set to suppress (as though
‘~gnatws’ had appeared at the start of the options).

You may combine a sequence of GNAT switches into a single switch. For example, the

combined switch

-gnatofi3

is equivalent to specifying the following sequence of switches:

-gnato -gnatf -gnati3

The following restrictions apply to the combination of switches in this manner:

The switch ‘-gnatc’ if combined with other switches must come first in the string.
The switch ‘-gnats’ if combined with other switches must come first in the string.
The switches

‘-gnatzc’ and ‘-gnatzr’ may not be combined with any other switches, and only one
of them may appear in the command line.

The switch ‘-~gnat-p’ may not be combined with any other switch.

[

Once a “y” appears in the string (that is a use of the ‘~gnaty’ switch), then all further
characters in the switch are interpreted as style modifiers (see description of ‘~gnaty’).

Once a “d” appears in the string (that is a use of the ‘-gnatd’ switch), then all further
characters in the switch are interpreted as debug flags (see description of ‘-gnatd’).

Once a “w” appears in the string (that is a use of the ‘-gnatw’ switch), then all further
characters in the switch are interpreted as warning mode modifiers (see description of
‘~gnatw’).

Once a “V” appears in the string (that is a use of the ‘~gnatV’ switch), then all further
characters in the switch are interpreted as validity checking options (see Section 3.2.4
[Validity Checking], page 72).

2 Y

Option “em”, “ec”, “ep”, “I=" and “R” must be the last options in a combined list of

options.

3.2.1 Output and Error Message Control

The standard default format for error messages is called “brief format”. Brief format mes-
sages are written to ‘stderr’ (the standard error file) and have the following form:

e.adb:3:04: Incorrect spelling of keyword "function"
e.adb:4:20: ";" should be "is"

Chapter 3: Compiling with gcc 53

The first integer after the file name is the line number in the file, and the second integer
is the column number within the line. GPS can parse the error messages and point to the
referenced character. The following switches provide control over the error message format:

‘-gnatv’ The v stands for verbose. The effect of this setting is to write long-format error
messages to ‘stdout’ (the standard output file. The same program compiled
with the ‘-gnatv’ switch would generate:

3. funcion X (Q : Integer)
|

>>> Incorrect spelling of keyword "function"
4. return Integer;

>>> ";" should be "is"

The vertical bar indicates the location of the error, and the ‘>>>’ prefix can be
used to search for error messages. When this switch is used the only source
lines output are those with errors.

‘~gnatl’ The 1 stands for list. This switch causes a full listing of the file to be generated.
In the case where a body is compiled, the corresponding spec is also listed, along
with any subunits. Typical output from compiling a package body ‘p.adb’
might look like:

54 GNAT User’s Guide
(
Compiling: p.adb
1. package body p is
2. procedure a;
3. procedure a is separate;
4. begin
5. null
|
>>> missing ";"
6. end;
Compiling: p.ads
1. package p is
2. pragma Elaborate_Body
I
>>> missing ";"
3. end p;
Compiling: p-a.adb
1. separate p
|
>>> missing " ("
2. procedure a is
3. begin
4. null
|
>>> missing ";"
5. end;
\,
When you specify the ‘~gnatv’ or ‘-gnatl’ switches and standard output is
redirected, a brief summary is written to ‘stderr’ (standard error) giving the
number of error messages and warning messages generated.

‘~-gnatl=file’

This has the same effect as ‘~gnatl’ except that the output is written to a file
instead of to standard output. If the given name ‘fname’ does not start with
a period, then it is the full name of the file to be written. If ‘fname’ is an
extension, it is appended to the name of the file being compiled. For example,
if file ‘xyz.adb’ is compiled with ‘-gnatl=.1st’, then the output is written to
file xyz.adb.lst.

‘~gnatU’ This switch forces all error messages to be preceded by the unique string “er-
ror:”. This means that error messages take a few more characters in space, but
allows easy searching for and identification of error messages.

‘-gnatb’ The b stands for brief. This switch causes GNAT to generate the brief format

error messages to ‘stderr’ (the standard error file) as well as the verbose format
message or full listing (which as usual is written to ‘stdout’ (the standard
output file).

Chapter 3: Compiling with gcc 55

‘-gnatm=n’

‘-gnatf’

‘-gnatjnn’

‘-gnatq’

The m stands for maximum. n is a decimal integer in the range of 1 to 999999 and
limits the number of error or warning messages to be generated. For example,
using ‘-gnatm?2’ might yield

e.adb:3:04: Incorrect spelling of keyword "function"

e.adb:5:35: missing ".."

fatal error: maximum number of errors detected

compilation abandoned
The default setting if no switch is given is 9999. If the number of warnings
reaches this limit, then a message is output and further warnings are suppressed,
but the compilation is continued. If the number of error messages reaches this
limit, then a message is output and the compilation is abandoned. A value of
zero means that no limit applies.

Note that the equal sign is optional, so the switches ‘-gnatm2’ and ‘-gnatm=2’
are equivalent.

The £ stands for full. Normally, the compiler suppresses error messages that are
likely to be redundant. This switch causes all error messages to be generated.
In particular, in the case of references to undefined variables. If a given variable
is referenced several times, the normal format of messages is

e.adb:7:07: "V" is undefined (more references follow)

where the parenthetical comment warns that there are additional references to
the variable V. Compiling the same program with the ‘-gnatf’ switch yields

e.adb:7:07: "V" is undefined
e.adb:8:07: "V" is undefined
e.adb:8:12: "V" is undefined
e.adb:8:16: "V" is undefined
e.adb:9:07: "V" is undefined
e.adb:9:12: "V" is undefined

The ‘-gnatf’ switch also generates additional information for some error mes-
sages. Some examples are:

e Details on possibly non-portable unchecked conversion
e List possible interpretations for ambiguous calls

e Additional details on incorrect parameters

In normal operation mode (or if ‘-gnatjO’ is used), then error messages with
continuation lines are treated as though the continuation lines were separate
messages (and so a warning with two continuation lines counts as three warn-
ings, and is listed as three separate messages).

If the ‘-~gnatjnn’ switch is used with a positive value for nn, then messages
are output in a different manner. A message and all its continuation lines are
treated as a unit, and count as only one warning or message in the statistics
totals. Furthermore, the message is reformatted so that no line is longer than
nn characters.

The q stands for quit (really “don’t quit”). In normal operation mode, the
compiler first parses the program and determines if there are any syntax errors.

56 GNAT User’s Guide

If there are, appropriate error messages are generated and compilation is imme-
diately terminated. This switch tells GNAT to continue with semantic analysis
even if syntax errors have been found. This may enable the detection of more
errors in a single run. On the other hand, the semantic analyzer is more likely
to encounter some internal fatal error when given a syntactically invalid tree.

‘~gnatQ’ In normal operation mode, the ‘ALI’ file is not generated if any illegalities are
detected in the program. The use of ‘~gnatQ’ forces generation of the ‘ALI’ file.
This file is marked as being in error, so it cannot be used for binding purposes,
but it does contain reasonably complete cross-reference information, and thus
may be useful for use by tools (e.g., semantic browsing tools or integrated
development environments) that are driven from the ‘ALI’ file. This switch
implies ‘-gnatq’, since the semantic phase must be run to get a meaningful
ALI file.

In addition, if ‘-gnatt’ is also specified, then the tree file is generated even
if there are illegalities. It may be useful in this case to also specify ‘-gnatq’
to ensure that full semantic processing occurs. The resulting tree file can be
processed by ASIS, for the purpose of providing partial information about illegal
units, but if the error causes the tree to be badly malformed, then ASIS may
crash during the analysis.

When ‘-gnatQ’ is used and the generated ‘ALI’ file is marked as being in error,
gnatmake will attempt to recompile the source when it finds such an ‘ALI’ file,
including with switch ‘-gnatc’.

Note that ‘-gnatQ’ has no effect if ‘~gnats’ is specified, since ALI files are never
generated if ‘-gnats’ is set.

3.2.2 Warning Message Control

In addition to error messages, which correspond to illegalities as defined in the Ada Refer-
ence Manual, the compiler detects two kinds of warning situations.

First, the compiler considers some constructs suspicious and generates a warning message
to alert you to a possible error. Second, if the compiler detects a situation that is sure to
raise an exception at run time, it generates a warning message. The following shows an
example of warning messages:

e.adb:4:24: warning: creation of object may raise Storage_Error

e.adb:10:17: warning: static value out of range

e.adb:10:17: warning: "Constraint_Error" will be raised at run time
GNAT considers a large number of situations as appropriate for the generation of warning
messages. As always, warnings are not definite indications of errors. For example, if you
do an out-of-range assignment with the deliberate intention of raising a Constraint_Error
exception, then the warning that may be issued does not indicate an error. Some of the
situations for which GNAT issues warnings (at least some of the time) are given in the
following list. This list is not complete, and new warnings are often added to subsequent
versions of GNAT. The list is intended to give a general idea of the kinds of warnings that
are generated.

e Possible infinitely recursive calls

e Out-of-range values being assigned

Chapter 3: Compiling with gcc 57

e Possible order of elaboration problems
e Assertions (pragma Assert) that are sure to fail
e Unreachable code

e Address clauses with possibly unaligned values, or where an attempt is made to overlay
a smaller variable with a larger one.

e Fixed-point type declarations with a null range

e Direct_IO or Sequential IO instantiated with a type that has access values
e Variables that are never assigned a value

e Variables that are referenced before being initialized

e Task entries with no corresponding accept statement

e Duplicate accepts for the same task entry in a select

e Objects that take too much storage

e Unchecked conversion between types of differing sizes

e Missing return statement along some execution path in a function
e Incorrect (unrecognized) pragmas

e Incorrect external names

e Allocation from empty storage pool

e Potentially blocking operation in protected type

e Suspicious parenthesization of expressions

e Mismatching bounds in an aggregate

e Attempt to return local value by reference

e Premature instantiation of a generic body

e Attempt to pack aliased components

e Out of bounds array subscripts

e Wrong length on string assignment

e Violations of style rules if style checking is enabled

e Unused with clauses

e Bit_Order usage that does not have any effect

e Standard.Duration used to resolve universal fixed expression
e Dereference of possibly null value

e Declaration that is likely to cause storage error

e Internal GNAT unit with’ed by application unit

e Values known to be out of range at compile time

e Unreferenced or unmodified variables. Note that a special exemption applies to vari-
ables which contain any of the substrings DISCARD, DUMMY, IGNORE, JUNK, UNUSED, in
any casing. Such variables are considered likely to be intentionally used in a situa-
tion where otherwise a warning would be given, so warnings of this kind are always
suppressed for such variables.

e Address overlays that could clobber memory

58

GNAT User’s Guide

e Unexpected initialization when address clause present

e Bad alignment for address clause

e Useless type conversions

e Redundant assignment statements and other redundant constructs

e Useless exception handlers

e Accidental hiding of name by child unit

e Access before elaboration detected at compile time

e A range in a for loop that is known to be null or might be null

The following section lists compiler switches that are available to control the handling of
warning messages. It is also possible to exercise much finer control over what warnings are
issued and suppressed using the GNAT pragma Warnings, See Section “Pragma Warnings”
in GNAT Reference manual.

‘-gnatwa’

‘~gnatwh’

‘-gnatw.a’

‘-gnatw.A’

‘-gnatwb’

Activate most optional warnings. This switch activates most optional warning
messages. See the remaining list in this section for details on optional warning
messages that can be individually controlled. The warnings that are not turned
on by this switch are: ‘-gnatwd’ (implicit dereferencing), ‘-gnatwh’ (hiding),
‘-gnatw.d’ (tag warnings with -gnatw switch) ‘-gnatw.h’ (holes (gaps) in record
layouts) ‘-gnatw.i’ (overlapping actuals), ‘-gnatw.k’ (redefinition of names in
standard), ‘-gnatwl’ (elaboration warnings), ‘-gnatw.l’ (inherited aspects),
‘~gnatw.o’ (warn on values set by out parameters ignored), ‘-gnatwt’ (tracking
of deleted conditional code) and ‘-gnatw.u’ (unordered enumeration), All other
optional warnings are turned on.

Suppress all optional errors. This switch suppresses all optional warning mes-
sages, see remaining list in this section for details on optional warning messages
that can be individually controlled. Note that unlike switch ‘~gnatws’, the use
of switch ‘-~gnatwA’ does not suppress warnings that are normally given un-
conditionally and cannot be individually controlled (for example, the warning
about a missing exit path in a function). Also, again unlike switch ‘-gnatws’,
warnings suppressed by the use of switch ‘~gnatwA’ can be individually turned
back on. For example the use of switch ‘~gnatwA’ followed by switch ‘~gnatwd’
will suppress all optional warnings except the warnings for implicit dereferenc-
ing.

Activate warnings on failing assertions. This switch activates warnings for
assertions where the compiler can tell at compile time that the assertion will
fail. Note that this warning is given even if assertions are disabled. The default
is that such warnings are generated.

Suppress warnings on failing assertions. This switch suppresses warnings for
assertions where the compiler can tell at compile time that the assertion will
fail.

Activate warnings on bad fized values. This switch activates warnings for static
fixed-point expressions whose value is not an exact multiple of Small. Such

Chapter 3: Compiling with gcc 59

‘-gnatwB’

‘-gnatw.b’

‘-gnatw.B’

‘-gnatwc’

‘-gnatwC’

‘-gnatw.c’

values are implementation dependent, since an implementation is free to choose
either of the multiples that surround the value. GNAT always chooses the closer
one, but this is not required behavior, and it is better to specify a value that
is an exact multiple, ensuring predictable execution. The default is that such
warnings are not generated.

Suppress warnings on bad fized values. This switch suppresses warnings for
static fixed-point expressions whose value is not an exact multiple of Small.

Activate warnings on biased representation. This switch activates warnings
when a size clause, value size clause, component clause, or component size clause
forces the use of biased representation for an integer type (e.g. representing a
range of 10..11 in a single bit by using 0/1 to represent 10/11). The default is
that such warnings are generated.

Suppress warnings on biased representation. This switch suppresses warnings
for representation clauses that force the use of biased representation.

Activate warnings on conditionals. This switch activates warnings for condi-
tional expressions used in tests that are known to be True or False at compile
time. The default is that such warnings are not generated. Note that this
warning does not get issued for the use of boolean variables or constants whose
values are known at compile time, since this is a standard technique for con-
ditional compilation in Ada, and this would generate too many false positive
warnings.

This warning option also activates a special test for comparisons using the oper-
ators “>=" and“ <=". If the compiler can tell that only the equality condition
is possible, then it will warn that the “>” or “<” part of the test is useless and
that the operator could be replaced by “=". An example would be comparing
a Natural variable <= 0.

This warning option also generates warnings if one or both tests is optimized
away in a membership test for integer values if the result can be determined at
compile time. Range tests on enumeration types are not included, since it is
common for such tests to include an end point.

This warning can also be turned on using ‘-gnatwa’.

Suppress warnings on conditionals. This switch suppresses warnings for condi-
tional expressions used in tests that are known to be True or False at compile
time.

Activate warnings on missing component clauses. This switch activates warn-
ings for record components where a record representation clause is present and
has component clauses for the majority, but not all, of the components. A
warning is given for each component for which no component clause is present.

This warning can also be turned on using ‘-gnatwa’.

60

‘-gnatw.C’

‘-gnatwd’

‘-gnatwD’

‘~gnatw.d’

‘-gnatw.D’

‘-gnatwe’

‘-gnatw.e’

‘-gnatwf’

‘-gnatwF’

GNAT User’s Guide

Suppress warnings on missing component clauses. This switch suppresses warn-
ings for record components that are missing a component clause in the situation
described above.

Activate warnings on implicit dereferencing. If this switch is set, then the use of
a prefix of an access type in an indexed component, slice, or selected component
without an explicit .all will generate a warning. With this warning enabled,
access checks occur only at points where an explicit .all appears in the source
code (assuming no warnings are generated as a result of this switch). The
default is that such warnings are not generated. Note that ‘~gnatwa’ does not
affect the setting of this warning option.

Suppress warnings on implicit dereferencing. This switch suppresses warnings
for implicit dereferences in indexed components, slices, and selected compo-
nents.

Activate tagging of warning messages. If this switch is set, then warning mes-
sages are tagged, either with the string “‘~gnatw?”” showing which switch con-
trols the warning, or with “[enabled by default]” if the warning is not under
control of a specific ‘-gnatw?’ switch. This mode is off by default, and is not
affected by the use of -gnatwa.

Deactivate tagging of warning messages. If this switch is set, then warning mes-
sages return to the default mode in which warnings are not tagged as described
above for -gnatw.d.

Treat warnings and style checks as errors. This switch causes warning mes-
sages and style check messages to be treated as errors. The warning string still
appears, but the warning messages are counted as errors, and prevent the gen-
eration of an object file. Note that this is the only -gnatw switch that affects
the handling of style check messages.

Activate every optional warning This switch activates all optional warnings,
including those which are not activated by -gnatwa. The use of this switch
is not recommended for normal use. If you turn this switch on, it is almost
certain that you will get large numbers of useless warnings. The warnings that
are excluded from -gnatwa are typically highly specialized warnings that are
suitable for use only in code that has been specifically designed according to
specialized coding rules.

Activate warnings on unreferenced formals. This switch causes a warning to be
generated if a formal parameter is not referenced in the body of the subprogram.
This warning can also be turned on using ‘-gnatwa’ or ‘-gnatwu’. The default
is that these warnings are not generated.

Suppress warnings on unreferenced formals. This switch suppresses warnings
for unreferenced formal parameters. Note that the combination ‘-gnatwu’ fol-

Chapter 3:

‘-gnatwg’

‘-gnatwG’

‘-gnatwh’

‘~gnatwH’

‘-gnatw.h’

‘-gnatw.H’

‘-gnatwi’

‘-gnatwl’

‘-gnatw.i’

‘-gnatw.I’

Compiling with gcc 61

lowed by ‘-gnatwF’ has the effect of warning on unreferenced entities other than
subprogram formals.

Activate warnings on unrecognized pragmas. This switch causes a warning to
be generated if an unrecognized pragma is encountered. Apart from issuing
this warning, the pragma is ignored and has no effect. This warning can also
be turned on using ‘-gnatwa’. The default is that such warnings are issued
(satisfying the Ada Reference Manual requirement that such warnings appear).

Suppress warnings on unrecognized pragmas. This switch suppresses warnings
for unrecognized pragmas.

Activate warnings on hiding. This switch activates warnings on hiding declara-
tions. A declaration is considered hiding if it is for a non-overloadable entity,
and it declares an entity with the same name as some other entity that is di-
rectly or use-visible. The default is that such warnings are not generated. Note
that ‘~gnatwa’ does not affect the setting of this warning option.

Suppress warnings on hiding. This switch suppresses warnings on hiding dec-
larations.

Activate warnings on holes/gaps in records. This switch activates warnings on
component clauses in record representation clauses that leave holes (gaps) in
the record layout. If this warning option is active, then record representation
clauses should specify a contiguous layout, adding unused fill fields if needed.
Note that ‘~gnatwa’ does not affect the setting of this warning option.

Suppress warnings on holes/gaps in records. This switch suppresses warnings
on component clauses in record representation clauses that leave holes (haps)
in the record layout.

Activate warnings on implementation units. This switch activates warnings for
a with of an internal GNAT implementation unit, defined as any unit from the
Ada, Interfaces, GNAT, or System hierarchies that is not documented in either
the Ada Reference Manual or the GNAT Programmer’s Reference Manual. Such
units are intended only for internal implementation purposes and should not
be with’ed by user programs. The default is that such warnings are generated
This warning can also be turned on using ‘-gnatwa’.

Disable warnings on implementation units. This switch disables warnings for a
with of an internal GNAT implementation unit.

Activate warnings on overlapping actuals. This switch enables a warning on
statically detectable overlapping actuals in a subprogram call, when one of the
actuals is an in-out parameter, and the types of the actuals are not by-copy
types. The warning is off by default, and is not included under -gnatwa.

Disable warnings on overlapping actuals. This switch disables warnings on
overlapping actuals in a call..

62

‘-gnatwj’

‘-gnatw]’

‘-gnatwk’

‘~gnatwK’

‘-gnatw.k’

‘~gnatw.X’

‘-gnatwl’

GNAT User’s Guide

Activate warnings on obsolescent features (Annex J). If this warning option is
activated, then warnings are generated for calls to subprograms marked with
pragma Obsolescent and for use of features in Annex J of the Ada Reference
Manual. In the case of Annex J, not all features are flagged. In particular use of
the renamed packages (like Text_I0) and use of package ASCII are not flagged,
since these are very common and would generate many annoying positive warn-
ings. The default is that such warnings are not generated. This warning is also
turned on by the use of ‘-~gnatwa’.

In addition to the above cases, warnings are also generated for GNAT features
that have been provided in past versions but which have been superseded (typ-
ically by features in the new Ada standard). For example, pragma Ravenscar
will be flagged since its function is replaced by pragma Profile(Ravenscar),
and pragma Interface_Name will be flagged since its function is replaced by
pragma Import.

Note that this warning option functions differently from the restriction No_
Obsolescent_Features in two respects. First, the restriction applies only to
annex J features. Second, the restriction does flag uses of package ASCII.

Suppress warnings on obsolescent features (Annez J). This switch disables warn-
ings on use of obsolescent features.

Activate warnings on variables that could be constants. This switch activates
warnings for variables that are initialized but never modified, and then could
be declared constants. The default is that such warnings are not given. This
warning can also be turned on using ‘-gnatwa’.

Suppress warnings on variables that could be constants. This switch disables
warnings on variables that could be declared constants.

Activate warnings on redefinition of names in standard. This switch activates
warnings for declarations that declare a name that is defined in package Stan-
dard. Such declarations can be confusing, especially since the names in pack-
age Standard continue to be directly visible, meaning that use visibiliy on such
redeclared names does not work as expected. Names of discriminants and com-
ponents in records are not included in this check. This warning is not part of
the warnings activated by ‘-gnatwa’. It must be explicitly activated.

Suppress warnings on variables that could be constants. This switch activates
warnings for declarations that declare a name that is defined in package Stan-
dard.

Activate warnings for elaboration pragmas. This switch activates warnings on
missing for possible elaboration problems, including suspicious use of Elaborate
pragmas, when using the static elaboration model, and possible situations that
may raise Program_Error when using the dynamic elaboration model. See the
section in this guide on elaboration checking for further details. The default is
that such warnings are not generated. This warning is not automatically turned
on by the use of ‘-gnatwa’.

Chapter 3: Compiling with gcc 63

‘-gnatwl’

‘-gnatw.l’

‘-gnatw.L’

‘-gnatwm’

‘-gnatwM’

‘~-gnatw.m’

‘-gnatw.M

‘-gnatwn’

‘-gnatw.n’

‘~gnatw.N’

Suppress warnings for elaboration pragmas. This switch suppresses warnings
for possible elaboration problems.

List inherited aspects. This switch causes the compiler to list inherited in-
variants, preconditions, and postconditions from Type_Invariant’Class, Invari-
ant’Class, Pre’Class, and Post’Class aspects. Also list inherited subtype predi-
cates. These messages are not automatically turned on by the use of ‘-gnatwa’.

Suppress listing of inherited aspects. This switch suppresses listing of inherited
aspects.

Activate warnings on modified but unreferenced variables. This switch activates
warnings for variables that are assigned (using an initialization value or with
one or more assignment statements) but whose value is never read. The warning
is suppressed for volatile variables and also for variables that are renamings of
other variables or for which an address clause is given. This warning can also
be turned on using ‘-gnatwa’. The default is that these warnings are not given.

Disable warnings on modified but unreferenced variables. This switch disables
warnings for variables that are assigned or initialized, but never read.

Activate warnings on suspicious modulus values. This switch activates warnings
for modulus values that seem suspicious. The cases caught are where the size
is the same as the modulus (e.g. a modulus of 7 with a size of 7 bits), and
modulus values of 32 or 64 with no size clause. The guess in both cases is that
2*%*x was intended rather than x. In addition expressions of the form 2*x for
small x generate a warning (the almost certainly accurate guess being that 2**x
was intended). The default is that these warnings are given.

Disable warnings on suspicious modulus values. This switch disables warnings
for suspicious modulus values.

Set normal warnings mode. This switch sets normal warning mode, in which
enabled warnings are issued and treated as warnings rather than errors. This
is the default mode. the switch ‘-~gnatwn’ can be used to cancel the effect of
an explicit ‘-gnatws’ or ‘~gnatwe’. It also cancels the effect of the implicit
‘~gnatwe’ that is activated by the use of ‘-gnatg’.

Activate warnings on atomic synchronization. This switch actives warnings
when an access to an atomic variable requires the generation of atomic syn-
chronization code. These warnings are off by default and this warning is not
included in -gnatwa.

Suppress warnings on atomic synchronization. This switch suppresses warn-
ings when an access to an atomic variable requires the generation of atomic
synchronization code.

64

‘-gnatwo’

‘-gnatw0’

‘-gnatw.o’

‘~-gnatw.0’

‘-gnatwp’

‘~gnatwpP’

‘-gnatw.p’

‘-gnatw.P’

GNAT User’s Guide

Activate warnings on address clause overlays. This switch activates warnings
for possibly unintended initialization effects of defining address clauses that
cause one variable to overlap another. The default is that such warnings are
generated. This warning can also be turned on using ‘-gnatwa’.

Suppress warnings on address clause overlays. This switch suppresses warnings
on possibly unintended initialization effects of defining address clauses that
cause one variable to overlap another.

Activate warnings on modified but unreferenced out parameters. This switch
activates warnings for variables that are modified by using them as actuals for a
call to a procedure with an out mode formal, where the resulting assigned value
is never read. It is applicable in the case where there is more than one out mode
formal. If there is only one out mode formal, the warning is issued by default
(controlled by -gnatwu). The warning is suppressed for volatile variables and
also for variables that are renamings of other variables or for which an address
clause is given. The default is that these warnings are not given. Note that this
warning is not included in -gnatwa, it must be activated explicitly.

Disable warnings on modified but unreferenced out parameters. This switch
suppresses warnings for variables that are modified by using them as actuals
for a call to a procedure with an out mode formal, where the resulting assigned
value is never read.

Activate warnings on ineffective pragma Inlines. This switch activates warnings
for failure of front end inlining (activated by ‘-gnatN’) to inline a particular
call. There are many reasons for not being able to inline a call, including
most commonly that the call is too complex to inline. The default is that such
warnings are not given. This warning can also be turned on using ‘-gnatwa’.
Warnings on ineffective inlining by the gec back-end can be activated separately,
using the gce switch -Winline.

Suppress warnings on ineffective pragma Inlines. This switch suppresses warn-
ings on ineffective pragma Inlines. If the inlining mechanism cannot inline a
call, it will simply ignore the request silently.

Activate warnings on parameter ordering. This switch activates warnings for
cases of suspicious parameter ordering when the list of arguments are all simple
identifiers that match the names of the formals, but are in a different order.
The warning is suppressed if any use of named parameter notation is used, so
this is the appropriate way to suppress a false positive (and serves to emphasize
that the "misordering" is deliberate). The default is that such warnings are not
given. This warning can also be turned on using ‘-gnatwa’.

Suppress warnings on parameter ordering. This switch suppresses warnings on
cases of suspicious parameter ordering.

Chapter 3: Compiling with gcc 65

‘-gnatwq’

‘~gnatwQ’

‘-gnatwr’

‘-gnatwR’

‘-gnatw.r’

‘-gnatw.R’

‘-gnatws’

Activate warnings on questionable missing parentheses. This switch activates
warnings for cases where parentheses are not used and the result is potential
ambiguity from a readers point of view. For example (not a > b) when a and b
are modular means ((not a) > b) and very likely the programmer intended (not
(a > b)). Similarly (-x mod 5) means (-(x mod 5)) and quite likely ((-x) mod
5) was intended. In such situations it seems best to follow the rule of always
parenthesizing to make the association clear, and this warning switch warns if
such parentheses are not present. The default is that these warnings are given.
This warning can also be turned on using ‘-gnatwa’.

Suppress warnings on questionable missing parentheses. This switch suppresses
warnings for cases where the association is not clear and the use of parentheses
is preferred.

Activate warnings on redundant constructs. This switch activates warnings for
redundant constructs. The following is the current list of constructs regarded
as redundant:

e Assignment of an item to itself.
e Type conversion that converts an expression to its own type.
e Use of the attribute Base where typ’Base is the same as typ.

e Use of pragma Pack when all components are placed by a record represen-
tation clause.

e Exception handler containing only a reraise statement (raise with no
operand) which has no effect.

e Use of the operator abs on an operand that is known at compile time to
be non-negative

e Comparison of boolean expressions to an explicit True value.

This warning can also be turned on using ‘-~gnatwa’. The default is that warn-
ings for redundant constructs are not given.

Suppress warnings on redundant constructs. This switch suppresses warnings
for redundant constructs.

Activate warnings for object renaming function. This switch activates warnings
for an object renaming that renames a function call, which is equivalent to a
constant declaration (as opposed to renaming the function itself). The default
is that these warnings are given. This warning can also be turned on using
‘-gnatwa’.

Suppress warnings for object renaming function. This switch suppresses warn-
ings for object renaming function.

Suppress all warnings. This switch completely suppresses the output of all
warning messages from the GNAT front end, including both warnings that can
be controlled by switches described in this section, and those that are normally
given unconditionally. The effect of this suppress action can only be cancelled
by a subsequent use of the switch ‘~gnatwn’.

66

‘-gnatw.s’

‘-gnatw.S’

‘-gnatwt’

‘-gnatwT’

‘-gnatw.t’

‘~gnatw.T’

‘-gnatwu’

GNAT User’s Guide

Note that switch ‘~gnatws’ does not suppress warnings from the gcc back end.
To suppress these back end warnings as well, use the switch ‘-w’ in addition
to ‘-gnatws’. Also this switch has no effect on the handling of style check
messages.

Activate warnings on overridden size clauses. This switch activates warnings
on component clauses in record representation clauses where the length given
overrides that specified by an explicit size clause for the component type. A
warning is similarly given in the array case if a specified component size over-
rides an explicit size clause for the array component type. Note that ‘~gnatwa’
does not affect the setting of this warning option.

Suppress warnings on overridden size clauses. This switch suppresses warnings
on component clauses in record representation clauses that override size clauses,
and similar warnings when an array component size overrides a size clause.

Activate warnings for tracking of deleted conditional code. This switch activates
warnings for tracking of code in conditionals (IF and CASE statements) that is
detected to be dead code which cannot be executed, and which is removed by
the front end. This warning is off by default, and is not turned on by ‘-gnatwa’,
it has to be turned on explicitly. This may be useful for detecting deactivated
code in certified applications.

Suppress warnings for tracking of deleted conditional code. This switch sup-
presses warnings for tracking of deleted conditional code.

Activate warnings on suspicious contracts. This switch activates warnings on
suspicious postconditions (whether a pragma Postcondition or a Post as-
pect in Ada 2012) and suspicious contract cases (pragma Contract_Cases). A
function postcondition or contract case is suspicious when no postcondition or
contract case for this function mentions the result of the function. A procedure
postcondition or contract case is suspicious when it only refers to the pre-state
of the procedure, because in that case it should rather be expressed as a pre-
condition. The default is that such warnings are not generated. This warning
can also be turned on using ‘-gnatwa’.

Suppress warnings on suspicious contracts. This switch suppresses warnings on
suspicious postconditions.

Activate warnings on unused entities. This switch activates warnings to be
generated for entities that are declared but not referenced, and for units that
are with’ed and not referenced. In the case of packages, a warning is also gen-
erated if no entities in the package are referenced. This means that if a with’ed
package is referenced but the only references are in use clauses or renames dec-
larations, a warning is still generated. A warning is also generated for a generic
package that is with’ed but never instantiated. In the case where a package or
subprogram body is compiled, and there is a with on the corresponding spec

Chapter 3: Compiling with gcc 67

‘~gnatwl’

‘-gnatw.u’

‘-gnatw.U’

‘-gnatwv’

‘-gnatwV’

‘-gnatw.v’

that is only referenced in the body, a warning is also generated, noting that
the with can be moved to the body. The default is that such warnings are
not generated. This switch also activates warnings on unreferenced formals (it
includes the effect of ‘-gnatwf’). This warning can also be turned on using
‘-gnatwa’.

Suppress warnings on unused entities. This switch suppresses warnings for
unused entities and packages. It also turns off warnings on unreferenced formals
(and thus includes the effect of ‘~gnatwF’).

Activate warnings on unordered enumeration types. This switch causes enu-
meration types to be considered as conceptually unordered, unless an explicit
pragma Ordered is given for the type. The effect is to generate warnings in
clients that use explicit comparisons or subranges, since these constructs both
treat objects of the type as ordered. (A client is defined as a unit that is other
than the unit in which the type is declared, or its body or subunits.) Please
refer to the description of pragma Ordered in the GNAT Reference Manual
for further details. The default is that such warnings are not generated. This
warning is not automatically turned on by the use of ‘~gnatwa’.

Deactivate warnings on unordered enumeration types. This switch causes all
enumeration types to be considered as ordered, so that no warnings are given
for comparisons or subranges for any type.

Activate warnings on unassigned variables. This switch activates warnings
for access to variables which may not be properly initialized. The default is
that such warnings are generated. This warning can also be turned on using
‘-gnatwa’.

Suppress warnings on unassigned variables. This switch suppresses warnings
for access to variables which may not be properly initialized. For variables of
a composite type, the warning can also be suppressed in Ada 2005 by using a
default initialization with a box. For example, if Table is an array of records
whose components are only partially uninitialized, then the following code:

Tab : Table := (others => <>);

will suppress warnings on subsequent statements that access components of
variable Tab.

Activate info messages for non-default bit order. This switch activates messages
(labeled "info", they are not warnings, just informational messages) about the
effects of non-default bit-order on records to which a component clause is ap-
plied. The effect of specifying non-default bit ordering is a bit subtle (and
changed with Ada 2005), so these messages, which are given by default, are
useful in understanding the exact consequences of using this feature. These
messages can also be turned on using ‘-gnatwa’

68

‘-gnatw.V’

‘-gnatww’

‘~gnatwW’

‘-gnatw.w’

‘-gnatw.W

‘-gnatwx’

‘-gnatwX’

‘-gnatw.x’

GNAT User’s Guide

Suppress info messages for non-default bit order. This switch suppresses infor-
mation messages for the effects of specifying non-default bit order on record
components with component clauses.

Activate warnings on wrong low bound assumption. This switch activates warn-
ings for indexing an unconstrained string parameter with a literal or S’Length.
This is a case where the code is assuming that the low bound is one, which is in
general not true (for example when a slice is passed). The default is that such
warnings are generated. This warning can also be turned on using ‘-gnatwa’.

Suppress warnings on wrong low bound assumption. This switch suppresses
warnings for indexing an unconstrained string parameter with a literal or
S’Length. Note that this warning can also be suppressed in a particular case
by adding an assertion that the lower bound is 1, as shown in the following
example.

procedure K (S : String) is
pragma Assert (S’First = 1);

Activate warnings on Warnings Off pragmas This switch activates warnings
for use of pragma Warnings (0ff, entity) where either the pragma is entirely
useless (because it suppresses no warnings), or it could be replaced by pragma
Unreferenced or pragma Unmodified. The default is that these warnings are
not given. Note that this warning is not included in -gnatwa, it must be acti-
vated explicitly. Also activates warnings for the case of Warnings (Off, String),
where either there is no matching Warnings (On, String), or the Warnings (Off)
did not suppress any warning.

Suppress warnings on unnecessary Warnings Off pragmas This switch sup-
presses warnings for use of pragma Warnings (0ff, ...).

Activate warnings on Ezport/Import pragmas. This switch activates warnings
on Export/Import pragmas when the compiler detects a possible conflict be-
tween the Ada and foreign language calling sequences. For example, the use
of default parameters in a convention C procedure is dubious because the C
compiler cannot supply the proper default, so a warning is issued. The default
is that such warnings are generated. This warning can also be turned on using
‘-gnatwa’.

Suppress warnings on Export/Import pragmas. This switch suppresses warnings
on Export/Import pragmas. The sense of this is that you are telling the com-
piler that you know what you are doing in writing the pragma, and it should
not complain at you.

Activate warnings for No_Exception_Propagation mode. This switch
activates warnings for exception usage when pragma Restrictions
(No_Exception_Propagation) is in effect. Warnings are given for implicit or

Chapter 3: Compiling with gcc 69

‘-gnatw.X’

‘-gnatwy’

‘-gnatwY’

‘-gnatw.y’

‘-gnatw.Y’

‘-gnatwz’

‘-gnatwZ’

‘~Wunused’

explicit exception raises which are not covered by a local handler, and for
exception handlers which do not cover a local raise. The default is that these
warnings are not given.

Disable warnings for No_FEzception_Propagation mode. This switch
disables warnings for exception usage when pragma Restrictions
(No_Exception_Propagation) is in effect.

Activate warnings for Ada compatibility issues. For the most part, newer ver-
sions of Ada are upwards compatible with older versions. For example, Ada
2005 programs will almost always work when compiled as Ada 2012. However
there are some exceptions (for example the fact that some is now a reserved
word in Ada 2012). This switch activates several warnings to help in identify-
ing and correcting such incompatibilities. The default is that these warnings
are generated. Note that at one point Ada 2005 was called Ada 0Y, hence the
choice of character. This warning can also be turned on using ‘-gnatwa’.

Disable warnings for Ada compatibility issues. This switch suppresses the warn-
ings intended to help in identifying incompatibilities between Ada language
versions.

Activate information messages for why package spec needs body There are a
number of cases in which a package spec needs a body. For example, the
use of pragma Elaborate_Body, or the declaration of a procedure specification
requiring a completion. This switch causes information messages to be output
showing why a package specification requires a body. This can be useful in the
case of a large package specification which is unexpectedly requiring a body.
The default is that such information messages are not output.

Disable information messages for why package spec needs body This switch sup-
presses the output of information messages showing why a package specification
needs a body.

Activate warnings on unchecked conversions. This switch activates warnings
for unchecked conversions where the types are known at compile time to have
different sizes. The default is that such warnings are generated. Warnings
are also generated for subprogram pointers with different conventions, and, on
VMS only, for data pointers with different conventions. This warning can also
be turned on using ‘-gnatwa’.

Suppress warnings on unchecked conversions. This switch suppresses warnings
for unchecked conversions where the types are known at compile time to have
different sizes or conventions.

The warnings controlled by the ‘-~gnatw’ switch are generated by the front end
of the compiler. The ‘GCC’ back end can provide additional warnings and they
are controlled by the ‘W’ switch. For example, ‘~Wunused’ activates back end
warnings for entities that are declared but not referenced.

70 GNAT User’s Guide

‘~Wuninitialized’
Similarly, ‘-Wuninitialized’ activates the back end warning for uninitialized
variables. This switch must be used in conjunction with an optimization level
greater than zero.

‘~-Wstack-usage=len’
Warn if the stack usage of a subprogram might be larger than len bytes. See
Section 21.2 [Static Stack Usage Analysis|, page 263 for details.

‘~Wall’ This switch enables most warnings from the ‘GCC’ back end. The code generator
detects a number of warning situations that are missed by the ‘GNAT’ front end,
and this switch can be used to activate them. The use of this switch also sets the
default front end warning mode to ‘-gnatwa’, that is, most front end warnings
activated as well.

-w Conversely, this switch suppresses warnings from the ‘GCC’ back end. The use
of this switch also sets the default front end warning mode to ‘-gnatws’, that
is, front end warnings suppressed as well.

A string of warning parameters can be used in the same parameter. For example:
-gnatwaGe

will turn on all optional warnings except for unrecognized pragma warnings, and also specify
that warnings should be treated as errors.

When no switch ‘-gnatw’ is used, this is equivalent to:

‘-gnatw.a’

‘-gnatwB’

‘-gnatw.b’
‘-gnatwC’

‘-gnatw.C’
‘-gnatwD’

‘-gnatwF’
‘-gnatwg’
‘-gnatwH’
‘~gnatwi’

‘-gnatw.I’
‘-gnatw]’

‘-gnatwK’
‘-gnatwl’

‘-gnatw.L’
‘~gnatwM’

‘-gnatw.m’

‘-gnatwn’

‘-gnatwo’

Chapter 3: Compiling with gcc 71

‘~gnatw.0’
‘-gnatwp’

‘-gnatw.P’
‘-gnatwq’

‘-gnatwR’

‘-gnatw.R’
‘-gnatw.S’
‘-gnatwT’

‘-gnatw.T’
‘-gnatwU’

‘-gnatwv’
‘-gnatww’

‘~gnatw.W
‘-gnatwx’

‘-gnatw.X’
‘-gnatwy’

‘-gnatwz’

3.2.3 Debugging and Assertion Control

‘-gnata’

The pragmas Assert and Debug normally have no effect and are ignored. This
switch, where ‘a’ stands for assert, causes Assert and Debug pragmas to be
activated.

The pragmas have the form:

pragma Assert (Boolean-expression [,
static-string-expression])
pragma Debug (procedure call)

The Assert pragma causes Boolean-expression to be tested. If the result is
True, the pragma has no effect (other than possible side effects from evaluating
the expression). If the result is False, the exception Assert_Failure declared
in the package System.Assertions is raised (passing static-string-expression, if
present, as the message associated with the exception). If no string expression
is given the default is a string giving the file name and line number of the
pragma.

The Debug pragma causes procedure to be called. Note that pragma Debug
may appear within a declaration sequence, allowing debugging procedures to
be called between declarations.

72 GNAT User’s Guide

3.2.4 Validity Checking

The Ada Reference Manual defines the concept of invalid values (see RM 13.9.1). The
primary source of invalid values is uninitialized variables. A scalar variable that is left
uninitialized may contain an invalid value; the concept of invalid does not apply to access
or composite types.

It is an error to read an invalid value, but the RM does not require run-time checks
to detect such errors, except for some minimal checking to prevent erroneous execution
(i.e. unpredictable behavior). This corresponds to the ‘-gnatVd’ switch below, which is the
default. For example, by default, if the expression of a case statement is invalid, it will raise
Constraint_Error rather than causing a wild jump, and if an array index on the left-hand
side of an assignment is invalid, it will raise Constraint_Error rather than overwriting an
arbitrary memory location.

The ‘-gnatVa’ may be used to enable additional validity checks, which are not required
by the RM. These checks are often very expensive (which is why the RM does not require
them). These checks are useful in tracking down uninitialized variables, but they are not
usually recommended for production builds.

The other ‘-gnatVx’ switches below allow finer-grained control; you can enable which-
ever validity checks you desire. However, for most debugging purposes, ‘~gnatVa’ is suf-
ficient, and the default ‘-gnatVd’ (i.e. standard Ada behavior) is usually sufficient for
non-debugging use.

The ‘-gnatB’ switch tells the compiler to assume that all values are valid (that is, within
their declared subtype range) except in the context of a use of the Valid attribute. This
means the compiler can generate more efficient code, since the range of values is better
known at compile time. However, an uninitialized variable can cause wild jumps and mem-
ory corruption in this mode.

The ‘-gnatVx’ switch allows control over the validity checking mode as described below.
The x argument is a string of letters that indicate validity checks that are performed or not
performed in addition to the default checks required by Ada as described above.

‘~gnatVa’ All validity checks. All validity checks are turned on. That is, ‘-~gnatVa’ is
equivalent to ‘gnatVcdfimorst’.

‘~gnatVc’ Validity checks for copies. The right hand side of assignments, and the initial-
izing values of object declarations are validity checked.

‘-gnatVd’ Default (RM) validity checks. Some validity checks are done by default fol-
lowing normal Ada semantics (RM 13.9.1 (9-11)). A check is done in case
statements that the expression is within the range of the subtype. If it is not,
Constraint_Error is raised. For assignments to array components, a check is
done that the expression used as index is within the range. If it is not, Con-
straint_Error is raised. Both these validity checks may be turned off using
switch ‘-gnatVD’. They are turned on by default. If ‘-gnatVD’ is specified, a
subsequent switch ‘-gnatVd’ will leave the checks turned on. Switch ‘-gnatVD’
should be used only if you are sure that all such expressions have valid val-
ues. If you use this switch and invalid values are present, then the program is
erroneous, and wild jumps or memory overwriting may occur.

Chapter 3:

‘-gnatVe’

‘-gnatVf’

‘-gnatVi’

‘-gnatVm’

‘-gnatVn’

‘-gnatVo’

‘-gnatVp’

Compiling with gcc 73

Validity checks for elementary components. In the absence of this switch, assign-
ments to record or array components are not validity checked, even if validity
checks for assignments generally (‘-gnatVc’) are turned on. In Ada, assignment
of composite values do not require valid data, but assignment of individual com-
ponents does. So for example, there is a difference between copying the elements
of an array with a slice assignment, compared to assigning element by element
in a loop. This switch allows you to turn off validity checking for components,
even when they are assigned component by component.

Validity checks for floating-point values. In the absence of this switch, validity
checking occurs only for discrete values. If ‘-gnatVf’ is specified, then validity
checking also applies for floating-point values, and NalNs and infinities are con-
sidered invalid, as well as out of range values for constrained types. Note that
this means that standard IEEE infinity mode is not allowed. The exact con-
texts in which floating-point values are checked depends on the setting of other
options. For example, ‘-gnatVif’ or ‘-gnatVfi’ (the order does not matter)
specifies that floating-point parameters of mode in should be validity checked.

Validity checks for in mode parameters Arguments for parameters of mode in
are validity checked in function and procedure calls at the point of call.

Validity checks for in out mode parameters. Arguments for parameters of mode
in out are validity checked in procedure calls at the point of call. The *m’ here
stands for modify, since this concerns parameters that can be modified by the
call. Note that there is no specific option to test out parameters, but any
reference within the subprogram will be tested in the usual manner, and if
an invalid value is copied back, any reference to it will be subject to validity
checking.

No wvalidity checks. This switch turns off all validity checking, including the
default checking for case statements and left hand side subscripts. Note that
the use of the switch ‘~gnatp’ suppresses all run-time checks, including validity
checks, and thus implies ‘-gnatVn’. When this switch is used, it cancels any
other ‘-gnatV’ previously issued.

Validity checks for operator and attribute operands. Arguments for prede-
fined operators and attributes are validity checked. This includes all opera-
tors in package Standard, the shift operators defined as intrinsic in package
Interfaces and operands for attributes such as Pos. Checks are also made on
individual component values for composite comparisons, and on the expressions
in type conversions and qualified expressions. Checks are also made on explicit
ranges using ‘..’ (e.g. slices, loops etc).

Validity checks for parameters. This controls the treatment of parameters
within a subprogram (as opposed to ‘-gnatVi’ and ‘-gnatVm’ which control
validity testing of parameters on a call. If either of these call options is used,
then normally an assumption is made within a subprogram that the input argu-
ments have been validity checking at the point of call, and do not need checking
again within a subprogram). If ‘-gnatVp’ is set, then this assumption is not
made, and parameters are not assumed to be valid, so their validity will be
checked (or rechecked) within the subprogram.

74 GNAT User’s Guide

‘~gnatVr’ Validity checks for function returns. The expression in return statements in
functions is validity checked.

‘~gnatVs’ Validity checks for subscripts. All subscripts expressions are checked for validity,
whether they appear on the right side or left side (in default mode only left side
subscripts are validity checked).

‘~gnatVt’ Validity checks for tests. Expressions used as conditions in if, while or exit
statements are checked, as well as guard expressions in entry calls.

The ‘-gnatV’ switch may be followed by a string of letters to turn on a series of validity
checking options. For example, ‘~gnatVcr’ specifies that in addition to the default validity
checking, copies and function return expressions are to be validity checked. In order to make
it easier to specify the desired combination of effects, the upper case letters CDOFIMORST may
be used to turn off the corresponding lower case option. Thus ‘-gnatVaM’ turns on all
validity checking options except for checking of in out procedure arguments.

The specification of additional validity checking generates extra code (and in the case of
‘~gnatVa’ the code expansion can be substantial). However, these additional checks can be
very useful in detecting uninitialized variables, incorrect use of unchecked conversion, and
other errors leading to invalid values. The use of pragma Initialize_Scalars is useful
in conjunction with the extra validity checking, since this ensures that wherever possible
uninitialized variables have invalid values.

See also the pragma Validity_Checks which allows modification of the validity checking
mode at the program source level, and also allows for temporary disabling of validity checks.

3.2.5 Style Checking

The ‘-gnatyx’ switch causes the compiler to enforce specified style rules. A limited set of
style rules has been used in writing the GNAT sources themselves. This switch allows user
programs to activate all or some of these checks. If the source program fails a specified style
check, an appropriate message is given, preceded by the character sequence “(style)”. This
message does not prevent successful compilation (unless the ‘-gnatwe’ switch is used).

Note that this is by no means intended to be a general facility for checking arbitrary
coding standards. It is simply an embedding of the style rules we have chosen for the GNAT
sources. If you are starting a project which does not have established style standards, you
may find it useful to adopt the entire set of GNAT coding standards, or some subset of
them.

The string x is a sequence of letters or digits indicating the particular style checks to be
performed. The following checks are defined:

‘0-9’ Specify indentation level. If a digit from 1-9 appears in the string after ‘-gnaty’
then proper indentation is checked, with the digit indicating the indentation
level required. A value of zero turns off this style check. The general style
of required indentation is as specified by the examples in the Ada Reference
Manual. Full line comments must be aligned with the —- starting on a column
that is a multiple of the alignment level, or they may be aligned the same way
as the following non-blank line (this is useful when full line comments appear
in the middle of a statement, or they may be aligned with the source line on
the previous non-blank line.

Chapter 3: Compiling with gcc 75

Lc7

Check attribute casing. Attribute names, including the case of keywords such
as digits used as attributes names, must be written in mixed case, that is,
the initial letter and any letter following an underscore must be uppercase. All
other letters must be lowercase.

Use of array index numbers in array attributes. When using the array attributes
First, Last, Range, or Length, the index number must be omitted for one-
dimensional arrays and is required for multi-dimensional arrays.

Blanks not allowed at statement end. Trailing blanks are not allowed at the end
of statements. The purpose of this rule, together with h (no horizontal tabs),
is to enforce a canonical format for the use of blanks to separate source tokens.

Check Boolean operators. The use of AND/OR operators is not permitted
except in the cases of modular operands, array operands, and simple stand-
alone boolean variables or boolean constants. In all other cases and then/or
else are required.

Check comments, double space. Comments must meet the following set of rules:

e The “--” that starts the column must either start in column one, or else
at least one blank must precede this sequence.
e Comments that follow other tokens on a line must have at least one blank

[43 ”

following the “--" at the start of the comment.

e Full line comments must have at least two blanks following the “--" that
starts the comment, with the following exceptions.

[43 7

e A line consisting only of the “~=" characters, possibly preceded by blanks
is permitted.

e A comment starting with “--x” where x is a special character is permitted.
This allows proper processing of the output generated by specialized tools
including gnatprep (where “--!”7 is used) and the SPARK annotation
language (where “--#” is used). For the purposes of this rule, a special
character is defined as being in one of the ASCII ranges 16#21#. . . 16#2F#
or 16#3A#...16#3F#. Note that this usage is not permitted in GNAT
implementation units (i.e., when ‘-gnatg’ is used).

e A line consisting entirely of minus signs, possibly preceded by blanks, is
permitted. This allows the construction of box comments where lines of
minus signs are used to form the top and bottom of the box.

2

e A comment that starts and ends with “--” is permitted as long as at
least one blank follows the initial “~-”. Together with the preceding rule,
this allows the construction of box comments, as shown in the following
example:

-- This is a box comment --
-- with two text lines. --

Check comments, single space. This is identical to ¢ except that only one space
is required following the -- of a comment instead of two.

76

GNAT User’s Guide

Check no DOS line terminators present. All lines must be terminated by a single
ASCIILF character (in particular the DOS line terminator sequence CR/LF is
not allowed).

Check end/exit labels. Optional labels on end statements ending subprograms
and on exit statements exiting named loops, are required to be present.

No form feeds or vertical tabs. Neither form feeds nor vertical tab characters
are permitted in the source text.

GNAT style mode. The set of style check switches is set to match that used by
the GNAT sources. This may be useful when developing code that is eventually
intended to be incorporated into GNAT. For further details, see GNAT sources.

No horizontal tabs. Horizontal tab characters are not permitted in the source
text. Together with the b (no blanks at end of line) check, this enforces a
canonical form for the use of blanks to separate source tokens.

Check if-then layout. The keyword then must appear either on the same line
as corresponding if, or on a line on its own, lined up under the if.

check mode IN keywords. Mode in (the default mode) is not allowed to be given
explicitly. in out is fine, but not in on its own.

Check keyword casing. All keywords must be in lower case (with the exception
of keywords such as digits used as attribute names to which this check does

not apply).

Check layout. Layout of statement and declaration constructs must follow the
recommendations in the Ada Reference Manual, as indicated by the form of
the syntax rules. For example an else keyword must be lined up with the
corresponding if keyword.

There are two respects in which the style rule enforced by this check option
are more liberal than those in the Ada Reference Manual. First in the case of
record declarations, it is permissible to put the record keyword on the same
line as the type keyword, and then the end in end record must line up under
type. This is also permitted when the type declaration is split on two lines.
For example, any of the following three layouts is acceptable:

Chapter 3: Compiling with gcc

7

-
type q is record

a : integer;
b : integer;
end record;

type q is
record
a : integer;
b : integer;
end record;

type q is
record
a : integer;
b : integer;
end record;

-

J

Second, in the case of a block statement, a permitted alternative is to put the
block label on the same line as the declare or begin keyword, and then line
the end keyword up under the block label. For example both the following are

permitted:

~
Block : declare

A : Integer := 3;
begin

Proc (A, A);
end Block;

Block :
declare
A : Integer := 3;
begin
Proc (A, A);
end Block;

\

J

The same alternative format is allowed for loops. For example, both of the

following are permitted:

-~
Clear : while J < 10 loop

A (J) := 0;
end loop Clear;

Clear :
while J < 10 loop
A (J) :=0;
end loop Clear;

\

‘Lnnn’ Set mazimum nesting level. The maximum level of nesting of constructs (in-
cluding subprograms, loops, blocks, packages, and conditionals) may not exceed

the given value ‘nnn’. A value of zero disconnects this style check.

m Check mazimum line length. The length of source lines must not exceed 79

characters, including any trailing blanks. The value of 79 allows convenient
display on an 80 character wide device or window, allowing for possible special

78

‘Mnnn’

GNAT User’s Guide

treatment of 80 character lines. Note that this count is of characters in the
source text. This means that a tab character counts as one character in this
count and a wide character sequence counts as a single character (however many
bytes are needed in the encoding).

Set mazximum line length. The length of lines must not exceed the given value
‘nnn’. The maximum value that can be specified is 32767. If neither style option
for setting the line length is used, then the default is 255. This also controls
the maximum length of lexical elements, where the only restriction is that they
must fit on a single line.

Check casing of entities in Standard. Any identifier from Standard must be
cased to match the presentation in the Ada Reference Manual (for example,
Integer and ASCII.NUL).

Turn off all style checks. All style check options are turned off.

Check order of subprogram bodies. All subprogram bodies in a given scope (e.g.
a package body) must be in alphabetical order. The ordering rule uses normal
Ada rules for comparing strings, ignoring casing of letters, except that if there
is a trailing numeric suffix, then the value of this suffix is used in the ordering
(e.g. Junk2 comes before Junk10).

Check that overriding subprograms are explicitly marked as such. The decla-
ration of a primitive operation of a type extension that overrides an inherited
operation must carry an overriding indicator.

Check pragma casing. Pragma names must be written in mixed case, that is,
the initial letter and any letter following an underscore must be uppercase. All
other letters must be lowercase. An exception is that SPARK_Mode is allowed
as an alternative for Spark_Mode.

Check references. All identifier references must be cased in the same way as the
corresponding declaration. No specific casing style is imposed on identifiers.
The only requirement is for consistency of references with declarations.

Check separate specs. Separate declarations (“specs”) are required for subpro-
grams (a body is not allowed to serve as its own declaration). The only ex-
ception is that parameterless library level procedures are not required to have
a separate declaration. This exception covers the most frequent form of main
program procedures.

Check no statements after then/else. No statements are allowed on the same
line as a then or else keyword following the keyword in an if statement. or
else and and then are not affected, and a special exception allows a pragma
to appear after else.
Check token spacing. The following token spacing rules are enforced:

e The keywords abs and not must be followed by a space.

e The token => must be surrounded by spaces.

e The token <> must be preceded by a space or a left parenthesis.

Chapter 3: Compiling with gcc 79

e Binary operators other than ** must be surrounded by spaces. There is
no restriction on the layout of the ** binary operator.

e Colon must be surrounded by spaces.
e Colon-equal (assignment, initialization) must be surrounded by spaces.

e Comma must be the first non-blank character on the line, or be immediately
preceded by a non-blank character, and must be followed by a space.

o If the token preceding a left parenthesis ends with a letter or digit, then a
space must separate the two tokens.

e if the token following a right parenthesis starts with a letter or digit, then
a space must separate the two tokens.

e A right parenthesis must either be the first non-blank character on a line,
or it must be preceded by a non-blank character.

e A semicolon must not be preceded by a space, and must not be followed
by a non-blank character.

e A unary plus or minus may not be followed by a space.
e A vertical bar must be surrounded by spaces.

Exactly one blank (and no other white space) must appear between a not token
and a following in token.

u Check unnecessary blank lines. Unnecessary blank lines are not allowed. A
blank line is considered unnecessary if it appears at the end of the file, or if
more than one blank line occurs in sequence.

‘x’ Check extra parentheses. Unnecessary extra level of parentheses (C-style) are
not allowed around conditions in if statements, while statements and exit
statements.

‘y’ Set all standard style check options This is equivalent to gnaty3aAbcefhiklmnprst ||

that is all checking options enabled with the exception of ‘~gnatyB’, ‘~gnatyd’,
‘-gnatyI’, ‘-gnatyLnnn’, ‘-gnatyo’, ‘-gnatyQ’, ‘-gnatyS’, ‘-gnatyu’, and
‘-gnatyx’.

Remove style check options This causes any subsequent options in the string
to act as canceling the corresponding style check option. To cancel maximum
nesting level control, use ‘L’ parameter witout any integer value after that,
because any digit following ‘-’ in the parameter string of the ‘~gnaty’ option will
be threated as canceling indentation check. The same is true for ‘M’ parameter.
‘y’ and ‘N’ parameters are not allowed after ‘-’.

4 This causes any subsequent options in the string to enable the corresponding
style check option. That is, it cancels the effect of a previous -, if any.

In the above rules, appearing in column one is always permitted, that is, counts as meeting
either a requirement for a required preceding space, or as meeting a requirement for no
preceding space.

Appearing at the end of a line is also always permitted, that is, counts as meeting either
a requirement for a following space, or as meeting a requirement for no following space.

80 GNAT User’s Guide

If any of these style rules is violated, a message is generated giving details on the violation.
The initial characters of such messages are always “(style)”. Note that these messages are
treated as warning messages, so they normally do not prevent the generation of an object
file. The ‘-gnatwe’ switch can be used to treat warning messages, including style messages,
as fatal errors.

The switch ‘-gnaty’ on its own (that is not followed by any letters or digits) is equivalent
to the use of ‘~gnatyy’ as described above, that is all built-in standard style check options
are enabled.

The switch ‘-gnatyN’ clears any previously set style checks.

3.2.6 Run-Time Checks

By default, the following checks are suppressed: integer overflow checks, stack overflow
checks, and checks for access before elaboration on subprogram calls. All other checks,
including range checks and array bounds checks, are turned on by default. The following
gcc switches refine this default behavior.

‘-gnatp’ This switch causes the unit to be compiled as though pragma Suppress (A11_
checks) had been present in the source. Validity checks are also eliminated (in
other words ‘-gnatp’ also implies ‘-gnatVn’. Use this switch to improve the
performance of the code at the expense of safety in the presence of invalid data
or program bugs.

Note that when checks are suppressed, the compiler is allowed, but not required,
to omit the checking code. If the run-time cost of the checking code is zero
or near-zero, the compiler will generate it even if checks are suppressed. In
particular, if the compiler can prove that a certain check will necessarily fail, it
will generate code to do an unconditional “raise”, even if checks are suppressed.
The compiler warns in this case. Another case in which checks may not be
eliminated is when they are embedded in certain run time routines such as
math library routines.

Of course, run-time checks are omitted whenever the compiler can prove that
they will not fail, whether or not checks are suppressed.

Note that if you suppress a check that would have failed, program execution
is erroneous, which means the behavior is totally unpredictable. The program
might crash, or print wrong answers, or do anything else. It might even do
exactly what you wanted it to do (and then it might start failing mysteriously
next week or next year). The compiler will generate code based on the assump-
tion that the condition being checked is true, which can result in disaster if that
assumption is wrong.

The checks subject to suppression include all the checks defined by the Ada stan-
dard, the additional implementation defined checks Alignment_Check, Atomic_
Synchronization, and Validity_Check, as well as any checks introduced using
pragma Check_Name.

The ‘-gnatp’ switch has no effect if a subsequent ‘-gnat-p’ switch appears.

‘-gnat-p’ This switch cancels the effect of a previous ‘gnatp’ switch.

Chapter 3: Compiling with gcc 81

‘-gnato??’

This switch controls the mode used for computing intermediate arithmetic in-
teger operations, and also enables overflow checking. For a full description
of overflow mode and checking control, see the “Overflow Check Handling in
GNAT” appendix in this User’s Guide.

Overflow checks are always enabled by this switch. The argument controls the
mode, using the codes

e 1 = STRICT In STRICT mode, intermediate operations are always done
using the base type, and overflow checking ensures that the result is within
the base type range.

e 2 = MINIMIZED In MINIMIZED mode, overflows in intermediate oper-
ations are avoided where possible by using a larger integer type for the
computation (typically Long_Long_Integer). Overflow checking ensures
that the result fits in this larger integer type.

e 3 = ELIMINATED In ELIMINATED mode, overflows in intermediate op-
erations are avoided by using multi-precision arithmetic. In this case, over-
flow checking has no effect on intermediate operations (since overflow is
impossible).

If two digits are present after ‘-gnato’ then the first digit sets the mode for ex-
pressions outside assertions, and the second digit sets the mode for expressions
within assertions. Here assertions is used in the technical sense (which includes
for example precondition and postcondition expressions).

If one digit is present, the corresponding mode is applicable to both expressions
within and outside assertion expressions.

If no digits are present, the default is to enable overflow checks and set STRICT
mode for both kinds of expressions. This is compatible with the use of ‘-gnato’
in previous versions of GNAT.

Note that the ‘~gnato??’ switch does not affect the code generated for any
floating-point operations; it applies only to integer semantics. For floating-
point, GNAT has the Machine_Overflows attribute set to False and the nor-
mal mode of operation is to generate IEEE NaN and infinite values on overflow
or invalid operations (such as dividing 0.0 by 0.0).

The reason that we distinguish overflow checking from other kinds of range
constraint checking is that a failure of an overflow check, unlike for example
the failure of a range check, can result in an incorrect value, but cannot cause
random memory destruction (like an out of range subscript), or a wild jump
(from an out of range case value). Overflow checking is also quite expensive in
time and space, since in general it requires the use of double length arithmetic.

Note again that the default is ‘-gnato00’, so overflow checking is not performed
in default mode. This means that out of the box, with the default settings,
GNAT does not do all the checks expected from the language description in the
Ada Reference Manual. If you want all constraint checks to be performed, as
described in this Manual, then you must explicitly use the ‘-gnato??’ switch
either on the gnatmake or gcc command.

82

‘~gnatE’

GNAT User’s Guide

Enables dynamic checks for access-before-elaboration on subprogram calls and
generic instantiations. Note that ‘-gnatE’ is not necessary for safety, because
in the default mode, GNAT ensures statically that the checks would not fail.
For full details of the effect and use of this switch, See Chapter 3 [Compiling
with gec], page 41.

‘~fstack-check’

Activates stack overflow checking. For full details of the effect and use of this
switch see Section 21.1 [Stack Overflow Checking], page 263.

The setting of these switches only controls the default setting of the checks. You may modify
them using either Suppress (to remove checks) or Unsuppress (to add back suppressed
checks) pragmas in the program source.

3.2.7 Using gcc for Syntax Checking

‘~gnats’

The s stands for “syntax”.

Run GNAT in syntax checking only mode. For example, the command
$ gcc -c -gnats x.adb

compiles file ‘x.adb’ in syntax-check-only mode. You can check a series of
files in a single command , and can use wild cards to specify such a group of
files. Note that you must specify the ‘-c’ (compile only) flag in addition to
the ‘-gnats’ flag. . You may use other switches in conjunction with ‘-gnats’.
In particular, ‘-gnatl’ and ‘-gnatv’ are useful to control the format of any
generated error messages.

When the source file is empty or contains only empty lines and/or comments,
the output is a warning;:

$ gcc -c -gnats -x ada toto.txt

toto.txt:1:01: warning: empty file, contains no compilation units

$
Otherwise, the output is simply the error messages, if any. No object file or ALI
file is generated by a syntax-only compilation. Also, no units other than the
one specified are accessed. For example, if a unit X with’s a unit Y, compiling
unit X in syntax check only mode does not access the source file containing unit
Y.

Normally, GNAT allows only a single unit in a source file. However, this restric-
tion does not apply in syntax-check-only mode, and it is possible to check a file
containing multiple compilation units concatenated together. This is primarily
used by the gnatchop utility (see Chapter 8 [Renaming Files with gnatchop]
page 137).

)

3.2.8 Using gcc for Semantic Checking

‘-gnatc’

The ¢ stands for “check”. Causes the compiler to operate in semantic check
mode, with full checking for all illegalities specified in the Ada Reference Man-
ual, but without generation of any object code (no object file is generated).

Chapter 3: Compiling with gcc 83

Because dependent files must be accessed, you must follow the GNAT semantic
restrictions on file structuring to operate in this mode:

e The needed source files must be accessible (see Section 3.3 [Search Paths
and the Run-Time Library (RTL)], page 94).

e FEach file must contain only one compilation unit.

e The file name and unit name must match (see Section 2.3 [File Naming
Rules|, page 16).

The output consists of error messages as appropriate. No object file is gener-
ated. An ‘ALT’ file is generated for use in the context of cross-reference tools,
but this file is marked as not being suitable for binding (since no object file is
generated). The checking corresponds exactly to the notion of legality in the
Ada Reference Manual.

Any unit can be compiled in semantics-checking-only mode, including units that
would not normally be compiled (subunits, and specifications where a separate
body is present).

3.2.9 Compiling Different Versions of Ada

The switches described in this section allow you to explicitly specify the version of the Ada
language that your programs are written in. The default mode is Ada 2012, but you can
also specify Ada 95, Ada 2005 mode, or indicate Ada 83 compatibility mode.

‘-gnat83 (Ada 83 Compatibility Mode)’

Although GNAT is primarily an Ada 95 / Ada 2005 compiler, this switch speci-
fies that the program is to be compiled in Ada 83 mode. With ‘~gnat83’, GNAT
rejects most post-Ada 83 extensions and applies Ada 83 semantics where this
can be done easily. It is not possible to guarantee this switch does a perfect
job; some subtle tests, such as are found in earlier ACVC tests (and that have
been removed from the ACATS suite for Ada 95), might not compile correctly.
Nevertheless, this switch may be useful in some circumstances, for example
where, due to contractual reasons, existing code needs to be maintained using
only Ada 83 features.

With few exceptions (most notably the need to use <> on unconstrained generic
formal parameters, the use of the new Ada 95 / Ada 2005 reserved words,
and the use of packages with optional bodies), it is not necessary to specify
the ‘-gnat83’ switch when compiling Ada 83 programs, because, with rare
exceptions, Ada 95 and Ada 2005 are upwardly compatible with Ada 83. Thus
a correct Ada 83 program is usually also a correct program in these later versions
of the language standard. For further information, please refer to Appendix G
[Compatibility and Porting Guide], page 367.

‘~gnat95 (Ada 95 mode)’
This switch directs the compiler to implement the Ada 95 version of the lan-
guage. Since Ada 95 is almost completely upwards compatible with Ada 83,
Ada 83 programs may generally be compiled using this switch (see the descrip-
tion of the ‘-gnat83’ switch for further information about Ada 83 mode). If
an Ada 2005 program is compiled in Ada 95 mode, uses of the new Ada 2005
features will cause error messages or warnings.

84

GNAT User’s Guide

This switch also can be used to cancel the effect of a previous ‘-gnat83’
‘-gnat05/2005’, or ‘-gnat12/2012’ switch earlier in the command line.

‘~-gnat05 or -gnat2005 (Ada 2005 mode)’

This switch directs the compiler to implement the Ada 2005 version of the
language, as documented in the official Ada standards document. Since Ada
2005 is almost completely upwards compatible with Ada 95 (and thus also with
Ada 83), Ada 83 and Ada 95 programs may generally be compiled using this
switch (see the description of the ‘-gnat83’ and ‘-gnat95’ switches for further
information).

‘-gnat12 or -gnat2012 (Ada 2012 mode)’

This switch directs the compiler to implement the Ada 2012 version of the
language (also the default). Since Ada 2012 is almost completely upwards
compatible with Ada 2005 (and thus also with Ada 83, and Ada 95), Ada
83 and Ada 95 programs may generally be compiled using this switch (see
the description of the ‘-gnat83’, ‘-gnat95’, and ‘-gnat05/2005’ switches for
further information).

‘-gnatX (Enable GNAT Extensions)’

This switch directs the compiler to implement the latest version of the language
(currently Ada 2012) and also to enable certain GNAT implementation exten-
sions that are not part of any Ada standard. For a full list of these extensions,
see the GNAT reference manual.

3.2.10 Character Set Control

‘-gnatic’

Normally GNAT recognizes the Latin-1 character set in source program identi-
fiers, as described in the Ada Reference Manual. This switch causes GNAT to
recognize alternate character sets in identifiers. c is a single character indicating
the character set, as follows:

1 ISO 8859-1 (Latin-1) identifiers

2 ISO 8859-2 (Latin-2) letters allowed in identifiers

3 ISO 8859-3 (Latin-3) letters allowed in identifiers

4 ISO 8859-4 (Latin-4) letters allowed in identifiers

5 ISO 8859-5 (Cyrillic) letters allowed in identifiers

9 ISO 8859-15 (Latin-9) letters allowed in identifiers

p IBM PC letters (code page 437) allowed in identifiers
8 IBM PC letters (code page 850) allowed in identifiers
f Full upper-half codes allowed in identifiers

n No upper-half codes allowed in identifiers

W Wide-character codes (that is, codes greater than 255) allowed in

identifiers

Chapter 3: Compiling with gcc 85

See Section 2.2 [Foreign Language Representation], page 13, for full details on
the implementation of these character sets.

‘~gnatWe’ Specify the method of encoding for wide characters. e is one of the following:

h Hex encoding (brackets coding also recognized)

u Upper half encoding (brackets encoding also recognized)
s Shift /JIS encoding (brackets encoding also recognized)
e EUC encoding (brackets encoding also recognized)

8 UTF-8 encoding (brackets encoding also recognized)

b Brackets encoding only (default value)

For full details on these encoding methods see Section 2.2.3 [Wide Character
Encodings|, page 15. Note that brackets coding is always accepted, even if one
of the other options is specified, so for example ‘~gnatW8’ specifies that both
brackets and UTF-8 encodings will be recognized. The units that are with’ed
directly or indirectly will be scanned using the specified representation scheme,
and so if one of the non-brackets scheme is used, it must be used consistently
throughout the program. However, since brackets encoding is always recog-
nized, it may be conveniently used in standard libraries, allowing these libraries
to be used with any of the available coding schemes.

Note that brackets encoding only applies to program text. Within comments,
brackets are considered to be normal graphic characters, and bracket sequences
are never recognized as wide characters.

If no ‘-gnatW?’ parameter is present, then the default representation is normally
Brackets encoding only. However, if the first three characters of the file are
16#EF# 164#BB# 16#BF# (the standard byte order mark or BOM for UTF-
8), then these three characters are skipped and the default representation for
the file is set to UTF-8.

Note that the wide character representation that is specified (explicitly or
by default) for the main program also acts as the default encoding used for
Wide_Text_IO files if not specifically overridden by a WCEM form parameter.

When no ‘-gnatW?’ is specified, then characters (other than wide characters represented
using brackets notation) are treated as 8-bit Latin-1 codes. The codes recognized are the
Latin-1 graphic characters, and ASCII format effectors (CR, LF, HT, VT). Other lower
half control characters in the range 16#400#..16#1F# are not accepted in program text or
in comments. Upper half control characters (16#80#..16#9F#) are rejected in program
text, but allowed and ignored in comments. Note in particular that the Next Line (NEL)
character whose encoding is 16485+ is not recognized as an end of line in this default mode.
If your source program contains instances of the NEL character used as a line terminator,
you must use UTF-8 encoding for the whole source program. In default mode, all lines
must be ended by a standard end of line sequence (CR, CR/LF, or LF).

Note that the convention of simply accepting all upper half characters in comments
means that programs that use standard ASCII for program text, but UTF-8 encoding for
comments are accepted in default mode, providing that the comments are ended by an

86

GNAT User’s Guide

appropriate (CR, or CR/LF, or LF) line terminator. This is a common mode for many
programs with foreign language comments.

3.2.11 File Naming Control

‘-gnatkn’

Activates file name “krunching”. n, a decimal integer in the range 1-999, indi-
cates the maximum allowable length of a file name (not including the ‘.ads’ or
‘.adb’ extension). The default is not to enable file name krunching.

For the source file naming rules, See Section 2.3 [File Naming Rules|, page 16.

3.2.12 Subprogram Inlining Control

‘-gnatn[12]’

‘-gnatN’

The n here is intended to suggest the first syllable of the word “inline”. GNAT
recognizes and processes Inline pragmas. However, for the inlining to actually
occur, optimization must be enabled and, in order to enable inlining of subpro-
grams specified by pragma Inline, you must also specify this switch. In the
absence of this switch, GNAT does not attempt inlining and does not need to
access the bodies of subprograms for which pragma Inline is specified if they
are not in the current unit.

You can optionally specify the inlining level: 1 for moderate inlining across
modules, which is a good compromise between compilation times and perfor-
mances at run time, or 2 for full inlining across modules, which may bring about
longer compilation times. If no inlining level is specified, the compiler will pick
it based on the optimization level: 1 for ‘-01’, ‘=02’ or ‘-0s’ and 2 for ‘-03’.

If you specify this switch the compiler will access these bodies, creating an extra
source dependency for the resulting object file, and where possible, the call will
be inlined. For further details on when inlining is possible see Section 7.1.5
[Inlining of Subprograms|, page 125.

This switch activates front-end inlining which also generates additional depen-
dencies.

When using a gee-based back end (in practice this means using any version of
GNAT other than the JGNAT, .NET or GNAAMP versions), then the use of
‘—gnatN’ is deprecated, and the use of ‘-gnatn’ is preferred. Historically front
end inlining was more extensive than the gcc back end inlining, but that is no
longer the case.

3.2.13 Auxiliary Output Control

‘~gnatt’

‘~gnatu’

Causes GNAT to write the internal tree for a unit to a file (with the extension
‘.adt’. This not normally required, but is used by separate analysis tools.
Typically these tools do the necessary compilations automatically, so you should
not have to specify this switch in normal operation. Note that the combination
of switches ‘~gnatct’ generates a tree in the form required by ASIS applications.

Print a list of units required by this compilation on ‘stdout’. The listing
includes all units on which the unit being compiled depends either directly or
indirectly.

Chapter 3: Compiling with gcc 87

‘-pass-exit-codes’

If this switch is not used, the exit code returned by gcc when compiling multiple
files indicates whether all source files have been successfully used to generate
object files or not.

When ‘-pass-exit-codes’ is used, gcc exits with an extended exit status and
allows an integrated development environment to better react to a compilation
failure. Those exit status are:

5 There was an error in at least one source file.

3 At least one source file did not generate an object file.

2 The compiler died unexpectedly (internal error for example).
0 An object file has been generated for every source file.

3.2.14 Debugging Control

‘-gnatdx’

Activate internal debugging switches. x is a letter or digit, or string of letters
or digits, which specifies the type of debugging outputs desired. Normally these
are used only for internal development or system debugging purposes. You can
find full documentation for these switches in the body of the Debug unit in the
compiler source file ‘debug.adb’.

‘-gnatG[=nn]’

This switch causes the compiler to generate auxiliary output containing a
pseudo-source listing of the generated expanded code. Like most Ada com-
pilers, GNAT works by first transforming the high level Ada code into lower
level constructs. For example, tasking operations are transformed into calls
to the tasking run-time routines. A unique capability of GNAT is to list this
expanded code in a form very close to normal Ada source. This is very useful
in understanding the implications of various Ada usage on the efficiency of the
generated code. There are many cases in Ada (e.g. the use of controlled types),
where simple Ada statements can generate a lot of run-time code. By using
‘~gnatG’ you can identify these cases, and consider whether it may be desirable
to modify the coding approach to improve efficiency.

The optional parameter nn if present after -gnatG specifies an alternative max-
imum line length that overrides the normal default of 72. This value is in the
range 40-999999, values less than 40 being silently reset to 40. The equal sign
is optional.

The format of the output is very similar to standard Ada source, and is easily
understood by an Ada programmer. The following special syntactic additions
correspond to low level features used in the generated code that do not have
any exact analogies in pure Ada source form. The following is a partial list of
these special constructions. See the spec of package Sprint in file ‘sprint.ads’
for a full list.

If the switch ‘~gnatL’ is used in conjunction with ‘~gnatG’, then the original
source lines are interspersed in the expanded source (as comment lines with the
original line number).

88

GNAT User’s Guide

new xxx [storage_pool = yyy]
Shows the storage pool being used for an allocator.

at end procedure-name;
Shows the finalization (cleanup) procedure for a scope.

(if expr then expr else expr)
Conditional expression equivalent to the x?y:z construction in C.

target” (source)
A conversion with floating-point truncation instead of rounding.

target? (source)
A conversion that bypasses normal Ada semantic checking. In par-
ticular enumeration types and fixed-point types are treated simply
as integers.

target?” (source)
Combines the above two cases.

x#/y

x #mod y

X#*xy

x #rem y A division or multiplication of fixed-point values which are treated
as integers without any kind of scaling.

free expr [storage_pool = xxx|
Shows the storage pool associated with a free statement.

[subtype or type declaration]
Used to list an equivalent declaration for an internally generated
type that is referenced elsewhere in the listing.

freeze type-name [actions]
Shows the point at which type-name is frozen, with possible asso-
ciated actions to be performed at the freeze point.

reference itype
Reference (and hence definition) to internal type itype.

function-name! (arg, arg, arg)
Intrinsic function call.

label-name : label
Declaration of label labelname.

#$ subprogram-name
An implicit call to a run-time support routine (to meet the require-
ment of H.3.1(9) in a convenient manner).

expr && expr && expr ... && expr
A multiple concatenation (same effect as expr & expr & expr, but
handled more efficiently).

[constraint_error]
Raise the Constraint_Error exception.

Chapter 3: Compiling with gcc 89

expression’reference
A pointer to the result of evaluating expression.

target-type! (source-expression)
An unchecked conversion of source-expression to target-type.

[numerator/denominator]
Used to represent internal real literals (that) have no exact rep-
resentation in base 2-16 (for example, the result of compile time
evaluation of the expression 1.0/27.0).

‘~gnatD[=nn]’

‘-gnatr’

When used in conjunction with ‘-gnatG’, this switch causes the expanded
source, as described above for ‘-gnatG’ to be written to files with names
‘xxx.dg’, where ‘xxx’ is the normal file name, instead of to the standard
output file. For example, if the source file name is ‘hello.adb’, then a file
‘hello.adb.dg’ will be written. The debugging information generated by the
gec ‘—g’ switch will refer to the generated ‘xxx.dg’ file. This allows you to do
source level debugging using the generated code which is sometimes useful
for complex code, for example to find out exactly which part of a complex
construction raised an exception. This switch also suppress generation of
cross-reference information (see ‘-gnatx’) since otherwise the cross-reference
information would refer to the ‘.dg’ file, which would cause confusion since
this is not the original source file.

Note that ‘-~gnatD’ actually implies ‘~gnatG’ automatically, so it is not necessary
to give both options. In other words ‘-gnatD’ is equivalent to ‘~gnatDG’).

If the switch ‘-gnatL’ is used in conjunction with ‘~gnatDG’, then the original
source lines are interspersed in the expanded source (as comment lines with the
original line number).

The optional parameter nn if present after -gnatD specifies an alternative max-
imum line length that overrides the normal default of 72. This value is in the
range 40-999999, values less than 40 being silently reset to 40. The equal sign
is optional.

This switch causes pragma Restrictions to be treated as Restriction.Warnings
so that violation of restrictions causes warnings rather than illegalities. This
is useful during the development process when new restrictions are added or
investigated. The switch also causes pragma Profile to be treated as Pro-
file_Warnings, and pragma Restricted_Run_Time and pragma Ravenscar set
restriction warnings rather than restrictions.

‘~gnatR[0[1]2]3]s]]’

This switch controls output from the compiler of a listing showing representa-
tion information for declared types and objects. For ‘-gnatR0’, no information
is output (equivalent to omitting the ‘-gnatR’ switch). For ‘-gnatR1’ (which is
the default, so ‘~gnatR’ with no parameter has the same effect), size and align-
ment information is listed for declared array and record types. For ‘~gnatR2’,
size and alignment information is listed for all declared types and objects. The
Linker_Section is also listed for any entity for which the Linker_Section is

90 GNAT User’s Guide

set explicitly or implicitly (the latter case occurs for objects of a type for which
a Linker_Section is set).

Finally ‘-gnatR3’ includes symbolic expressions for values that are computed at
run time for variant records. These symbolic expressions have a mostly obvious
format with #n being used to represent the value of the n’th discriminant. See
source files ‘repinfo.ads/adb’ in the GNAT sources for full details on the format
of ‘~gnatR3’ output. If the switch is followed by an s (e.g. ‘-gnatR2s’), then
the output is to a file with the name ‘file.rep’ where file is the name of the
corresponding source file.

‘-gnatRm[s]’
This form of the switch controls output of subprogram conventions and param-
eter passing mechanisms for all subprograms. A following s means output to a
file as described above.

Note that it is possible for record components to have zero size. In this case,
the component clause uses an obvious extension of permitted Ada syntax, for
example at 0 range 0 .. -1.

Representation information requires that code be generated (since it is the
code generator that lays out complex data structures). If an attempt is made
to output representation information when no code is generated, for example
when a subunit is compiled on its own, then no information can be generated
and the compiler outputs a message to this effect.

‘~gnatS’ The use of the switch ‘~gnat$’ for an Ada compilation will cause the compiler to
output a representation of package Standard in a form very close to standard
Ada. Tt is not quite possible to do this entirely in standard Ada (since new
numeric base types cannot be created in standard Ada), but the output is easily
readable to any Ada programmer, and is useful to determine the characteristics
of target dependent types in package Standard.

‘~gnatx’ Normally the compiler generates full cross-referencing information in the ‘ALT’
file. This information is used by a number of tools, including gnatfind and
gnatxref. The ‘-gnatx’ switch suppresses this information. This saves some
space and may slightly speed up compilation, but means that these tools cannot
be used.

3.2.15 Exception Handling Control

GNAT uses two methods for handling exceptions at run-time. The setjmp/longjmp method
saves the context when entering a frame with an exception handler. Then when an exception
is raised, the context can be restored immediately, without the need for tracing stack frames.
This method provides very fast exception propagation, but introduces significant overhead
for the use of exception handlers, even if no exception is raised.

The other approach is called “zero cost” exception handling. With this method, the
compiler builds static tables to describe the exception ranges. No dynamic code is required
when entering a frame containing an exception handler. When an exception is raised,
the tables are used to control a back trace of the subprogram invocation stack to locate
the required exception handler. This method has considerably poorer performance for the
propagation of exceptions, but there is no overhead for exception handlers if no exception is

Chapter 3: Compiling with gcc 91

raised. Note that in this mode and in the context of mixed Ada and C/C++ programming,
to propagate an exception through a C/C++ code, the C/C++ code must be compiled with
the ‘~funwind-tables’ GCC’s option.

The following switches may be used to control which of the two exception handling
methods is used.

‘“~-RTS=sj1j’

This switch causes the setjmp/longjmp run-time (when available) to be used
for exception handling. If the default mechanism for the target is zero cost
exceptions, then this switch can be used to modify this default, and must be
used for all units in the partition. This option is rarely used. One case in which
it may be advantageous is if you have an application where exception raising is
common and the overall performance of the application is improved by favoring
exception propagation.

‘~-RTS=zcx’
This switch causes the zero cost approach to be used for exception handling. If
this is the default mechanism for the target (see below), then this switch is un-
needed. If the default mechanism for the target is setjmp/longjmp exceptions,
then this switch can be used to modify this default, and must be used for all
units in the partition. This option can only be used if the zero cost approach
is available for the target in use, otherwise it will generate an error.

The same option ‘--RTS’ must be used both for gcc and gnatbind. Passing this option
to gnatmake (see Section 6.2 [Switches for gnatmake], page 112) will ensure the required
consistency through the compilation and binding steps.

3.2.16 Units to Sources Mapping Files

‘-gnatem=path’
A mapping file is a way to communicate to the compiler two mappings: from
unit names to file names (without any directory information) and from file
names to path names (with full directory information). These mappings are
used by the compiler to short-circuit the path search.

The use of mapping files is not required for correct operation of the compiler,
but mapping files can improve efficiency, particularly when sources are read over
a slow network connection. In normal operation, you need not be concerned
with the format or use of mapping files, and the ‘-gnatem’ switch is not a switch
that you would use explicitly. It is intended primarily for use by automatic tools
such as gnatmake running under the project file facility. The description here
of the format of mapping files is provided for completeness and for possible use
by other tools.

A mapping file is a sequence of sets of three lines. In each set, the first line is
the unit name, in lower case, with %s appended for specs and %b appended for
bodies; the second line is the file name; and the third line is the path name.

Example:
mainib
main.2.ada
/gnat/projectl/sources/main.2.ada

92 GNAT User’s Guide

When the switch ‘~-gnatem’ is specified, the compiler will create in memory the
two mappings from the specified file. If there is any problem (nonexistent file,
truncated file or duplicate entries), no mapping will be created.

Several ‘~gnatem’ switches may be specified; however, only the last one on the
command line will be taken into account.

When using a project file, gnatmake creates a temporary mapping file and
communicates it to the compiler using this switch.

3.2.17 Integrated Preprocessing

GNAT sources may be preprocessed immediately before compilation. In this case, the actual
text of the source is not the text of the source file, but is derived from it through a pro-
cess called preprocessing. Integrated preprocessing is specified through switches ‘-gnatep’
and/or ‘-gnateD’. ‘-gnatep’ indicates, through a text file, the preprocessing data to be
used. ‘-gnateD’ specifies or modifies the values of preprocessing symbol.

Note that when integrated preprocessing is used, the output from the preprocessor is not
written to any external file. Instead it is passed internally to the compiler. If you need to
preserve the result of preprocessing in a file, then you should use gnatprep to perform the
desired preprocessing in stand-alone mode.

It is recommended that gnatmake switch -s should be used when Integrated Preprocessing
is used. The reason is that preprocessing with another Preprocessing Data file without
changing the sources will not trigger recompilation without this switch.

Note that gnatmake switch -m will almost always trigger recompilation for sources that are
preprocessed, because gnatmake cannot compute the checksum of the source after prepro-
cessing.

The actual preprocessing function is described in details in section Chapter 15 [Preprocess-
ing with gnatprep|, page 235. This section only describes how integrated preprocessing is
triggered and parameterized.

-gnatep=file
This switch indicates to the compiler the file name (without directory infor-
mation) of the preprocessor data file to use. The preprocessor data file should
be found in the source directories. Note that when the compiler is called by a
builder such as (gnatmake with a project file, if the object directory is not also
a source directory, the builder needs to be called with ‘-x’.

A preprocessing data file is a text file with significant lines indicating how
should be preprocessed either a specific source or all sources not mentioned in
other lines. A significant line is a nonempty, non-comment line. Comments are
similar to Ada comments.

Each significant line starts with either a literal string or the character '*’. A
literal string is the file name (without directory information) of the source to
preprocess. A character "*’ indicates the preprocessing for all the sources that
are not specified explicitly on other lines (order of the lines is not significant).
It is an error to have two lines with the same file name or two lines starting
with the character .

After the file name or the character "*’, another optional literal string indicating
the file name of the definition file to be used for preprocessing (see Section 15.4

Chapter 3: Compiling with gcc 93

[Form of Definitions File], page 236). The definition files are found by the

compiler in
source in a

one of the source directories. In some cases, when compiling a
directory other than the current directory, if the definition file is

in the current directory, it may be necessary to add the current directory as a
source directory through switch -I., otherwise the compiler would not find the
definition file.

Then, optionally, switches similar to those of gnatprep may be found. Those
switches are:

-b

Causes both preprocessor lines and the lines deleted by preprocess-
ing to be replaced by blank lines, preserving the line number. This
switch is always implied; however, if specified after ‘-c’ it cancels
the effect of ‘-¢’.

Causes both preprocessor lines and the lines deleted by preprocess-
ing to be retained as comments marked with the special string “--!

2

-Dsymbol=value

-u

Define or redefine a symbol, associated with value. A symbol is an
Ada identifier, or an Ada reserved word, with the exception of if,
else, elsif, end, and, or and then. value is either a literal string,
an Ada identifier or any Ada reserved word. A symbol declared
with this switch replaces a symbol with the same name defined in
a definition file.

Causes a sorted list of symbol names and values to be listed on the
standard output file.

Causes undefined symbols to be treated as having the value FALSE
in the context of a preprocessor test. In the absence of this option,
an undefined symbol in a #if or #elsif test will be treated as an
error.

Examples of valid lines in a preprocessor data file:

"toto.adb" '"prep.def" -u

preprocess "toto.adb", using definition file "prep.def",
undefined symbol are False.

* —-c -DVERSION=V101

preprocess all other sources without a definition file;
suppressed lined are commented; symbol VERSION has the value V101.

"titi.adb" "prep2.def" -s

-gnateDsymbol[=value]

preprocess "titi.adb", using definition file "prep2.def";
list all symbols with their values.

Define or redefine a preprocessing symbol, associated with value. If no value is
given on the command line, then the value of the symbol is True. A symbol
is an identifier, following normal Ada (case-insensitive) rules for its syntax,
and value is either an arbitrary string between double quotes or any sequence
(including an empty sequence) of characters from the set (letters, digits, period,

94 GNAT User’s Guide

underline). Ada reserved words may be used as symbols, with the exceptions
of if, else, elsif, end, and, or and then.

Examples:

-gnateDToto=Titi

-gnateDFoo

-gnateDFoo=\"Foo-Bar\"
A symbol declared with this switch on the command line replaces a symbol
with the same name either in a definition file or specified with a switch -D in
the preprocessor data file.

This switch is similar to switch ‘-D’ of gnatprep.

-gnateG When integrated preprocessing is performed and the preprocessor modifies the
source text, write the result of this preprocessing into a file <source>.prep.

3.2.18 Code Generation Control

The GCC technology provides a wide range of target dependent ‘-m’ switches for con-
trolling details of code generation with respect to different versions of architectures. This
includes variations in instruction sets (e.g. different members of the power pc family), and
different requirements for optimal arrangement of instructions (e.g. different members of the
x86 family). The list of available ‘-m’ switches may be found in the GCC documentation.

Use of these ‘-m’ switches may in some cases result in improved code performance.

The GNAT technology is tested and qualified without any ‘-m’ switches, so generally the
most reliable approach is to avoid the use of these switches. However, we generally expect
most of these switches to work successfully with GNAT, and many customers have reported
successful use of these options.

Our general advice is to avoid the use of ‘-m’ switches unless special needs lead to
requirements in this area. In particular, there is no point in using ‘-m’ switches to improve
performance unless you actually see a performance improvement.

3.3 Search Paths and the Run-Time Library (RTL)

With the GNAT source-based library system, the compiler must be able to find source files
for units that are needed by the unit being compiled. Search paths are used to guide this
process.

The compiler compiles one source file whose name must be given explicitly on the com-
mand line. In other words, no searching is done for this file. To find all other source files
that are needed (the most common being the specs of units), the compiler examines the
following directories, in the following order:

1. The directory containing the source file of the main unit being compiled (the file name
on the command line).

2. Each directory named by an ‘-I’ switch given on the gcc command line, in the order
given.

3. Each of the directories listed in the text file whose name is given by the ADA_PRJ_
INCLUDE_FILE environment variable.
ADA_PRJ_INCLUDE_FILE is normally set by gnatmake or by the gnat driver when project
files are used. It should not normally be set by other means.

Chapter 3: Compiling with gcc 95

4. Each of the directories listed in the value of the ADA_INCLUDE_PATH environment vari-
able. Construct this value exactly as the PATH environment variable: a list of directory
names separated by colons (semicolons when working with the NT version).

5. The content of the ‘ada_source_path’ file which is part of the GNAT installation tree
and is used to store standard libraries such as the GNAT Run Time Library (RTL)
source files. Section 18.2.2 [Installing a library|, page 247

Specifying the switch ‘~I-’ inhibits the use of the directory containing the source file named
in the command line. You can still have this directory on your search path, but in this case
it must be explicitly requested with a ‘-1’ switch.

Specifying the switch ‘-nostdinc’ inhibits the search of the default location for the
GNAT Run Time Library (RTL) source files.

The compiler outputs its object files and ALI files in the current working directory.
Caution: The object file can be redirected with the ‘-o’ switch; however, gcc and gnatl
have not been coordinated on this so the ‘ALI’ file will not go to the right place. Therefore,
you should avoid using the ‘-0’ switch.

The packages Ada, System, and Interfaces and their children make up the GNAT RTL,
together with the simple System.I0 package used in the "Hello World" example. The
sources for these units are needed by the compiler and are kept together in one directory.
Not all of the bodies are needed, but all of the sources are kept together anyway. In a
normal installation, you need not specify these directory names when compiling or binding.
FEither the environment variables or the built-in defaults cause these files to be found.

In addition to the language-defined hierarchies (System, Ada and Interfaces), the
GNAT distribution provides a fourth hierarchy, consisting of child units of GNAT. This
is a collection of generally useful types, subprograms, etc. See Section “About This Guid”
in GNAT Reference Manual, for further details.

Besides simplifying access to the RTL, a major use of search paths is in compiling sources
from multiple directories. This can make development environments much more flexible.

3.4 Order of Compilation Issues

If, in our earlier example, there was a spec for the hello procedure, it would be contained
in the file ‘hello.ads’; yet this file would not have to be explicitly compiled. This is the
result of the model we chose to implement library management. Some of the consequences
of this model are as follows:

e There is no point in compiling specs (except for package specs with no bodies) because
these are compiled as needed by clients. If you attempt a useless compilation, you
will receive an error message. It is also useless to compile subunits because they are
compiled as needed by the parent.

e There are no order of compilation requirements: performing a compilation never obso-
letes anything. The only way you can obsolete something and require recompilations
is to modify one of the source files on which it depends.

e There is no library as such, apart from the ALI files (see Section 2.8 [The Ada Library
Information Files], page 22, for information on the format of these files). For now we
find it convenient to create separate ALI files, but eventually the information therein
may be incorporated into the object file directly.

96 GNAT User’s Guide

e When you compile a unit, the source files for the specs of all units that it with’s, all its
subunits, and the bodies of any generics it instantiates must be available (reachable by
the search-paths mechanism described above), or you will receive a fatal error message.

3.5 Examples
The following are some typical Ada compilation command line examples:

$ gcc —c xyz.adb
Compile body in file ‘xyz.adb’ with all default options.

$ gcc -c -02 -gnata xyz-def.adb
Compile the child unit package in file ‘xyz-def.adb’ with extensive optimiza-

tions, and pragma Assert/Debug statements enabled.

$ gcc -c —gnatc abc-def .adb
Compile the subunit in file ‘abc-def .adb’ in semantic-checking-only mode.

Chapter 4: Binding with gnatbind 97

4 Binding with gnatbind

This chapter describes the GNAT binder, gnatbind, which is used to bind compiled GNAT
objects.

Note: to invoke gnatbind with a project file, use the gnat driver (see Section 12.2 [The
GNAT Driver and Project Files], page 218).

The gnatbind program performs four separate functions:

1. Checks that a program is consistent, in accordance with the rules in Chapter 10 of the
Ada Reference Manual. In particular, error messages are generated if a program uses
inconsistent versions of a given unit.

2. Checks that an acceptable order of elaboration exists for the program and issues an
error message if it cannot find an order of elaboration that satisfies the rules in Chapter
10 of the Ada Language Manual.

3. Generates a main program incorporating the given elaboration order. This program is
a small Ada package (body and spec) that must be subsequently compiled using the
GNAT compiler. The necessary compilation step is usually performed automatically by
gnatlink. The two most important functions of this program are to call the elaboration
routines of units in an appropriate order and to call the main program.

4. Determines the set of object files required by the given main program. This information
is output in the forms of comments in the generated program, to be read by the
gnatlink utility used to link the Ada application.

4.1 Running gnatbind

The form of the gnatbind command is

$ gnatbind [switches| mainprog|.ali| [switches]
where ‘mainprog.adb’ is the Ada file containing the main program unit body. gnatbind
constructs an Ada package in two files whose names are ‘b“mainprog.ads’, and
‘b"mainprog.adb’. For example, if given the parameter ‘hello.ali’, for a main program
contained in file ‘hello.adb’, the binder output files would be ‘b~ hello.ads’ and
‘b~hello.adb’.

When doing consistency checking, the binder takes into consideration any source files
it can locate. For example, if the binder determines that the given main program requires
the package Pack, whose ‘.ALI’ file is ‘pack.ali’ and whose corresponding source spec file
is ‘pack.ads’, it attempts to locate the source file ‘pack.ads’ (using the same search path
conventions as previously described for the gcc command). If it can locate this source file,
it checks that the time stamps or source checksums of the source and its references to in
‘ALT’ files match. In other words, any ‘ALI’ files that mentions this spec must have resulted
from compiling this version of the source file (or in the case where the source checksums
match, a version close enough that the difference does not matter).

The effect of this consistency checking, which includes source files, is that the binder
ensures that the program is consistent with the latest version of the source files that can
be located at bind time. Editing a source file without compiling files that depend on the
source file cause error messages to be generated by the binder.

For example, suppose you have a main program ‘hello.adb’ and a package P, from file
‘p.ads’ and you perform the following steps:

98 GNAT User’s Guide

1. Enter gcc -c hello.adb to compile the main program.
2. Enter gcc -c p.ads to compile package P.
3. Edit file ‘p.ads’.

4. Enter gnatbind hello.

At this point, the file ‘p.ali’ contains an out-of-date time stamp because the file ‘p.ads’
has been edited. The attempt at binding fails, and the binder generates the following error
messages:

error: "hello.adb" must be recompiled ("p.ads" has been modified)

error: "p.ads" has been modified and must be recompiled
Now both files must be recompiled as indicated, and then the bind can succeed, generating
a main program. You need not normally be concerned with the contents of this file, but for
reference purposes a sample binder output file is given in Appendix B [Example of Binder
Output File|, page 303.

In most normal usage, the default mode of gnatbind which is to generate the main
package in Ada, as described in the previous section. In particular, this means that any
Ada programmer can read and understand the generated main program. It can also be
debugged just like any other Ada code provided the ‘-g’ switch is used for gnatbind and
gnatlink.

4.2 Switches for gnatbind

The following switches are available with gnatbind; details will be presented in subsequent
sections.

‘--version’
Display Copyright and version, then exit disregarding all other options.

‘-=help’ If ‘--version’ was not used, display usage, then exit disregarding all other
options.

-a Indicates that, if supported by the platform, the adainit procedure should be
treated as an initialisation routine by the linker (a constructor). This is intended
to be used by the Project Manager to automatically initialize shared Stand-
Alone Libraries.

‘-aQ’ Specify directory to be searched for ALI files.
‘-al’ Specify directory to be searched for source file.

‘~A[=filename|’
Output ALI list (to standard output or to the named file).

‘~b’ Generate brief messages to ‘stderr’ even if verbose mode set.
‘-c’ Check only, no generation of binder output file.
‘~dnn[k |m|’

This switch can be used to change the default task stack size value to a specified
size nn, which is expressed in bytes by default, or in kilobytes when suffixed
with k or in megabytes when suffixed with m. In the absence of a ‘[k|m] suffix,
this switch is equivalent, in effect, to completing all task specs with

Chapter 4: Binding with gnatbind 99

‘~Dnn[k |m|’

4_F7

pragma Storage_Size (nn);

When they do not already have such a pragma.

This switch can be used to change the default secondary stack size value to a
specified size nn, which is expressed in bytes by default, or in kilobytes when
suffixed with k or in megabytes when suffixed with m.

The secondary stack is used to deal with functions that return a variable sized
result, for example a function returning an unconstrained String. There are
two ways in which this secondary stack is allocated.

For most targets, the secondary stack is growing on demand and is allocated as
a chain of blocks in the heap. The -D option is not very relevant. It only give
some control over the size of the allocated blocks (whose size is the minimum
of the default secondary stack size value, and the actual size needed for the
current allocation request).

For certain targets, notably VxWorks 653, the secondary stack is allocated by
carving off a fixed ratio chunk of the primary task stack. The -D option is used
to define the size of the environment task’s secondary stack.

Output complete list of elaboration-order dependencies.

Store tracebacks in exception occurrences when the target supports it. See also
the packages GNAT.Traceback and GNAT.Traceback.Symbolic for more infor-
mation. Note that on x86 ports, you must not use ‘~fomit-frame-pointer’
gcc option.

Force the checks of elaboration flags. gnatbind does not normally generate
checks of elaboration flags for the main executable, except when a Stand-Alone
Library is used. However, there are cases when this cannot be detected by gnat-
bind. An example is importing an interface of a Stand-Alone Library through
a pragma Import and only specifying through a linker switch this Stand-Alone
Library. This switch is used to guarantee that elaboration flag checks are gen-
erated.

Output usage (help) information

Use 32-bit allocations for __gnat_malloc (and thus for access types). For
further details see Section 4.2.5 [Dynamic Allocation Control], page 104.

Use 64-bit allocations for __gnat_malloc (and thus for access types). For
further details see Section 4.2.5 [Dynamic Allocation Control], page 104.
Specify directory to be searched for source and ALI files.

Do not look for sources in the current directory where gnatbind was invoked,
and do not look for ALI files in the directory containing the ALI file named in
the gnatbind command line.

Output chosen elaboration order.

Bind the units for library building. In this case the adainit and adafinal pro-
cedures (see Section 4.2.6 [Binding with Non-Ada Main Programs], page 104)

100

‘—n’

‘-nostdinc’

‘-nostdlib’

GNAT User’s Guide

are renamed to xxxinit and xxxfinal. Implies -n. (See Chapter 18 [GNAT and
Libraries], page 245, for more details.)

Rename generated main program from main to xyz. This option is supported
on cross environments only.

Limit number of detected errors or warnings to n, where n is in the range
1..999999. The default value if no switch is given is 9999. If the number of
warnings reaches this limit, then a message is output and further warnings are
suppressed, the bind continues in this case. If the number of errors reaches this
limit, then a message is output and the bind is abandoned. A value of zero
means that no limit is enforced. The equal sign is optional.

Furthermore, under Windows, the sources pointed to by the libraries path set
in the registry are not searched for.

No main program.

Do not look for sources in the system default directory.

Do not look for library files in the system default directory.

‘--RTS=rts-path’

‘~o0 file’

Specifies the default location of the runtime library. Same meaning as the
equivalent gnatmake flag (see Section 6.2 [Switches for gnatmake|, page 112).

Name the output file file (default is ‘b~ xxx.adb’). Note that if this option is
used, then linking must be done manually, gnatlink cannot be used.

‘~0[=filename|’

4 9

P

Output object list (to standard output or to the named file).
Pessimistic (worst-case) elaboration order

Generate binder file suitable for CodePeer.

Output closure source list.

Require all source files to be present.

Specifies the value to be used when detecting uninitialized scalar objects with
pragma Initialize_Scalars. The xxx string specified with the switch may be
either

Wes 99

e ““in’ requesting an invalid value where possible

e “10” for the lowest possible value

e “hi’ for the highest possible value

e “xx” for a value consisting of repeated bytes with the value 16#xx# (i.e.,
xx is a string of two hexadecimal digits).

In addition, you can specify ‘-Sev’ to indicate that the value is to be set at run
time. In this case, the program will look for an environment variable of the
form GNAT_INIT_SCALARS=xx, where xx is one of ‘in/lo/hi/xx’ with the same
meanings as above. If no environment variable is found, or if it does not have
a valid value, then the default is ‘in’ (invalid values).

Chapter 4:

)

‘-static

‘~shared’

Binding with gnatbind 101

Link against a static GNAT run time.
Link against a shared GNAT run time when available.
Tolerate time stamp and other consistency errors

Set the time slice value to n milliseconds. If the system supports the specifica-
tion of a specific time slice value, then the indicated value is used. If the system
does not support specific time slice values, but does support some general no-
tion of round-robin scheduling, then any nonzero value will activate round-robin
scheduling.

A value of zero is treated specially. It turns off time slicing, and in addition,
indicates to the tasking run time that the semantics should match as closely as
possible the Annex D requirements of the Ada RM, and in particular sets the
default scheduling policy to FIFO_Within_Priorities.

Enable dynamic stack usage, with n results stored and displayed at program
termination. A result is generated when a task terminates. Results that can’t
be stored are displayed on the fly, at task termination. This option is currently
not supported on Itanium platforms. (See Section 21.3 [Dynamic Stack Usage
Analysis|, page 264 for details.)

Verbose mode. Write error messages, header, summary output to ‘stdout’.
Warning mode (x=s/e for suppress/treat as error)

Override default wide character encoding for standard Text_IO files.
Exclude source files (check object consistency only).

Set default exit status value, normally 0 for POSIX compliance.

Enable leap seconds support in Ada.Calendar and its children.

No main subprogram.

You may obtain this listing of switches by running gnatbind with no arguments.

4.2.1 Consistency-Checking Modes

As described earlier, by default gnatbind checks that object files are consistent with one
another and are consistent with any source files it can locate. The following switches control
binder access to sources.

—g’

‘~Wxe’

Require source files to be present. In this mode, the binder must be able to
locate all source files that are referenced, in order to check their consistency.
In normal mode, if a source file cannot be located it is simply ignored. If you
specify this switch, a missing source file is an error.

Override default wide character encoding for standard Text_ IO files.
Normally the default wide character encoding method used for standard
[Wide_[Wide_]] Text_IO files is taken from the encoding specified for the main
source input (see description of switch ‘~gnatWx’ for the compiler). The use
of this switch for the binder (which has the same set of possible arguments)
overrides this default as specified.

102

GNAT User’s Guide

Exclude source files. In this mode, the binder only checks that ALI files are
consistent with one another. Source files are not accessed. The binder runs
faster in this mode, and there is still a guarantee that the resulting program
is self-consistent. If a source file has been edited since it was last compiled,
and you specify this switch, the binder will not detect that the object file is
out of date with respect to the source file. Note that this is the mode that
is automatically used by gnatmake because in this case the checking against
sources has already been performed by gnatmake in the course of compilation
(i.e. before binding).

4.2.2 Binder Error Message Control

The following switches provide control over the generation of error messages from the binder:

—y?

Verbose mode. In the normal mode, brief error messages are generated to
‘stderr’. If this switch is present, a header is written to ‘stdout’ and any error
messages are directed to ‘stdout’. All that is written to ‘stderr’ is a brief
summary message.

Generate brief error messages to ‘stderr’ even if verbose mode is specified.
This is relevant only when used with the ‘-v’ switch.

Limits the number of error messages to n, a decimal integer in the range 1-999.
The binder terminates immediately if this limit is reached.

Renames the generated main program from main to xxx. This is useful in the
case of some cross-building environments, where the actual main program is
separate from the one generated by gnatbind.

Suppress all warning messages.
Treat any warning messages as fatal errors.

The binder performs a number of consistency checks including:
e Check that time stamps of a given source unit are consistent
e Check that checksums of a given source unit are consistent
e Check that consistent versions of GNAT were used for compilation

e Check consistency of configuration pragmas as required

Normally failure of such checks, in accordance with the consistency requirements
of the Ada Reference Manual, causes error messages to be generated which abort
the binder and prevent the output of a binder file and subsequent link to obtain
an executable.

The ‘-t’ switch converts these error messages into warnings, so that binding
and linking can continue to completion even in the presence of such errors.
The result may be a failed link (due to missing symbols), or a non-functional
executable which has undefined semantics. This means that ~t’ should be used
only in unusual situations, with extreme care.

Chapter 4: Binding with gnatbind 103

4.2.3 Elaboration Control

The following switches provide additional control over the elaboration order. For full details
see Appendix C [Elaboration Order Handling in GNAT], page 317.

4 i

P

Normally the binder attempts to choose an elaboration order that is likely
to minimize the likelihood of an elaboration order error resulting in raising a
Program_Error exception. This switch reverses the action of the binder, and
requests that it deliberately choose an order that is likely to maximize the
likelihood of an elaboration error. This is useful in ensuring portability and
avoiding dependence on accidental fortuitous elaboration ordering.

Normally it only makes sense to use the ‘-p’ switch if dynamic elaboration

checking is used (‘-gnatE’ switch used for compilation). This is because in the
default static elaboration mode, all necessary Elaborate and Elaborate_All
pragmas are implicitly inserted. These implicit pragmas are still respected by
the binder in ‘-p’ mode, so a safe elaboration order is assured.

Note that ‘-p’ is not intended for production use; it is more for
debugging/experimental use.

4.2.4 Output Control

The following switches allow additional control over the output generated by the binder.

‘~o0 file’

Check only. Do not generate the binder output file. In this mode the binder
performs all error checks but does not generate an output file.

Output complete list of elaboration-order dependencies, showing the reason for
each dependency. This output can be rather extensive but may be useful in
diagnosing problems with elaboration order. The output is written to ‘stdout’.

Output usage information. The output is written to ‘stdout’.

Output linker options to ‘stdout’. Includes library search paths, contents of
pragmas Ident and Linker_Options, and libraries added by gnatbind.

Output chosen elaboration order. The output is written to ‘stdout’.

Output full names of all the object files that must be linked to provide the Ada
component of the program. The output is written to ‘stdout’. This list includes
the files explicitly supplied and referenced by the user as well as implicitly
referenced run-time unit files. The latter are omitted if the corresponding units
reside in shared libraries. The directory names for the run-time units depend
on the system configuration.

Set name of output file to file instead of the normal ‘v~ mainprog.adb’ default.
Note that file denote the Ada binder generated body filename. Note that if this
option is used, then linking must be done manually. It is not possible to use
gnatlink in this case, since it cannot locate the binder file.

Generate list of pragma Restrictions that could be applied to the current
unit. This is useful for code audit purposes, and also may be used to improve
code generation in some cases.

104 GNAT User’s Guide

4.2.5 Dynamic Allocation Control

The heap control switches — ‘-H32’ and ‘-H64’ — determine whether dynamic allocation
uses 32-bit or 64-bit memory. They only affect compiler-generated allocations via __gnat_
malloc; explicit calls to malloc and related functions from the C run-time library are
unaffected.

‘-H32’ Allocate memory on 32-bit heap

‘-H64’ Allocate memory on 64-bit heap. This is the default unless explicitly overridden
by a ’Size clause on the access type.

These switches are only effective on VMS platforms.

4.2.6 Binding with Non-Ada Main Programs

In our description so far we have assumed that the main program is in Ada, and that
the task of the binder is to generate a corresponding function main that invokes this Ada
main program. GNAT also supports the building of executable programs where the main
program is not in Ada, but some of the called routines are written in Ada and compiled
using GNAT (see Section 2.10 [Mixed Language Programming], page 23). The following
switch is used in this situation:

‘-n’ No main program. The main program is not in Ada.

In this case, most of the functions of the binder are still required, but instead of generating
a main program, the binder generates a file containing the following callable routines:

adainit You must call this routine to initialize the Ada part of the program by calling
the necessary elaboration routines. A call to adainit is required before the
first call to an Ada subprogram.

Note that it is assumed that the basic execution environment must be setup
to be appropriate for Ada execution at the point where the first Ada sub-
program is called. In particular, if the Ada code will do any floating-point
operations, then the FPU must be setup in an appropriate manner. For the
case of the x86, for example, full precision mode is required. The procedure
GNAT .Float_Control.Reset may be used to ensure that the FPU is in the right
state.

adafinal You must call this routine to perform any library-level finalization required by
the Ada subprograms. A call to adafinal is required after the last call to an
Ada subprogram, and before the program terminates.

If the ‘-n’ switch is given, more than one ALI file may appear on the command line for
gnatbind. The normal closure calculation is performed for each of the specified units. Cal-
culating the closure means finding out the set of units involved by tracing with references.
The reason it is necessary to be able to specify more than one ALI file is that a given
program may invoke two or more quite separate groups of Ada units.

The binder takes the name of its output file from the last specified ALI file, unless
overridden by the use of the ‘-o file’. The output is an Ada unit in source form that can
be compiled with GNAT. This compilation occurs automatically as part of the gnatlink
processing.

Chapter 4: Binding with gnatbind 105

Currently the GNAT run time requires a FPU using 80 bits mode precision. Under
targets where this is not the default it is required to call GNAT.Float_Control.Reset before
using floating point numbers (this include float computation, float input and output) in the
Ada code. A side effect is that this could be the wrong mode for the foreign code where
floating point computation could be broken after this call.

4.2.7 Binding Programs with No Main Subprogram

It is possible to have an Ada program which does not have a main subprogram. This
program will call the elaboration routines of all the packages, then the finalization routines.

The following switch is used to bind programs organized in this manner:

4 b

-z Normally the binder checks that the unit name given on the command line
corresponds to a suitable main subprogram. When this switch is used, a list of
ALI files can be given, and the execution of the program consists of elaboration
of these units in an appropriate order. Note that the default wide character
encoding method for standard Text_IO files is always set to Brackets if this
switch is set (you can use the binder switch ‘-Wx’ to override this default).

4.3 Command-Line Access

The package Ada.Command_Line provides access to the command-line arguments and pro-
gram name. In order for this interface to operate correctly, the two variables

int gnat_argc;

char **gnat_argv;
are declared in one of the GNAT library routines. These variables must be set from the
actual argc and argv values passed to the main program. With no ‘n’ present, gnatbind
generates the C main program to automatically set these variables. If the ‘n’ switch is
used, there is no automatic way to set these variables. If they are not set, the proce-
dures in Ada.Command_Line will not be available, and any attempt to use them will raise
Constraint_Error. If command line access is required, your main program must set gnat_
argc and gnat_argv from the argc and argv values passed to it.

4.4 Search Paths for gnatbind

The binder takes the name of an ALI file as its argument and needs to locate source files
as well as other ALI files to verify object consistency.

For source files, it follows exactly the same search rules as gcc (see Section 3.3 [Search
Paths and the Run-Time Library (RTL)], page 94). For ALI files the directories searched
are:

1. The directory containing the ALI file named in the command line, unless the switch
‘~I-’ is specified.

2. All directories specified by ‘~I’ switches on the gnatbind command line, in the order
given.

3. Each of the directories listed in the text file whose name is given by the ADA_PRJ_
OBJECTS_FILE environment variable.

ADA_PRJ_OBJECTS_FILE is normally set by gnatmake or by the gnat driver when project
files are used. It should not normally be set by other means.

106 GNAT User’s Guide

4. Each of the directories listed in the value of the ADA_OBJECTS_PATH environment vari-
able. Construct this value exactly as the PATH environment variable: a list of directory
names separated by colons (semicolons when working with the NT version of GNAT).

5. The content of the ‘ada_object_path’ file which is part of the GNAT installation tree
and is used to store standard libraries such as the GNAT Run Time Library (RTL)
unless the switch ‘-nostdlib’ is specified. Section 18.2.2 [Installing a library|, page 247

In the binder the switch ‘-I’ is used to specify both source and library file paths. Use ‘-al’
instead if you want to specify source paths only, and ‘-a0’ if you want to specify library
paths only. This means that for the binder ‘-I'dir is equivalent to ‘-alI’dir ‘-a0’dir. The
binder generates the bind file (a C language source file) in the current working directory.

The packages Ada, System, and Interfaces and their children make up the GNAT
Run-Time Library, together with the package GNAT and its children, which contain a set
of useful additional library functions provided by GNAT. The sources for these units are
needed by the compiler and are kept together in one directory. The ALI files and object
files generated by compiling the RTL are needed by the binder and the linker and are kept
together in one directory, typically different from the directory containing the sources. In a
normal installation, you need not specify these directory names when compiling or binding.
Either the environment variables or the built-in defaults cause these files to be found.

Besides simplifying access to the RTL, a major use of search paths is in compiling sources
from multiple directories. This can make development environments much more flexible.

4.5 Examples of gnatbind Usage
This section contains a number of examples of using the GNAT binding utility gnatbind.

gnatbind hello
The main program Hello (source program in ‘hello.adb’) is bound using the
standard switch settings. The generated main program is ‘b~hello.adb’. This
is the normal, default use of the binder.

gnatbind hello -o mainprog.adb
The main program Hello (source program in ‘hello.adb’) is bound using the
standard switch settings. The generated main program is ‘mainprog.adb’ with
the associated spec in ‘mainprog.ads’. Note that you must specify the body
here not the spec. Note that if this option is used, then linking must be done
manually, since gnatlink will not be able to find the generated file.

Chapter 5: Linking with gnatlink 107

5 Linking with gnatlink

This chapter discusses gnatlink, a tool that links an Ada program and builds an executable
file. This utility invokes the system linker (via the gcc command) with a correct list of
object files and library references. gnatlink automatically determines the list of files and
references for the Ada part of a program. It uses the binder file generated by the gnatbind
to determine this list.

Note: to invoke gnatlink with a project file, use the gnat driver (see Section 12.2 [The
GNAT Driver and Project Files], page 218).

5.1 Running gnatlink

The form of the gnatlink command is

$ gnatlink [switches| mainprog|.ali]
[non-Ada objects| [linker options|

The arguments of gnatlink (switches, main ‘ALI’ file, non-Ada objects or linker options)
may be in any order, provided that no non-Ada object may be mistaken for a main ‘ALIT’
file. Any file name ‘F’ without the ‘.ali’ extension will be taken as the main ‘ALT’ file if a

file exists whose name is the concatenation of ‘F’ and ‘.ali’.

‘mainprog.ali’ references the ALI file of the main program. The ‘.ali’ extension of this
file can be omitted. From this reference, gnatlink locates the corresponding binder file
‘b"mainprog.adb’ and, using the information in this file along with the list of non-Ada
objects and linker options, constructs a linker command file to create the executable.

The arguments other than the gnatlink switches and the main ‘ALI’ file are passed to
the linker uninterpreted. They typically include the names of object files for units written
in other languages than Ada and any library references required to resolve references in any
of these foreign language units, or in Import pragmas in any Ada units.

linker options is an optional list of linker specific switches. The default linker called by
gnatlink is gcc which in turn calls the appropriate system linker.

One useful option for the linker is ‘-s’: it reduces the size of the executable by removing
all symbol table and relocation information from the executable.

¢

Standard options for the linker such as ‘-1my_1ib’ or ‘-Ldir’ can be added as is. For
options that are not recognized by gcc as linker options, use the gcc switches ‘-Xlinker’
or ‘“-Wl,’.

Refer to the GCC documentation for details.

Here is an example showing how to generate a linker map:
$ gnatlink my_prog -Wl,-Map,MAPFILE

Using linker options it is possible to set the program stack and heap size. See Section H.14
[Setting Stack Size from gnatlink], page 397 and Section H.15 [Setting Heap Size from
gnatlink], page 397.

gnatlink determines the list of objects required by the Ada program and prepends them
to the list of objects passed to the linker. gnatlink also gathers any arguments set by the
use of pragma Linker_Options and adds them to the list of arguments presented to the
linker.

108

GNAT User’s Guide

5.2 Switches for gnatlink

The following switches are available with the gnatlink utility:

‘——version’

‘-=help’

L_f?

L_V _V7

Display Copyright and version, then exit disregarding all other options.

If ‘--version’ was not used, display usage, then exit disregarding all other
options.

On some targets, the command line length is limited, and gnatlink will gen-
erate a separate file for the linker if the list of object files is too long. The ‘-f’
switch forces this file to be generated even if the limit is not exceeded. This
is useful in some cases to deal with special situations where the command line
length is exceeded.

The option to include debugging information causes the Ada bind file (in other
words, ‘b~ mainprog.adb’) to be compiled with ‘-g’. In addition, the binder does
not delete the ‘b”mainprog.adb’, ‘b"mainprog.o’ and ‘b mainprog.ali’ files.
Without ‘-g’, the binder removes these files by default. The same procedure
apply if a C bind file was generated using ‘~C’ gnatbind option, in this case the
filenames are ‘b_mainprog.c’ and ‘b_mainprog.o’.

Do not compile the file generated by the binder. This may be used when a link
is rerun with different options, but there is no need to recompile the binder file.

Causes additional information to be output, including a full list of the included
object files. This switch option is most useful when you want to see what set
of object files are being used in the link step.

Very verbose mode. Requests that the compiler operate in verbose mode when
it compiles the binder file, and that the system linker run in verbose mode.

‘~0 exec—-name’

‘~b target’

‘-Bdir’

(_M7

exec-name specifies an alternate name for the generated executable program.
If this switch is omitted, the executable has the same name as the main unit.
For example, gnatlink try.ali creates an executable called ‘try’.

Compile your program to run on target, which is the name of a system config-
uration. You must have a GNAT cross-compiler built if target is not the same
as your host system.

Load compiler executables (for example, gnatl, the Ada compiler) from dir
instead of the default location. Omnly use this switch when multiple versions
of the GNAT compiler are available. See Section “Directory Options” in The
GNU Compiler Collection, for further details. You would normally use the ‘-b’
or -V’ switch instead.

When linking an executable, create a map file. The name of the map file has
the same name as the executable with extension ".map".

‘-M=mapfile’

When linking an executable, create a map file. The name of the map file is
"mapfile".

Chapter 5: Linking with gnatlink 109

‘-—=GCC=compiler_name’

Program used for compiling the binder file. The default is gcc. You need to use
quotes around compiler_name if compiler_name contains spaces or other sepa-
rator characters. As an example ‘--GCC="foo -x -y"’ will instruct gnatlink to
use foo -x -y as your compiler. Note that switch ‘-c’ is always inserted after
your command name. Thus in the above example the compiler command that
will be used by gnatlink will be foo -¢c -x -y. A limitation of this syntax is
that the name and path name of the executable itself must not include any em-
bedded spaces. If the compiler executable is different from the default one (gcc
or <prefix>-gcc), then the back-end switches in the ALI file are not used to com-
pile the binder generated source. For example, this is the case with ‘~-GCC="foo
-x -y"’. But the back end switches will be used for ‘~-GCC="gcc -gnatv"’. If
several ‘~-GCC=compiler_name’ are used, only the last compiler_name is taken
into account. However, all the additional switches are also taken into account.
Thus, ‘--GCC="foo -x -y" --GCC="bar -z -t"’ is equivalent to ‘--GCC="bar
-x -y —z —t"".

‘~-LINK=name’

name is the name of the linker to be invoked. This is especially useful in
mixed language programs since languages such as C++ require their own linker
to be used. When this switch is omitted, the default name for the linker is
gcc. When this switch is used, the specified linker is called instead of gcc
with exactly the same parameters that would have been passed to gcc so if
the desired linker requires different parameters it is necessary to use a wrapper
script that massages the parameters before invoking the real linker. It may be
useful to control the exact invocation by using the verbose switch.

Chapter 6: The GNAT Make Program gnatmake 111

6 The GNAT Make Program gnatmake

A typical development cycle when working on an Ada program consists of the following
steps:

Edit some sources to fix bugs.
Add enhancements.

Compile all sources affected.
Rebind and relink.

Test.

AT ol

The third step can be tricky, because not only do the modified files have to be compiled,
but any files depending on these files must also be recompiled. The dependency rules in
Ada can be quite complex, especially in the presence of overloading, use clauses, generics
and inlined subprograms.

gnatmake automatically takes care of the third and fourth steps of this process. It
determines which sources need to be compiled, compiles them, and binds and links the
resulting object files.

Unlike some other Ada make programs, the dependencies are always accurately recom-
puted from the new sources. The source based approach of the GNAT compilation model
makes this possible. This means that if changes to the source program cause corresponding
changes in dependencies, they will always be tracked exactly correctly by gnatmake.

6.1 Running gnatmake

The usual form of the gnatmake command is

$ gnatmake [switches| file_name
[file_names| [mode_switches|

The only required argument is one file_name, which specifies a compilation unit that is a
main program. Several file_names can be specified: this will result in several executables
being built. If switches are present, they can be placed before the first file_name, between
file_names or after the last file_name. If mode_switches are present, they must always be
placed after the last file_name and all switches.

If you are using standard file extensions (‘.adb’ and ‘.ads’), then the extension may be
omitted from the file_name arguments. However, if you are using non-standard extensions,
then it is required that the extension be given. A relative or absolute directory path can
be specified in a file_name, in which case, the input source file will be searched for in
the specified directory only. Otherwise, the input source file will first be searched in the
directory where gnatmake was invoked and if it is not found, it will be search on the source
path of the compiler as described in Section 3.3 [Search Paths and the Run-Time Library
(RTL)], page 94.

All gnatmake output (except when you specify ‘-M’) is to ‘stderr’. The output produced
by the ‘-M’ switch is send to ‘stdout’.

112 GNAT User’s Guide

6.2 Switches for gnatmake

You may specify any of the following switches to gnatmake:

‘~-version’
Display Copyright and version, then exit disregarding all other options.

‘-~help’ If ‘~-version’ was not used, display usage, then exit disregarding all other
options.

‘-—=GCC=compiler_name’

Program used for compiling. The default is ‘gcc’. You need to use quotes
around compiler_name if compiler_name contains spaces or other separator
characters. As an example ‘--=GCC="foo -x -y"’ will instruct gnatmake to use
foo -x -y as your compiler. A limitation of this syntax is that the name and
path name of the executable itself must not include any embedded spaces.
Note that switch ‘-c’ is always inserted after your command name. Thus in
the above example the compiler command that will be used by gnatmake will
be foo -c -x -y. If several ‘--GCC=compiler_name’ are used, only the last
compiler_name is taken into account. However, all the additional switches
are also taken into account. Thus, ‘--GCC="foo -x -y" --GCC="bar -z -t"’ is
equivalent to ‘--GCC="bar -x -y -z -t"".

‘——GNATBIND=binder_name’

Program used for binding. The default is ‘gnatbind’. You need to use quotes
around binder_name if binder_name contains spaces or other separator char-
acters. As an example ‘--GNATBIND="bar -x -y"’ will instruct gnatmake to
use bar -x -y as your binder. Binder switches that are normally appended by
gnatmake to ‘gnatbind’ are now appended to the end of bar -x -y. A limi-
tation of this syntax is that the name and path name of the executable itself
must not include any embedded spaces.

‘——GNATLINK=1inker_name’

Program used for linking. The default is ‘gnatlink’. You need to use quotes
around linker_name if linker_name contains spaces or other separator char-
acters. As an example ‘~-GNATLINK="lan -x -y"’ will instruct gnatmake to
use lan -x -y as your linker. Linker switches that are normally appended by
gnatmake to ‘gnatlink’ are now appended to the end of lan -x -y. A limi-
tation of this syntax is that the name and path name of the executable itself
must not include any embedded spaces.

‘--subdirs=subdir’
Actual object directory of each project file is the subdirectory subdir of the
object directory specified or defaulted in the project file.
‘--single-compile-per-obj-dir’
Disallow simultaneous compilations in the same object directory when project
files are used.

‘-—unchecked-shared-1lib-imports’
By default, shared library projects are not allowed to import static library
projects. When this switch is used on the command line, this restriction is
relaxed.

Chapter 6: The GNAT Make Program gnatmake 113

‘——source-info=<source info file>’

Specify a source info file. This switch is active only when project files are used.
If the source info file is specified as a relative path, then it is relative to the
object directory of the main project. If the source info file does not exist, then
after the Project Manager has successfully parsed and processed the project
files and found the sources, it creates the source info file. If the source info file
already exists and can be read successfully, then the Project Manager will get
all the needed information about the sources from the source info file and will
not look for them. This reduces the time to process the project files, especially
when looking for sources that take a long time. If the source info file exists but
cannot be parsed successfully, the Project Manager will attempt to recreate it.
If the Project Manager fails to create the source info file, a message is issued,
but gnatmake does not fail. gnatmake "trusts" the source info file. This means
that if the source files have changed (addition, deletion, moving to a different
source directory), then the source info file need to be deleted and recreated.

‘-—create-map-file’

When linking an executable, create a map file. The name of the map file has
the same name as the executable with extension ".map".

‘-—create-map-file=mapfile’

When linking an executable, create a map file. The name of the map file is
"mapfile".

Consider all files in the make process, even the GNAT internal system files (for
example, the predefined Ada library files), as well as any locked files. Locked
files are files whose ALI file is write-protected. By default, gnatmake does not
check these files, because the assumption is that the GNAT internal files are
properly up to date, and also that any write protected ALI files have been
properly installed. Note that if there is an installation problem, such that one
of these files is not up to date, it will be properly caught by the binder. You
may have to specify this switch if you are working on GNAT itself. The switch
‘-a’ is also useful in conjunction with ‘-f’ if you need to recompile an entire
application, including run-time files, using special configuration pragmas, such
as a Normalize_Scalars pragma.

By default gnatmake -a compiles all GNAT internal files with gcc -c -gnatpg
rather than gcc -c.

Bind only. Can be combined with ‘-c’ to do compilation and binding, but
no link. Can be combined with ‘-1’ to do binding and linking. When not
combined with ‘=c’ all the units in the closure of the main program must have
been previously compiled and must be up to date. The root unit specified by
file_name may be given without extension, with the source extension or, if no
GNAT Project File is specified, with the ALI file extension.

Compile only. Do not perform binding, except when ‘-b’ is also specified. Do
not perform linking, except if both ‘-b’ and ‘-1’ are also specified. If the root
unit specified by file_name is not a main unit, this is the default. Otherwise
gnatmake will attempt binding and linking unless all objects are up to date and
the executable is more recent than the objects.

114

6_C7

‘—C=file’

‘-D dir’

‘~eInnn’

.

GNAT User’s Guide

Use a temporary mapping file. A mapping file is a way to communicate to the
compiler two mappings: from unit names to file names (without any directory
information) and from file names to path names (with full directory informa-
tion). A mapping file can make the compiler’s file searches faster, especially if
there are many source directories, or the sources are read over a slow network
connection. If ‘=P’ is used, a mapping file is always used, so ‘~=C’ is unnecessary;
in this case the mapping file is initially populated based on the project file. If
‘~C’ is used without ‘-P’, the mapping file is initially empty. Each invocation
of the compiler will add any newly accessed sources to the mapping file.

Use a specific mapping file. The file, specified as a path name (absolute or
relative) by this switch, should already exist, otherwise the switch is ineffective.
The specified mapping file will be communicated to the compiler. This switch is
not compatible with a project file (-Pfile) or with multiple compiling processes
(-jnnn, when nnn is greater than 1).

Display progress for each source, up to date or not, as a single line
completed x out of y (zz%)

If the file needs to be compiled this is displayed after the invocation of the
compiler. These lines are displayed even in quiet output mode.

Put all object files and ALI file in directory dir. If the ‘-D’ switch is not used,
all object files and ALI files go in the current working directory.

This switch cannot be used when using a project file.

Indicates that the main source is a multi-unit source and the rank of the unit
in the source file is nnn. nnn needs to be a positive number and a valid index
in the source. This switch cannot be used when gnatmake is invoked for several
mains.

Follow all symbolic links when processing project files. This should be used
if your project uses symbolic links for files or directories, but is not needed in
other cases.

This also assumes that no directory matches the naming scheme for files (for
instance that you do not have a directory called "sources.ads" when using the
default GNAT naming scheme).

When you do not have to use this switch (i.e. by default), gnatmake is able
to save a lot of system calls (several per source file and object file), which can
result in a significant speed up to load and manipulate a project file, especially
when using source files from a remote system.

Output the commands for the compiler, the binder and the linker on standard
output, instead of standard error.

Force recompilations. Recompile all sources, even though some object files may
be up to date, but don’t recompile predefined or GNAT internal files or locked
files (files with a write-protected ALI file), unless the ‘-a’ switch is also specified.

When using project files, if some errors or warnings are detected during parsing
and verbose mode is not in effect (no use of switch -v), then error lines start
with the full path name of the project file, rather than its simple file name.

Chapter 6: The GNAT Make Program gnatmake 115

_jn

-1’

-

Enable debugging. This switch is simply passed to the compiler and to the
linker.

In normal mode, gnatmake compiles all object files and ALI files into the current
directory. If the ‘-i’ switch is used, then instead object files and ALI files that
already exist are overwritten in place. This means that once a large project is
organized into separate directories in the desired manner, then gnatmake will
automatically maintain and update this organization. If no ALI files are found
on the Ada object path (Section 3.3 [Search Paths and the Run-Time Library
(RTL)], page 94), the new object and ALI files are created in the directory
containing the source being compiled. If another organization is desired, where
objects and sources are kept in different directories, a useful technique is to
create dummy ALI files in the desired directories. When detecting such a
dummy file, gnatmake will be forced to recompile the corresponding source file,
and it will be put the resulting object and ALI files in the directory where it
found the dummy file.

Use n processes to carry out the (re)compilations. On a multiprocessor machine
compilations will occur in parallel. If n is 0, then the maximum number of
parallel compilations is the number of core processors on the platform. In
the event of compilation errors, messages from various compilations might get
interspersed (but gnatmake will give you the full ordered list of failing compiles
at the end). If this is problematic, rerun the make process with n set to 1 to
get a clean list of messages.

Keep going. Continue as much as possible after a compilation error. To ease
the programmer’s task in case of compilation errors, the list of sources for which
the compile fails is given when gnatmake terminates.

If gnatmake is invoked with several ‘file_names’ and with this switch, if there
are compilation errors when building an executable, gnatmake will not attempt
to build the following executables.

Link only. Can be combined with ‘-b’ to binding and linking. Linking will not
be performed if combined with ‘-c’ but not with ‘-b’. When not combined with
‘b’ all the units in the closure of the main program must have been previously
compiled and must be up to date, and the main program needs to have been
bound. The root unit specified by file_name may be given without extension,
with the source extension or, if no GNAT Project File is specified, with the ALI
file extension.

Specify that the minimum necessary amount of recompilations be performed. In
this mode gnatmake ignores time stamp differences when the only modifications
to a source file consist in adding/removing comments, empty lines, spaces or
tabs. This means that if you have changed the comments in a source file or
have simply reformatted it, using this switch will tell gnatmake not to recompile
files that depend on it (provided other sources on which these files depend have
undergone no semantic modifications). Note that the debugging information
may be out of date with respect to the sources if the ‘-m’ switch causes a
compilation to be switched, so the use of this switch represents a trade-off
between compilation time and accurate debugging information.

116

-n

GNAT User’s Guide

Check if all objects are up to date. If they are, output the object dependences
to ‘stdout’ in a form that can be directly exploited in a ‘Makefile’. By default,
each source file is prefixed with its (relative or absolute) directory name. This
name is whatever you specified in the various ‘-al’ and ‘-1’ switches. If you
use gnatmake -M ‘-q’ (see below), only the source file names, without relative
paths, are output. If you just specify the ‘-M’ switch, dependencies of the
GNAT internal system files are omitted. This is typically what you want. If
you also specify the ‘-a’ switch, dependencies of the GNAT internal files are
also listed. Note that dependencies of the objects in external Ada libraries (see
switch ‘-al’dir in the following list) are never reported.

Don’t compile, bind, or link. Checks if all objects are up to date. If they
are not, the full name of the first file that needs to be recompiled is printed.
Repeated use of this option, followed by compiling the indicated source file, will
eventually result in recompiling all required units.

‘~0 exec_name’

Output executable name. The name of the final executable program will be
exec_name. If the ‘-0’ switch is omitted the default name for the executable
will be the name of the input file in appropriate form for an executable file on
the host system.

This switch cannot be used when invoking gnatmake with several ‘file_names’.

‘-p or ——create-missing-dirs’

‘~Pproject’

-u

When using project files (-Pproject), create automatically missing object direc-
tories, library directories and exec directories.

Use project file project. Only one such switch can be used. See Section 12.1
[gnatmake and Project Files|, page 213.

Quiet. When this flag is not set, the commands carried out by gnatmake are
displayed.

Recompile if compiler switches have changed since last compilation. All com-
piler switches but -I and -o are taken into account in the following way: orders
between different “first letter” switches are ignored, but orders between same
switches are taken into account. For example, ‘-0 -02’ is different than ‘-02
-0’, but ‘-g -0’ is equivalent to ‘-0 -g’.

This switch is recommended when Integrated Preprocessing is used.

Unique. Recompile at most the main files. It implies -c. Combined with -f, it
is equivalent to calling the compiler directly. Note that using -u with a project
file and no main has a special meaning (see Section 12.1.4 [Project Files and
Main Subprograms], page 217).

When used without a project file or with one or several mains on the command
line, is equivalent to -u. When used with a project file and no main on the
command line, all sources of all project files are checked and compiled if not up
to date, and libraries are rebuilt, if necessary.

Chapter 6:

The GNAT Make Program gnatmake 117

Verbose. Display the reason for all recompilations gnatmake decides are neces-
sary, with the highest verbosity level.

Verbosity level Low. Display fewer lines than in verbosity Medium.
Verbosity level Medium. Potentially display fewer lines than in verbosity High.
Verbosity level High. Equivalent to -v.

Indicate the verbosity of the parsing of GNAT project files. See Section 12.1.1
[Switches Related to Project Files|, page 213.

Indicate that sources that are not part of any Project File may be compiled.
Normally, when using Project Files, only sources that are part of a Project
File may be compile. When this switch is used, a source outside of all Project
Files may be compiled. The ALI file and the object file will be put in the object
directory of the main Project. The compilation switches used will only be those
specified on the command line. Even when ‘-x’ is used, mains specified on the
command line need to be sources of a project file.

‘~Xname=value’

Indicate that external variable name has the value value. The Project Manager
will use this value for occurrences of external (name) when parsing the project
file. See Section 12.1.1 [Switches Related to Project Files], page 213.

)

No main subprogram. Bind and link the program even if the unit name given
on the command line is a package name. The resulting executable will execute
the elaboration routines of the package and its closure, then the finalization
routines.

gcc switches

Any uppercase or multi-character switch that is not a gnatmake switch is passed
to gec (e.g. ‘-0’, ‘-gnato,’ etc.)

Source and library search path switches:

‘—aldir’

‘—aldir’

‘—a0dir’

‘-Adir’

When looking for source files also look in directory dir. The order in which
source files search is undertaken is described in Section 3.3 [Search Paths and
the Run-Time Library (RTL)], page 94.

Consider dir as being an externally provided Ada library. Instructs gnatmake
to skip compilation units whose ‘.ALI’ files have been located in directory dir.
This allows you to have missing bodies for the units in dir and to ignore out
of date bodies for the same units. You still need to specify the location of
the specs for these units by using the switches ‘-aldir’ or ‘-Idir’. Note: this
switch is provided for compatibility with previous versions of gnatmake. The
easier method of causing standard libraries to be excluded from consideration
is to write-protect the corresponding ALI files.

When searching for library and object files, look in directory dir. The order
in which library files are searched is described in Section 4.4 [Search Paths for
gnatbind], page 105.

Equivalent to ‘-alLdir -aldir’.

118 GNAT User’s Guide

‘-Idir’ Equivalent to ‘-aOdir -aldir’.

‘~-I-’ Do not look for source files in the directory containing the source file named in
the command line. Do not look for ALI or object files in the directory where
gnatmake was invoked.

‘-Ldir’ Add directory dir to the list of directories in which the linker will search for
libraries. This is equivalent to ‘-largs -L’dir. Furthermore, under Windows,
the sources pointed to by the libraries path set in the registry are not searched
for.

‘-nostdinc’
Do not look for source files in the system default directory.

‘-nostdlib’
Do not look for library files in the system default directory.

‘--RTS=rts-path’
Specifies the default location of the runtime library. GNAT looks for
the runtime in the following directories, and stops as soon as a wvalid
runtime is found (‘adainclude’ or ‘ada_source_path’, and ‘adalib’ or
‘ada_object_path’ present):

e <current directory>/$rts_path
e <default-search-dir>/$rts_path
e <default-search-dir>/rts-$rts_path

The selected path is handled like a normal RTS path.

6.3 Mode Switches for gnatmake

The mode switches (referred to as mode_switches) allow the inclusion of switches that are
to be passed to the compiler itself, the binder or the linker. The effect of a mode switch is
to cause all subsequent switches up to the end of the switch list, or up to the next mode
switch, to be interpreted as switches to be passed on to the designated component of GNAT.

‘-cargs switches’
Compiler switches. Here switches is a list of switches that are valid switches
for gcc. They will be passed on to all compile steps performed by gnatmake.

‘~bargs switches’
Binder switches. Here switches is a list of switches that are valid switches for
gnatbind. They will be passed on to all bind steps performed by gnatmake.

‘-largs switches’
Linker switches. Here switches is a list of switches that are valid switches for
gnatlink. They will be passed on to all link steps performed by gnatmake.

‘-margs switches’
Make switches. The switches are directly interpreted by gnatmake, regardless
of any previous occurrence of ‘-cargs’, ‘-bargs’ or ‘-largs’.

Chapter 6: The GNAT Make Program gnatmake 119

6.4 Notes on the Command Line

This section contains some additional useful notes on the operation of the gnatmake com-
mand.

e If gnatmake finds no ALI files, it recompiles the main program and all other units
required by the main program. This means that gnatmake can be used for the initial
compile, as well as during subsequent steps of the development cycle.

e If you enter gnatmake file.adb, where ‘file.adb’ is a subunit or body of a generic
unit, gnatmake recompiles ‘file.adb’ (because it finds no ALI) and stops, issuing a
warning.

e In gnatmake the switch ‘-I’ is used to specify both source and library file paths. Use
‘-al’ instead if you just want to specify source paths only and ‘-aQ’ if you want to
specify library paths only.

e gnatmake will ignore any files whose ALI file is write-protected. This may conveniently
be used to exclude standard libraries from consideration and in particular it means
that the use of the ‘-f’ switch will not recompile these files unless ‘-a’ is also specified.

e gnatmake has been designed to make the use of Ada libraries particularly convenient.
Assume you have an Ada library organized as follows: 0bj-dir contains the objects and
ALI files for of your Ada compilation units, whereas include-dir contains the specs of
these units, but no bodies. Then to compile a unit stored in main.adb, which uses this
Ada library you would just type

$ gnatmake -alinclude-dir -alobj-dir main

e Using gnatmake along with the ‘-m (minimal recompilation)’ switch provides a
mechanism for avoiding unnecessary recompilations. Using this switch, you can update
the comments/format of your source files without having to recompile everything.
Note, however, that adding or deleting lines in a source files may render its debugging
info obsolete. If the file in question is a spec, the impact is rather limited, as that
debugging info will only be useful during the elaboration phase of your program. For
bodies the impact can be more significant. In all events, your debugger will warn you
if a source file is more recent than the corresponding object, and alert you to the fact
that the debugging information may be out of date.

6.5 How gnatmake Works

Generally gnatmake automatically performs all necessary recompilations and you don’t need
to worry about how it works. However, it may be useful to have some basic understanding
of the gnatmake approach and in particular to understand how it uses the results of previous
compilations without incorrectly depending on them.

First a definition: an object file is considered up to date if the corresponding ALI file
exists and if all the source files listed in the dependency section of this ALI file have time
stamps matching those in the ALI file. This means that neither the source file itself nor
any files that it depends on have been modified, and hence there is no need to recompile
this file.

gnatmake works by first checking if the specified main unit is up to date. If so, no
compilations are required for the main unit. If not, gnatmake compiles the main program
to build a new ALI file that reflects the latest sources. Then the ALI file of the main unit

120 GNAT User’s Guide

is examined to find all the source files on which the main program depends, and gnatmake
recursively applies the above procedure on all these files.

This process ensures that gnatmake only trusts the dependencies in an existing ALI
file if they are known to be correct. Otherwise it always recompiles to determine a new,
guaranteed accurate set of dependencies. As a result the program is compiled “upside down”
from what may be more familiar as the required order of compilation in some other Ada
systems. In particular, clients are compiled before the units on which they depend. The
ability of GNAT to compile in any order is critical in allowing an order of compilation to
be chosen that guarantees that gnatmake will recompute a correct set of new dependencies
if necessary.

When invoking gnatmake with several file_names, if a unit is imported by several of the
executables, it will be recompiled at most once.

Note: when using non-standard naming conventions (see Section 2.4 [Using Other File
Names], page 17), changing through a configuration pragmas file the version of a source and
invoking gnatmake to recompile may have no effect, if the previous version of the source is
still accessible by gnatmake. It may be necessary to use the switch -f.

6.6 Examples of gnatmake Usage

gnatmake hello.adb
Compile all files necessary to bind and link the main program ‘hello.adb’
(containing unit Hello) and bind and link the resulting object files to generate
an executable file ‘hello’.

gnatmake mainl main2 main3
Compile all files necessary to bind and link the main programs ‘maini.adb’
(containing unit Mainl), ‘main2.adb’ (containing unit Main2) and ‘main3.adb’
(containing unit Main3) and bind and link the resulting object files to generate
three executable files ‘mainl’, ‘main2’ and ‘main3’.

gnatmake -9 Main_Unit -cargs -02 -bargs -1
Compile all files necessary to bind and link the main program unit Main_Unit
(from file ‘main_unit.adb’). All compilations will be done with optimization
level 2 and the order of elaboration will be listed by the binder. gnatmake will
operate in quiet mode, not displaying commands it is executing.

Chapter 7: Improving Performance 121

7 Improving Performance

This chapter presents several topics related to program performance. It first describes some
of the tradeoffs that need to be considered and some of the techniques for making your
program run faster. It then documents unused subprogram/data elimination feature, which
can reduce the size of program executables.

7.1 Performance Considerations

The GNAT system provides a number of options that allow a trade-off between
e performance of the generated code
e speed of compilation
e minimization of dependences and recompilation

e the degree of run-time checking.

The defaults (if no options are selected) aim at improving the speed of compilation and
minimizing dependences, at the expense of performance of the generated code:

e no optimization
e 1o inlining of subprogram calls

e all run-time checks enabled except overflow and elaboration checks

These options are suitable for most program development purposes. This chapter describes
how you can modify these choices, and also provides some guidelines on debugging optimized
code.

7.1.1 Controlling Run-Time Checks

By default, GNAT generates all run-time checks, except integer overflow checks, stack
overflow checks, and checks for access before elaboration on subprogram calls. The latter
are not required in default mode, because all necessary checking is done at compile time.
Two gnat switches, ‘~gnatp’ and ‘-gnato’ allow this default to be modified. See Section 3.2.6
[Run-Time Checks|, page 80.

Our experience is that the default is suitable for most development purposes.

We treat integer overflow specially because these are quite expensive and in our experi-
ence are not as important as other run-time checks in the development process. Note that
division by zero is not considered an overflow check, and divide by zero checks are generated
where required by default.

Elaboration checks are off by default, and also not needed by default, since GNAT uses
a static elaboration analysis approach that avoids the need for run-time checking. This
manual contains a full chapter discussing the issue of elaboration checks, and if the default
is not satisfactory for your use, you should read this chapter.

For validity checks, the minimal checks required by the Ada Reference Manual (for case
statements and assignments to array elements) are on by default. These can be suppressed
by use of the ‘-gnatVn’ switch. Note that in Ada 83, there were no validity checks, so
if the Ada 83 mode is acceptable (or when comparing GNAT performance with an Ada
83 compiler), it may be reasonable to routinely use ‘-gnatVn’. Validity checks are also
suppressed entirely if ‘~gnatp’ is used.

122 GNAT User’s Guide

Note that the setting of the switches controls the default setting of the checks. They
may be modified using either pragma Suppress (to remove checks) or pragma Unsuppress
(to add back suppressed checks) in the program source.

7.1.2 Use of Restrictions

The use of pragma Restrictions allows you to control which features are permitted in your
program. Apart from the obvious point that if you avoid relatively expensive features like
finalization (enforceable by the use of pragma Restrictions (No_Finalization), the use of this
pragma does not affect the generated code in most cases.

One notable exception to this rule is that the possibility of task abort results in some
distributed overhead, particularly if finalization or exception handlers are used. The reason
is that certain sections of code have to be marked as non-abortable.

If you use neither the abort statement, nor asynchronous transfer of control (select
... then abort), then this distributed overhead is removed, which may have a general
positive effect in improving overall performance. Especially code involving frequent use of
tasking constructs and controlled types will show much improved performance. The relevant
restrictions pragmas are

pragma Restrictions (No_Abort_Statements);

pragma Restrictions (Max_Asynchronous_Select_Nesting => 0);
It is recommended that these restriction pragmas be used if possible. Note that this also
means that you can write code without worrying about the possibility of an immediate
abort at any point.

7.1.3 Optimization Levels

Without any optimization option, the compiler’s goal is to reduce the cost of compilation
and to make debugging produce the expected results. Statements are independent: if you
stop the program with a breakpoint between statements, you can then assign a new value
to any variable or change the program counter to any other statement in the subprogram
and get exactly the results you would expect from the source code.

Turning on optimization makes the compiler attempt to improve the performance and/or
code size at the expense of compilation time and possibly the ability to debug the program.

If you use multiple -O options, with or without level numbers, the last such option is
the one that is effective.

The default is optimization off. This results in the fastest compile times, but GNAT makes
absolutely no attempt to optimize, and the generated programs are considerably larger and
slower than when optimization is enabled. You can use the ‘-0’ switch (the permitted forms
are ‘=00, ‘=01’ ‘-02’, ‘-03’, and ‘-0s’) to gcc to control the optimization level:

‘-00’ No optimization (the default); generates unoptimized code but has the fastest
compilation time.

Note that many other compilers do fairly extensive optimization even if “no
optimization” is specified. With gcc, it is very unusual to use -O0 for production
if execution time is of any concern, since -O0 really does mean no optimization
at all. This difference between gcc and other compilers should be kept in mind
when doing performance comparisons.

Chapter 7: Improving Performance 123

‘-0r’ Moderate optimization; optimizes reasonably well but does not degrade compi-
lation time significantly.

‘-02’ Full optimization; generates highly optimized code and has the slowest compi-
lation time.

‘-03’ Full optimization as in ‘-=02’; also uses more aggressive automatic inlining of sub-
programs within a unit (see Section 7.1.5 [Inlining of Subprograms|, page 125)
and attempts to vectorize loops.

‘-0g’ Optimize space usage (code and data) of resulting program.

Higher optimization levels perform more global transformations on the program and apply
more expensive analysis algorithms in order to generate faster and more compact code. The
price in compilation time, and the resulting improvement in execution time, both depend
on the particular application and the hardware environment. You should experiment to
find the best level for your application.

Since the precise set of optimizations done at each level will vary from release to release
(and sometime from target to target), it is best to think of the optimization settings in
general terms. See Section “Options That Control Optimization” in Using the GNU Com-
piler Collection (GCC), for details about the ‘-0’ settings and a number of ‘~£’ options that
individually enable or disable specific optimizations.

Unlike some other compilation systems, gcc has been tested extensively at all optimiza-
tion levels. There are some bugs which appear only with optimization turned on, but there
have also been bugs which show up only in unoptimized code. Selecting a lower level of
optimization does not improve the reliability of the code generator, which in practice is
highly reliable at all optimization levels.

Note regarding the use of ‘-03’: The use of this optimization level is generally discouraged
with GNAT), since it often results in larger executables which may run more slowly. See
further discussion of this point in Section 7.1.5 [Inlining of Subprograms], page 125.

)

7.1.4 Debugging Optimized Code

Although it is possible to do a reasonable amount of debugging at nonzero optimization
levels, the higher the level the more likely that source-level constructs will have been elimi-
nated by optimization. For example, if a loop is strength-reduced, the loop control variable
may be completely eliminated and thus cannot be displayed in the debugger. This can only
happen at ‘-02’ or ‘~-03’. Explicit temporary variables that you code might be eliminated
at level ‘=01’ or higher.

The use of the ‘~g’ switch, which is needed for source-level debugging, affects the size of
the program executable on disk, and indeed the debugging information can be quite large.
However, it has no effect on the generated code (and thus does not degrade performance)

Since the compiler generates debugging tables for a compilation unit before it performs
optimizations, the optimizing transformations may invalidate some of the debugging data.
You therefore need to anticipate certain anomalous situations that may arise while debug-
ging optimized code. These are the most common cases:

1. The “hopping Program Counter”: Repeated step or next commands show the PC
bouncing back and forth in the code. This may result from any of the following opti-
mizations:

124 GNAT User’s Guide

o Common subexpression elimination: using a single instance of code for a quantity
that the source computes several times. As a result you may not be able to stop
on what looks like a statement.

e Invariant code motion: moving an expression that does not change within a loop,
to the beginning of the loop.

e Instruction scheduling: moving instructions so as to overlap loads and stores (typ-
ically) with other code, or in general to move computations of values closer to their
uses. Often this causes you to pass an assignment statement without the assign-
ment happening and then later bounce back to the statement when the value is
actually needed. Placing a breakpoint on a line of code and then stepping over it
may, therefore, not always cause all the expected side-effects.

2. The “big leap”: More commonly known as cross-jumping, in which two identical pieces
of code are merged and the program counter suddenly jumps to a statement that is not
supposed to be executed, simply because it (and the code following) translates to the
same thing as the code that was supposed to be executed. This effect is typically seen
in sequences that end in a jump, such as a goto, a return, or a break in a C switch
statement.

3. The “roving variable”: The symptom is an unexpected value in a variable. There are
various reasons for this effect:

e In a subprogram prologue, a parameter may not yet have been moved to its
“home”.

e A variable may be dead, and its register re-used. This is probably the most
common cause.

e As mentioned above, the assignment of a value to a variable may have been moved.

e A variable may be eliminated entirely by value propagation or other means. In
this case, GCC may incorrectly generate debugging information for the variable

In general, when an unexpected value appears for a local variable or parameter you
should first ascertain if that value was actually computed by your program, as opposed
to being incorrectly reported by the debugger. Record fields or array elements in an
object designated by an access value are generally less of a problem, once you have
ascertained that the access value is sensible. Typically, this means checking variables
in the preceding code and in the calling subprogram to verify that the value observed
is explainable from other values (one must apply the procedure recursively to those
other values); or re-running the code and stopping a little earlier (perhaps before the
call) and stepping to better see how the variable obtained the value in question; or
continuing to step from the point of the strange value to see if code motion had simply
moved the variable’s assignments later.

In light of such anomalies, a recommended technique is to use ‘=00’ early in the software
development cycle, when extensive debugging capabilities are most needed, and then move
to ‘=01’ and later ‘-02’ as the debugger becomes less critical. Whether to use the ‘-g’
switch in the release version is a release management issue. Note that if you use ‘-g’ you
can then use the strip program on the resulting executable, which removes both debugging
information and global symbols.

Chapter 7: Improving Performance 125

7.1.5 Inlining of Subprograms
A call to a subprogram in the current unit is inlined if all the following conditions are met:
e The optimization level is at least ‘-01’.

e The called subprogram is suitable for inlining: It must be small enough and not contain
something that gcc cannot support in inlined subprograms.

e Any one of the following applies: pragma Inline is applied to the subprogram and the
‘—gnatn’ switch is specified; the subprogram is local to the unit and called once from
within it; the subprogram is small and optimization level ‘-02’ is specified; optimization
level ‘-03’ is specified.

Calls to subprograms in with’ed units are normally not inlined. To achieve actual inlining
(that is, replacement of the call by the code in the body of the subprogram), the following
conditions must all be true:

e The optimization level is at least ‘-01’.

e The called subprogram is suitable for inlining: It must be small enough and not contain
something that gcc cannot support in inlined subprograms.

e The call appears in a body (not in a package spec).
e There is a pragma Inline for the subprogram.
e The ‘-gnatn’ switch is used on the command line.
Even if all these conditions are met, it may not be possible for the compiler to inline the

call, due to the length of the body, or features in the body that make it impossible for the
compiler to do the inlining.

Note that specifying the ‘-gnatn’ switch causes additional compilation dependencies.
Consider the following:

-

package R is
procedure Q;
pragma Inline (Q);

end R;

package body R is

end R;
with R;
procedure Main is
begin
R.Q;
end Main;
S

With the default behavior (no ‘-gnatn’ switch specified), the compilation of the Main proce-
dure depends only on its own source, ‘main.adb’, and the spec of the package in file ‘r.ads’.
This means that editing the body of R does not require recompiling Main.

On the other hand, the call R.Q is not inlined under these circumstances. If the ‘-gnatn’
switch is present when Main is compiled, the call will be inlined if the body of Q is small
enough, but now Main depends on the body of R in ‘r.adb’ as well as on the spec. This

126 GNAT User’s Guide

means that if this body is edited, the main program must be recompiled. Note that this
extra dependency occurs whether or not the call is in fact inlined by gcc.

The use of front end inlining with ‘~gnatN’ generates similar additional dependencies.

Note: The ‘~fno-inline’ switch can be used to prevent all inlining. This switch overrides
all other conditions and ensures that no inlining occurs. The extra dependences resulting
from ‘-gnatn’ will still be active, even if this switch is used to suppress the resulting inlining
actions.

Note: The ‘-fno-inline-functions’ switch can be used to prevent automatic inlining
of subprograms if ‘-03’ is used.

Note: The ‘-fno-inline-small-functions’ switch can be used to prevent automatic
inlining of small subprograms if ‘=02’ is used.

Note: The ‘-fno-inline-functions-called-once’ switch can be used to prevent in-
lining of subprograms local to the unit and called once from within it if ‘-01’ is used.

Note regarding the use of ‘-03": ‘-~gnatn’ is made up of two sub-switches ‘-~gnatnl’ and

‘-gnatn2’ that can be directly specified in lieu of it, ‘-gnatn’ being translated into one
of them based on the optimization level. With ‘-02’ or below, ‘-gnatn’ is equivalent to
‘-gnatnl’ which activates pragma Inline with moderate inlining across modules. With
‘-03’, ‘-gnatn’ is equivalent to ‘-gnatn2’ which activates pragma Inline with full inlining
across modules. If you have used pragma Inline in appropriate cases, then it is usually
much better to use ‘-02’ and ‘-gnatn’ and avoid the use of ‘-03” which has the additional
effect of inlining subprograms you did not think should be inlined. We have found that
the use of ‘-03’ may slow down the compilation and increase the code size by performing
excessive inlining, leading to increased instruction cache pressure from the increased code
size and thus minor performance improvements. So the bottom line here is that you should
not automatically assume that ‘-03’ is better than ‘-02’, and indeed you should use ‘-03’
only if tests show that it actually improves performance for your program.

7.1.6 Vectorization of loops

You can take advantage of the auto-vectorizer present in the gcc back end to vectorize loops
with GNAT. The corresponding command line switch is ‘~-ftree-vectorize’ but, as it is
enabled by default at ‘-03’ and other aggressive optimizations helpful for vectorization also
are enabled by default at this level, using ‘-03’ directly is recommended.

You also need to make sure that the target architecture features a supported SIMD
instruction set. For example, for the x86 architecture, you should at least specify ‘-msse2’
to get significant vectorization (but you don’t need to specify it for x86-64 as it is part of
the base 64-bit architecture). Similarly, for the PowerPC architecture, you should specify
‘-maltivec’.

The preferred loop form for vectorization is the for iteration scheme. Loops with a
while iteration scheme can also be vectorized if they are very simple, but the vectorizer
will quickly give up otherwise. With either iteration scheme, the flow of control must be
straight, in particular no exit statement may appear in the loop body. The loop may
however contain a single nested loop, if it can be vectorized when considered alone:

Chapter 7: Improving Performance 127

-
A : array (1..4, 1..4) of Long_Float;

S : array (1..4) of Long_Float;

procedure Sum is
begin
for I in A’Range(1) loop
for J in A’Range(2) loop
S (I) :=8 (I) +A (I, D;
end loop;
end loop;
end Sum;

\

The vectorizable operations depend on the targeted SIMD instruction set, but the adding
and some of the multiplying operators are generally supported, as well as the logical opera-
tors for modular types. Note that, in the former case, enabling overflow checks, for example
with ‘-gnato’, totally disables vectorization. The other checks are not supposed to have
the same definitive effect, although compiling with ‘~gnatp’ might well reveal cases where
some checks do thwart vectorization.

Type conversions may also prevent vectorization if they involve semantics that are not
directly supported by the code generator or the SIMD instruction set. A typical example
is direct conversion from floating-point to integer types. The solution in this case is to use
the following idiom:

Integer (S’Truncation (F))
if S is the subtype of floating-point object F.

In most cases, the vectorizable loops are loops that iterate over arrays. All kinds of array
types are supported, i.e. constrained array types with static bounds:

type Array_Type is array (1 .. 4) of Long_Float;
constrained array types with dynamic bounds:
type Array_Type is array (1 .. Q.N) of Long_Float;

type Array_Type is array (Q.K .. 4) of Long_Float;

type Array_Type is array (Q.K .. Q.N) of Long_Float;

or unconstrained array types:
type Array_Type is array (Positive range <>) of Long_Float;

The quality of the generated code decreases when the dynamic aspect of the array type
increases, the worst code being generated for unconstrained array types. This is so because,
the less information the compiler has about the bounds of the array, the more fallback code
it needs to generate in order to fix things up at run time.

It is possible to specify that a given loop should be subject to vectorization preferably
to other optimizations by means of pragma Loop_Optimize:

pragma Loop_Optimize (Vector);

placed immediately within the loop will convey the appropriate hint to the compiler for this
loop.

7.1.7 Other Optimization Switches

Since GNAT uses the gcc back end, all the specialized gcc optimization switches are poten-
tially usable. These switches have not been extensively tested with GNAT but can generally
be expected to work. Examples of switches in this category are ‘~funroll-loops’ and the

128 GNAT User’s Guide

various target-specific ‘-m’ options (in particular, it has been observed that ‘-march=xxx’

can significantly improve performance on appropriate machines). For full details of these
switches, see Section “Hardware Models and Configurations” in Using the GNU Compiler
Collection (GCC).

7.1.8 Optimization and Strict Aliasing

The strong typing capabilities of Ada allow an optimizer to generate efficient code in situ-
ations where other languages would be forced to make worst case assumptions preventing
such optimizations. Consider the following example:

~

procedure R is
type Intl is new Integer;
type Int2 is new Integer;
type IntlA is access Intl;
type Int2A is access Int2;
IntlV : IntiA;
Int2V : Int2A;

begin

for J in Data’Range loop
if Data (J) = IntiV.all then
Int2V.all := Int2V.all + 1;
end if;
end loop;
end R;
_

In this example, since the variable Int1V can only access objects of type Int1, and Int2V can
only access objects of type Int2, there is no possibility that the assignment to Int2V.all
affects the value of Int1V.all. This means that the compiler optimizer can "know" that
the value Int1V.all is constant for all iterations of the loop and avoid the extra memory
reference required to dereference it each time through the loop.

This kind of optimization, called strict aliasing analysis, is triggered by specifying an
optimization level of ‘=02’ or higher or ‘-0s’ and allows GNAT to generate more efficient code
when access values are involved.

However, although this optimization is always correct in terms of the formal semantics
of the Ada Reference Manual, difficulties can arise if features like Unchecked_Conversion
are used to break the typing system. Consider the following complete program example:

Chapter 7: Improving Performance 129

-
package pl is
type intl is new integer;
type int2 is new integer;
type al is access intl;
type a2 is access int2;
end pil;

with pl; use pil;
package p2 is

function to_a2 (Input : al) return a2;
end p2;

with Unchecked_Conversion;
package body p2 is
function to_a2 (Input : al) return a2 is
function to_a2u is
new Unchecked_Conversion (al, a2);
begin
return to_a2u (Input);
end to_a2;
end p2;

with p2; use p2;

with pl; use pil;

with Text_I0; use Text_I0;
procedure m is

vl : al := new intl;

v2 : a2 := to_a2 (vl);
begin

vli.all := 1;

v2.all := 0;

put_line (intl’image (v1.all));
end;

-

This program prints out 0 in ‘-00’ or ‘=01’ mode, but it prints out 1 in ‘-02’ mode. That’s
because in strict aliasing mode, the compiler can and does assume that the assignment to
v2.2all could not affect the value of vi.all, since different types are involved.

This behavior is not a case of non-conformance with the standard, since the Ada RM
specifies that an unchecked conversion where the resulting bit pattern is not a correct value
of the target type can result in an abnormal value and attempting to reference an abnormal
value makes the execution of a program erroneous. That’s the case here since the result does
not point to an object of type int2. This means that the effect is entirely unpredictable.

However, although that explanation may satisfy a language lawyer, in practice an ap-
plications programmer expects an unchecked conversion involving pointers to create true
aliases and the behavior of printing 1 seems plain wrong. In this case, the strict aliasing
optimization is unwelcome.

Indeed the compiler recognizes this possibility, and the unchecked conversion generates

a warning:

p2.adb:5:07: warning: possible aliasing problem with type "a2"

p2.adb:5:07: warning: use -fno-strict-aliasing switch for references

p2.adb:5:07: warning: or use "pragma No_Strict_Aliasing (a2);"
Unfortunately the problem is recognized when compiling the body of package p2, but the
actual "bad" code is generated while compiling the body of m and this latter compilation
does not see the suspicious Unchecked_Conversion.

130 GNAT User’s Guide

As implied by the warning message, there are approaches you can use to avoid the
unwanted strict aliasing optimization in a case like this.

One possibility is to simply avoid the use of ‘-02’, but that is a bit drastic, since it throws
away a number of useful optimizations that do not involve strict aliasing assumptions.

A less drastic approach is to compile the program wusing the option
‘~fno-strict-aliasing’. Actually it is only the unit containing the dereferenc-
ing of the suspicious pointer that needs to be compiled. So in this case, if we compile
unit m with this switch, then we get the expected value of zero printed. Analyzing which
units might need the switch can be painful, so a more reasonable approach is to compile
the entire program with options ‘-02’ and ‘~fno-strict-aliasing’. If the performance is
satisfactory with this combination of options, then the advantage is that the entire issue of
possible "wrong" optimization due to strict aliasing is avoided.

To avoid the use of compiler switches, the configuration pragma No_Strict_Aliasing
with no parameters may be used to specify that for all access types, the strict aliasing
optimization should be suppressed.

However, these approaches are still overkill, in that they causes all manipulations of all
access values to be deoptimized. A more refined approach is to concentrate attention on
the specific access type identified as problematic.

First, if a careful analysis of uses of the pointer shows that there are no possible prob-
lematic references, then the warning can be suppressed by bracketing the instantiation of
Unchecked_Conversion to turn the warning off:

pragma Warnings (0ff);
function to_a2u is
new Unchecked_Conversion (al, a2);
pragma Warnings (On);
Of course that approach is not appropriate for this particular example, since indeed there
is a problematic reference. In this case we can take one of two other approaches.

The first possibility is to move the instantiation of unchecked conversion to the unit in
which the type is declared. In this example, we would move the instantiation of Unchecked_
Conversion from the body of package p2 to the spec of package pl. Now the warning
disappears. That’s because any use of the access type knows there is a suspicious unchecked
conversion, and the strict aliasing optimization is automatically suppressed for the type.

If it is not practical to move the unchecked conversion to the same unit in which the
destination access type is declared (perhaps because the source type is not visible in that
unit), you may use pragma No_Strict_Aliasing for the type. This pragma must occur in
the same declarative sequence as the declaration of the access type:

type a2 is access int2;

pragma No_Strict_Aliasing (a2);
Here again, the compiler now knows that the strict aliasing optimization should be sup-
pressed for any reference to type a2 and the expected behavior is obtained.

Finally, note that although the compiler can generate warnings for simple cases of
unchecked conversions, there are tricker and more indirect ways of creating type incor-
rect aliases which the compiler cannot detect. Examples are the use of address overlays and
unchecked conversions involving composite types containing access types as components.
In such cases, no warnings are generated, but there can still be aliasing problems. One

Chapter 7: Improving Performance 131

safe coding practice is to forbid the use of address clauses for type overlaying, and to allow
unchecked conversion only for primitive types. This is not really a significant restriction
since any possible desired effect can be achieved by unchecked conversion of access values.

The aliasing analysis done in strict aliasing mode can certainly have significant benefits.
We have seen cases of large scale application code where the time is increased by up to
5% by turning this optimization off. If you have code that includes significant usage of
unchecked conversion, you might want to just stick with ‘~01’ and avoid the entire issue. If
you get adequate performance at this level of optimization level, that’s probably the safest
approach. If tests show that you really need higher levels of optimization, then you can
experiment with ‘-02’ and ‘-02 -fno-strict-aliasing’ to see how much effect this has on
size and speed of the code. If you really need to use ‘-02’ with strict aliasing in effect, then
you should review any uses of unchecked conversion of access types, particularly if you are
getting the warnings described above.

7.1.9 Aliased Variables and Optimization

There are scenarios in which programs may use low level techniques to modify variables that
otherwise might be considered to be unassigned. For example, a variable can be passed to
a procedure by reference, which takes the address of the parameter and uses the address
to modify the variable’s value, even though it is passed as an IN parameter. Consider the
following example:

procedure P is

Max_Length : constant Natural := 16;
type Char_Ptr is access all Character;

procedure Get_String(Buffer: Char_Ptr; Size : Integer);
pragma Import (C, Get_String, "get_string");

Name : aliased String (1 .. Max_Length) := (others => ’ ’);
Temp : Char_Ptr;

function Addr (S : String) return Char_Ptr is
function To_Char_Ptr is
new Ada.Unchecked_Conversion (System.Address, Char_Ptr);
begin
return To_Char_Ptr (S (S’First)’Address);
end;

begin
Temp := Addr (Name);
Get_String (Temp, Max_Length);
end;
where Get_String is a C function that uses the address in Temp to modify the variable
Name. This code is dubious, and arguably erroneous, and the compiler would be entitled to
assume that Name is never modified, and generate code accordingly.

However, in practice, this would cause some existing code that seems to work with no
optimization to start failing at high levels of optimzization.

What the compiler does for such cases is to assume that marking a variable as aliased
indicates that some "funny business" may be going on. The optimizer recognizes the aliased
keyword and inhibits optimizations that assume the value cannot be assigned. This means

132 GNAT User’s Guide

that the above example will in fact "work" reliably, that is, it will produce the expected
results.

7.1.10 Atomic Variables and Optimization

There are two considerations with regard to performance when atomic variables are used.

First, the RM only guarantees that access to atomic variables be atomic, it has nothing
to say about how this is achieved, though there is a strong implication that this should not
be achieved by explicit locking code. Indeed GNAT will never generate any locking code for
atomic variable access (it will simply reject any attempt to make a variable or type atomic
if the atomic access cannot be achieved without such locking code).

That being said, it is important to understand that you cannot assume that the entire
variable will always be accessed. Consider this example:

type R is record
A,B,C,D : Character;

end record;

for R’Size use 32;

for R’Alignment use 4;

RV : R;
pragma Atomic (RV);
X : Character;

X := RV.B;

You cannot assume that the reference to RV.B will read the entire 32-bit variable with a
single load instruction. It is perfectly legitimate if the hardware allows it to do a byte read
of just the B field. This read is still atomic, which is all the RM requires. GNAT can and
does take advantage of this, depending on the architecture and optimization level. Any
assumption to the contrary is non-portable and risky. Even if you examine the assembly
language and see a full 32-bit load, this might change in a future version of the compiler.

If your application requires that all accesses to RV in this example be full 32-bit loads,
you need to make a copy for the access as in:

declare

RV_Copy : comnstant R := RV;
begin

X := RV_Copy.B;
end;

Now the reference to RV must read the whole variable. Actually one can imagine some
compiler which figures out that the whole copy is not required (because only the B field is
actually accessed), but GNAT certainly won’t do that, and we don’t know of any compiler
that would not handle this right, and the above code will in practice work portably across
all architectures (that permit the Atomic declaration).

The second issue with atomic variables has to do with the possible requirement of gen-
erating synchronization code. For more details on this, consult the sections on the pragmas
Enable/Disable_Atomic_Synchronization in the GNAT Reference Manual. If performance
is critical, and such synchronization code is not required, it may be useful to disable it.

7.1.11 Passive Task Optimization

A passive task is one which is sufficiently simple that in theory a compiler could recognize
it an implement it efficiently without creating a new thread. The original design of Ada

Chapter 7: Improving Performance 133

83 had in mind this kind of passive task optimization, but only a few Ada 83 compilers
attempted it. The problem was that it was difficult to determine the exact conditions under
which the optimization was possible. The result is a very fragile optimization where a very
minor change in the program can suddenly silently make a task non-optimizable.

With the revisiting of this issue in Ada 95, there was general agreement that this ap-
proach was fundamentally flawed, and the notion of protected types was introduced. When
using protected types, the restrictions are well defined, and you KNOW that the operations
will be optimized, and furthermore this optimized performance is fully portable.

Although it would theoretically be possible for GNAT to attempt to do this optimization,
but it really doesn’t make sense in the context of Ada 95, and none of the Ada 95 compilers
implement this optimization as far as we know. In particular GNAT never attempts to
perform this optimization.

In any new Ada 95 code that is written, you should always use protected types in place
of tasks that might be able to be optimized in this manner. Of course this does not help
if you have legacy Ada 83 code that depends on this optimization, but it is unusual to
encounter a case where the performance gains from this optimization are significant.

Your program should work correctly without this optimization. If you have performance
problems, then the most practical approach is to figure out exactly where these performance
problems arise, and update those particular tasks to be protected types. Note that typically
clients of the tasks who call entries, will not have to be modified, only the task definition
itself.

7.2 Text_I0 Suggestions

The Ada.Text_I0 package has fairly high overheads due in part to the requirement of
maintaining page and line counts. If performance is critical, a recommendation is to use
Stream_I0 instead of Text_IO0 for volume output, since this package has less overhead.

If Text_I0 must be used, note that by default output to the standard output and stan-
dard error files is unbuffered (this provides better behavior when output statements are
used for debugging, or if the progress of a program is observed by tracking the output, e.g.
by using the Unix tail -f command to watch redirected output.

If you are generating large volumes of output with Text_I0 and performance is an
important factor, use a designated file instead of the standard output file, or change the
standard output file to be buffered using Interfaces.C_Streams.setvbuf.

7.3 Reducing Size of Executables with Unused
Subprogram/Data Elimination

This section describes how you can eliminate unused subprograms and data from your
executable just by setting options at compilation time.

7.3.1 About unused subprogram/data elimination

By default, an executable contains all code and data of its composing objects (directly linked
or coming from statically linked libraries), even data or code never used by this executable.

This feature will allow you to eliminate such unused code from your executable, making
it smaller (in disk and in memory).

134 GNAT User’s Guide

This functionality is available on all Linux platforms except for the IA-64 architecture
and on all cross platforms using the ELF binary file format. In both cases GNU binutils
version 2.16 or later are required to enable it.

7.3.2 Compilation options

The operation of eliminating the unused code and data from the final executable is directly
performed by the linker.

In order to do this, it has to work with objects compiled with the following options:
‘~ffunction-sections’ ‘-fdata-sections’. These options are usable with C and Ada
files. They will place respectively each function or data in a separate section in the resulting
object file.

Once the objects and static libraries are created with these options, the linker can per-
form the dead code elimination. You can do this by setting the ‘-Wl,--gc-sections’
option to gcc command or in the ‘-largs’ section of gnatmake. This will perform a garbage
collection of code and data never referenced.

If the linker performs a partial link (‘-r’ 1d linker option), then you will need to provide
one or several entry point using the ‘-e’ / ‘-—entry’ 1d option.

Note that objects compiled without the ‘~ffunction-sections’ and ‘-fdata-sections’
options can still be linked with the executable. However, no dead code elimination will be
performed on those objects (they will be linked as is).

The GNAT static library is now compiled with -ffunction-sections and -fdata-sections
on some platforms. This allows you to eliminate the unused code and data of the GNAT
library from your executable.

7.3.3 Example of unused subprogram/data elimination

Here is a simple example:

with Aux;

procedure Test is
begin

Aux.Used (10);
end Test;

package Aux is
Used_Data : Integer;
Unused_Data : Integer;

procedure Used (Data : Integer);
procedure Unused (Data : Integer);
end Aux;

package body Aux is
procedure Used (Data : Integer) is
begin
Used_Data := Data;
end Used;

procedure Unused (Data : Integer) is
begin
Unused_Data := Data;

Chapter 7: Improving Performance 135

end Unused;
end Aux;
Unused and Unused_Data are never referenced in this code excerpt, and hence they may be
safely removed from the final executable.
$ gnatmake test

$ nm test | grep used
020015f0 T aux__unused
02005d88 B aux__unused_data
020015cc T aux__used
02005d84 B aux__used_data

$ gnatmake test -cargs -fdata-sections -ffunction-sections \
-largs -Wl,--gc-sections

$ nm test | grep used

02005350 T aux__used

0201ffe0 B aux__used_data
It can be observed that the procedure Unused and the object Unused_Data are removed by
the linker when using the appropriate options.

Chapter 8: Renaming Files with gnatchop 137

8 Renaming Files with gnatchop

This chapter discusses how to handle files with multiple units by using the gnatchop utility.
This utility is also useful in renaming files to meet the standard GNAT default file naming
conventions.

8.1 Handling Files with Multiple Units

The basic compilation model of GNAT requires that a file submitted to the compiler have
only one unit and there be a strict correspondence between the file name and the unit name.

The gnatchop utility allows both of these rules to be relaxed, allowing GNAT to process
files which contain multiple compilation units and files with arbitrary file names. gnatchop
reads the specified file and generates one or more output files, containing one unit per file.
The unit and the file name correspond, as required by GNAT.

If you want to permanently restructure a set of “foreign” files so that they match the
GNAT rules, and do the remaining development using the GNAT structure, you can simply
use gnatchop once, generate the new set of files and work with them from that point on.

Alternatively, if you want to keep your files in the “foreign” format, perhaps to main-
tain compatibility with some other Ada compilation system, you can set up a procedure
where you use gnatchop each time you compile, regarding the source files that it writes as
temporary files that you throw away.

Note that if your file containing multiple units starts with a byte order mark (BOM)
specifying UTF-8 encoding, then the files generated by gnatchop will each start with a copy
of this BOM, meaning that they can be compiled automatically in UTF-8 mode without
needing to specify an explicit encoding.

8.2 Operating gnatchop in Compilation Mode

The basic function of gnatchop is to take a file with multiple units and split it into separate
files. The boundary between files is reasonably clear, except for the issue of comments
and pragmas. In default mode, the rule is that any pragmas between units belong to the
previous unit, except that configuration pragmas always belong to the following unit. Any
comments belong to the following unit. These rules almost always result in the right choice
of the split point without needing to mark it explicitly and most users will find this default
to be what they want. In this default mode it is incorrect to submit a file containing only
configuration pragmas, or one that ends in configuration pragmas, to gnatchop.

However, using a special option to activate “compilation mode”, gnatchop can perform
another function, which is to provide exactly the semantics required by the RM for handling
of configuration pragmas in a compilation. In the absence of configuration pragmas (at the
main file level), this option has no effect, but it causes such configuration pragmas to be
handled in a quite different manner.

First, in compilation mode, if gnatchop is given a file that consists of only configura-
tion pragmas, then this file is appended to the ‘gnat.adc’ file in the current directory.
This behavior provides the required behavior described in the RM for the actions to be
taken on submitting such a file to the compiler, namely that these pragmas should apply
to all subsequent compilations in the same compilation environment. Using GNAT, the

138 GNAT User’s Guide

current directory, possibly containing a ‘gnat.adc’ file is the representation of a compila-
tion environment. For more information on the ‘gnat.adc’ file, see Section 9.1 [Handling
of Configuration Pragmas|, page 142.

Second, in compilation mode, if gnatchop is given a file that starts with configuration
pragmas, and contains one or more units, then these configuration pragmas are prepended
to each of the chopped files. This behavior provides the required behavior described in the
RM for the actions to be taken on compiling such a file, namely that the pragmas apply to
all units in the compilation, but not to subsequently compiled units.

Finally, if configuration pragmas appear between units, they are appended to the previ-
ous unit. This results in the previous unit being illegal, since the compiler does not accept
configuration pragmas that follow a unit. This provides the required RM behavior that
forbids configuration pragmas other than those preceding the first compilation unit of a
compilation.

For most purposes, gnatchop will be used in default mode. The compilation mode
described above is used only if you need exactly accurate behavior with respect to compi-
lations, and you have files that contain multiple units and configuration pragmas. In this
circumstance the use of gnatchop with the compilation mode switch provides the required
behavior, and is for example the mode in which GNAT processes the ACVC tests.

8.3 Command Line for gnatchop

The gnatchop command has the form:
$ gnatchop switches file name [file name ...]
[directory]
The only required argument is the file name of the file to be chopped. There are no
restrictions on the form of this file name. The file itself contains one or more Ada units,
in normal GNAT format, concatenated together. As shown, more than one file may be
presented to be chopped.

When run in default mode, gnatchop generates one output file in the current directory
for each unit in each of the files.

directory, if specified, gives the name of the directory to which the output files will be
written. If it is not specified, all files are written to the current directory.

For example, given a file called ‘hellofiles’ containing

-

procedure hello;

with Text_I0; use Text_IO;
procedure hello is
begin
Put_Line ("Hello");
end hello;
N

the command

$ gnatchop hellofiles
generates two files in the current directory, one called ‘hello.ads’ containing the single line
that is the procedure spec, and the other called ‘hello.adb’ containing the remaining text.
The original file is not affected. The generated files can be compiled in the normal manner.

Chapter 8: Renaming Files with gnatchop 139

When gnatchop is invoked on a file that is empty or that contains only empty lines and/or
comments, gnatchop will not fail, but will not produce any new sources.

For example, given a file called ‘toto.txt’ containing

[}— Just a comment

the command

$ gnat

chop toto.txt

will not produce any new file and will result in the following warnings:

toto.txt:1:01: warning: empty file, contains no compilation units
no compilation units found
no source files written

8.4 Switches for gnatchop

gnatchop recognizes the following switches:

‘——version’

‘-=help’

Display Copyright and version, then exit disregarding all other options.

If ‘--version’ was not used, display usage, then exit disregarding all other
options.

Causes gnatchop to operate in compilation mode, in which configuration prag-
mas are handled according to strict RM rules. See previous section for a full
description of this mode.

This passes the given ‘~gnatxxx’ switch to gnat which is used to parse the given
file. Not all xxx options make sense, but for example, the use of ‘~gnati2’ allows
gnatchop to process a source file that uses Latin-2 coding for identifiers.

Causes gnatchop to generate a brief help summary to the standard output file
showing usage information.

Limit generated file names to the specified number mm of characters. This is
useful if the resulting set of files is required to be interoperable with systems
which limit the length of file names. No space is allowed between the ‘-k’ and
the numeric value. The numeric value may be omitted in which case a default
of ‘-k8’, suitable for use with DOS-like file systems, is used. If no ‘-k’ switch
is present then there is no limit on the length of file names.

Causes the file modification time stamp of the input file to be preserved and
used for the time stamp of the output file(s). This may be useful for preserving
coherency of time stamps in an environment where gnatchop is used as part of
a standard build process.

Causes output of informational messages indicating the set of generated files to
be suppressed. Warnings and error messages are unaffected.

Generate Source_Reference pragmas. Use this switch if the output files are
regarded as temporary and development is to be done in terms of the original

140 GNAT User’s Guide

unchopped file. This switch causes Source_Reference pragmas to be inserted
into each of the generated files to refers back to the original file name and
line number. The result is that all error messages refer back to the original
unchopped file. In addition, the debugging information placed into the object
file (when the ‘-g’ switch of gcc or gnatmake is specified) also refers back to
this original file so that tools like profilers and debuggers will give information
in terms of the original unchopped file.

If the original file to be chopped itself contains a Source_Reference pragma
referencing a third file, then gnatchop respects this pragma, and the gener-
ated Source_Reference pragmas in the chopped file refer to the original file,
with appropriate line numbers. This is particularly useful when gnatchop is
used in conjunction with gnatprep to compile files that contain preprocessing
statements and multiple units.

-v Causes gnatchop to operate in verbose mode. The version number and copy-
right notice are output, as well as exact copies of the gnatl commands spawned
to obtain the chop control information.

-w Overwrite existing file names. Normally gnatchop regards it as a fatal error if
there is already a file with the same name as a file it would otherwise output,
in other words if the files to be chopped contain duplicated units. This switch
bypasses this check, and causes all but the last instance of such duplicated units
to be skipped.

‘~--GCC=xxxx’
Specify the path of the GNAT parser to be used. When this switch is used, no
attempt is made to add the prefix to the GNAT parser executable.

8.5 Examples of gnatchop Usage

gnatchop -w hello_s.ada prerelease/files
Chops the source file ‘hello_s.ada’. The output files will be placed in the
directory ‘prerelease/files’, overwriting any files with matching names in
that directory (no files in the current directory are modified).

gnatchop archive
Chops the source file ‘archive’ into the current directory. One useful appli-
cation of gnatchop is in sending sets of sources around, for example in email
messages. The required sources are simply concatenated (for example, using a
Unix cat command), and then gnatchop is used at the other end to reconstitute
the original file names.

gnatchop filel file2 file3 direc
Chops all units in files ‘filel’, ‘file2’, ‘file3d’, placing the resulting files in
the directory ‘direc’. Note that if any units occur more than once anywhere
within this set of files, an error message is generated, and no files are written.
To override this check, use the ‘-w’ switch, in which case the last occurrence in
the last file will be the one that is output, and earlier duplicate occurrences for
a given unit will be skipped.

Chapter 9: Configuration Pragmas 141

9 Configuration Pragmas

Configuration pragmas include those pragmas described as such in the Ada Reference Man-
ual, as well as implementation-dependent pragmas that are configuration pragmas. See
Section “Implementation Defined Pragmas” in GNAT Reference Manual, for details on
these additional GNAT-specific configuration pragmas. Most notably, the pragma Source_
File_Name, which allows specifying non-default names for source files, is a configuration
pragma. The following is a complete list of configuration pragmas recognized by GNAT:

Ada_83

Ada_95

Ada_05

Ada_2005

Ada_12

Ada_2012
Allow_Integer_Address
Annotate
Assertion_Policy
Assume_No_Invalid_Values
C_Pass_By_Copy
Check_Name
Check_Policy
Compile_Time_Error
Compile_Time_Warning
Compiler_Unit
Component_Alignment
Convention_Identifier
Debug_Policy
Detect_Blocking
Default_Storage_Pool
Discard_Names
Elaboration_Checks
Eliminate
Extend_System
Extensions_Allowed
External_Name_Casing
Fast_Math
Favor_Top_Level
Float_Representation
Implicit_Packing
Initialize_Scalars
Interrupt_State
License
Locking_Policy
Long_Float
No_Run_Time
No_Strict_Aliasing
Normalize_Scalars
Optimize_Alignment
Persistent_BSS
Polling
Priority_Specific_Dispatching
Profile
Profile_Warnings
Propagate_Exceptions
Queuing_Policy
Ravenscar
Restricted_Run_Time

142 GNAT User’s Guide

Restrictions
Restrictions_Warnings
Reviewable
Short_Circuit_And_Or
Source_File_Name
Source_File_Name_Project
SPARK_Mode

Style_Checks

Suppress
Suppress_Exception_Locations
Task_Dispatching_Policy
Universal_Data
Unsuppress
Use_VADS_Size
Validity_Checks

Warnings
Wide_Character_Encoding

9.1 Handling of Configuration Pragmas

Configuration pragmas may either appear at the start of a compilation unit, or they can
appear in a configuration pragma file to apply to all compilations performed in a given
compilation environment.

GNAT also provides the gnatchop utility to provide an automatic way to handle config-
uration pragmas following the semantics for compilations (that is, files with multiple units),
described in the RM. See Section 8.2 [Operating gnatchop in Compilation Mode|, page 137
for details. However, for most purposes, it will be more convenient to edit the ‘gnat.adc’
file that contains configuration pragmas directly, as described in the following section.

In the case of Restrictions pragmas appearing as configuration pragmas in individual
compilation units, the exact handling depends on the type of restriction.

Restrictions that require partition-wide consistency (like No_Tasking) are recognized
wherever they appear and can be freely inherited, e.g. from a with’ed unit to the with’ing
unit. This makes sense since the binder will in any case insist on seeing consistent use,
so any unit not conforming to any restrictions that are anywhere in the partition will be
rejected, and you might as well find that out at compile time rather than at bind time.

For restrictions that do not require partition-wide consistency, e.g. SPARK or
No_Implementation_Attributes, in general the restriction applies only to the unit in which
the pragma appears, and not to any other units.

The exception is No_Elaboration_Code which always applies to the entire object file from
a compilation, i.e. to the body, spec, and all subunits. This restriction can be specified in a
configuration pragma file, or it can be on the body and/or the spec (in eithe case it applies
to all the relevant units). It can appear on a subunit only if it has previously appeared in
the body of spec.

9.2 The Configuration Pragmas Files

In GNAT a compilation environment is defined by the current directory at the time that
a compile command is given. This current directory is searched for a file whose name
is ‘gnat.adc’. If this file is present, it is expected to contain one or more configuration

Chapter 9: Configuration Pragmas 143

pragmas that will be applied to the current compilation. However, if the switch ‘~gnatA’ is
used, ‘gnat.adc’ is not considered.

Configuration pragmas may be entered into the ‘gnat.adc’ file either by running
gnatchop on a source file that consists only of configuration pragmas, or more conveniently
by direct editing of the ‘gnat.adc’ file, which is a standard format source file.

In addition to ‘gnat.adc’, additional files containing configuration pragmas may be
applied to the current compilation using the switch ‘-gnatec’path. path must designate an
existing file that contains only configuration pragmas. These configuration pragmas are in
addition to those found in ‘gnat.adc’ (provided ‘gnat.adc’ is present and switch ‘~gnatA’
is not used).

It is allowed to specify several switches ‘-gnatec’, all of which will be taken into account.

If you are using project file, a separate mechanism is provided using project attributes,
see Section 12.1.3 [Specifying Configuration Pragmas|, page 216 for more details.

Chapter 10: Handling Arbitrary File Naming Conventions with gnatname 145

10 Handling Arbitrary File Naming Conventions
with gnatname

10.1 Arbitrary File Naming Conventions

The GNAT compiler must be able to know the source file name of a compilation unit. When
using the standard GNAT default file naming conventions (. ads for specs, .adb for bodies),
the GNAT compiler does not need additional information.

When the source file names do not follow the standard GNAT default file naming conven-
tions, the GNAT compiler must be given additional information through a configuration
pragmas file (see Chapter 9 [Configuration Pragmas], page 141) or a project file. When the
non-standard file naming conventions are well-defined, a small number of pragmas Source_
File_Name specifying a naming pattern (see Section 2.5 [Alternative File Naming Schemes],
page 18) may be sufficient. However, if the file naming conventions are irregular or arbi-
trary, a number of pragma Source_File_Name for individual compilation units must be
defined. To help maintain the correspondence between compilation unit names and source
file names within the compiler, GNAT provides a tool gnatname to generate the required
pragmas for a set of files.

10.2 Running gnatname

The usual form of the gnatname command is
$ gnatname [switches| naming _pattern [naming_patterns|
[--and [switches] naming_pattern [naming_patterns]]
All of the arguments are optional. If invoked without any argument, gnatname will display
its usage.

When used with at least one naming pattern, gnatname will attempt to find all the compila-
tion units in files that follow at least one of the naming patterns. To find these compilation
units, gnatname will use the GNAT compiler in syntax-check-only mode on all regular files.

One or several Naming Patterns may be given as arguments to gnatname. FEach Naming
Pattern is enclosed between double quotes (or single quotes on Windows). A Naming
Pattern is a regular expression similar to the wildcard patterns used in file names by the
Unix shells or the DOS prompt.

gnatname may be called with several sections of directories/patterns. Sections are separated
by switch ——and. In each section, there must be at least one pattern. If no directory is
specified in a section, the current directory (or the project directory is -P is used) is implied.
The options other that the directory switches and the patterns apply globally even if they
are in different sections.

Examples of Naming Patterns are

"k.[12] .ada"

"x.ad[sb]*"

"bOdy_*" "spec_*"
For a more complete description of the syntax of Naming Patterns, see the second kind of
regular expressions described in ‘g-regexp.ads’ (the “Glob” regular expressions).
When invoked with no switch -P, gnatname will create a configuration pragmas file
‘gnat.adc’ in the current working directory, with pragmas Source_File_Name for each file
that contains a valid Ada unit.

146

10.3 Sw

GNAT User’s Guide

itches for gnatname

Switches for gnatname must precede any specified Naming Pattern.

You may specify any of the following switches to gnatname:

‘——version’

‘-=help’

Display Copyright and version, then exit disregarding all other options.

If ‘--version’ was not used, display usage, then exit disregarding all other
options.

‘——subdirs=<dir>’

Real object, library or exec directories are subdirectories <dir> of the specified
ones.

‘~—no-backup’

‘——and’

‘—cffile?’

‘-d‘dir”’

‘-D‘file”’

L_eL7

Do not create a backup copy of an existing project file.

Start another section of directories/patterns.

Create a configuration pragmas file ‘file’ (instead of the default ‘gnat.adc’).
There may be zero, one or more space between ‘-¢’ and ‘file’. ‘file’ may
include directory information. ‘file’ must be writable. There may be only one
switch ‘-c’. When a switch ‘-c’ is specified, no switch ‘~P’ may be specified
(see below).

Look for source files in directory ‘dir’. There may be zero, one or more spaces
between ‘-d’ and ‘dir’. ‘dir’ may end with /**, that is it may be of the form
root_dir/*x*. In this case, the directory root_dir and all of its subdirectories,
recursively, have to be searched for sources. When a switch ‘-d’ is specified,
the current working directory will not be searched for source files, unless it
is explicitly specified with a ‘-d’ or ‘-D’ switch. Several switches ‘-d’ may
be specified. If ‘dir’ is a relative path, it is relative to the directory of the
configuration pragmas file specified with switch ‘-=c’; or to the directory of the
project file specified with switch ‘=P’ or, if neither switch ‘-c’ nor switch ‘-P’ are
specified, it is relative to the current working directory. The directory specified
with switch ‘-d’ must exist and be readable.

Look for source files in all directories listed in text file ‘file’. There may be zero,
one or more spaces between ‘-D’ and ‘file’. ‘file’ must be an existing, readable
text file. Each nonempty line in ‘file’ must be a directory. Specifying switch
‘-D’ is equivalent to specifying as many switches ‘-d’ as there are nonempty
lines in ‘file’.

Follow symbolic links when processing project files.

‘~f ‘pattern’’

Foreign patterns. Using this switch, it is possible to add sources of languages
other than Ada to the list of sources of a project file. It is only useful if a -P
switch is used. For example,

Chapter 10: Handling Arbitrary File Naming Conventions with gnatname 147

(_v _V7

gnatname -Pprj -f"*.c" "x.ada"

will look for Ada units in all files with the ‘.ada’ extension, and will add to the
list of file for project ‘prj.gpr’ the C files with extension ‘.c’.

Output usage (help) information. The output is written to ‘stdout’.

Create or update project file ‘proj’. There may be zero, one or more space be-
tween ‘-P” and ‘proj’. ‘proj’ may include directory information. ‘proj’ must
be writable. There may be only one switch ‘~P’. When a switch ‘~P’ is speci-
fied, no switch ‘-c’ may be specified. On all platforms, except on VMS, when
gnatname is invoked for an existing project file <proj>.gpr, a backup copy of the
project file is created in the project directory with file name <proj>.gpr.saved_x.
’x’ is the first non negative number that makes this backup copy a new file.

Verbose mode. Output detailed explanation of behavior to ‘stdout’. This
includes name of the file written, the name of the directories to search and, for
each file in those directories whose name matches at least one of the Naming
Patterns, an indication of whether the file contains a unit, and if so the name
of the unit.

Very Verbose mode. In addition to the output produced in verbose mode, for
each file in the searched directories whose name matches none of the Naming
Patterns, an indication is given that there is no match.

‘~x‘pattern’’

Excluded patterns. Using this switch, it is possible to exclude some files that
would match the name patterns. For example,

gnatname -x "*_nt.ada" "*.ada"
will look for Ada units in all files with the ‘.ada’ extension, except those whose
names end with ‘_nt.ada’.

10.4 Examples of gnatname Usage

$ gnatname -c /home/me/names.adc -d sources "[a-z]*.ada*"

In this example, the directory ‘/home/me’ must already exist and be writable. In addition,
the directory ‘/home/me/sources’ (specified by ‘-d sources’) must exist and be readable.

Note the optional spaces after ‘-c’ and ‘-d’.

$ gnatname -P/home/me/proj -x "*_nt_body.ada"
-dsources -dsources/plus -Dcommon_dirs.txt "body_x" "spec_x*"

Note that several switches ‘-d’ may be used, even in conjunction with one or several
switches ‘-D’. Several Naming Patterns and one excluded pattern are used in this example.

Chapter 11: GNAT Project Manager 149

11 GNAT Project Manager

11.1 Introduction

This chapter describes GNAT’s Project Manager, a facility that allows you to manage
complex builds involving a number of source files, directories, and options for different
system configurations. In particular, project files allow you to specify:

e The directory or set of directories containing the source files, and/or the names of the
specific source files themselves

e The directory in which the compiler’s output (‘ALI’ files, object files, tree files, etc.) is
to be placed

e The directory in which the executable programs are to be placed

e Switch settings for any of the project-enabled tools; you can apply these settings either
globally or to individual compilation units.

e The source files containing the main subprogram(s) to be built
e The source programming language(s)

e Source file naming conventions; you can specify these either globally or for individual
compilation units (see Section 11.2.9 [Naming Schemes|, page 160).

e Change any of the above settings depending on external values, thus enabling the reuse
of the projects in various scenarios (see Section 11.4 [Scenarios in Projects], page 167).

e Automatically build libraries as part of the build process (see Section 11.5 [Library
Projects], page 169).

Project files are written in a syntax close to that of Ada, using familiar notions such as
packages, context clauses, declarations, default values, assignments, and inheritance (see
Section 11.9 [Project File Reference], page 187).

Project files can be built hierarchically from other project files, simplifying complex sys-
tem integration and project reuse (see Section 11.3 [Organizing Projects into Subsystems],
page 163).

e One project can import other projects containing needed source files. More generally,
the Project Manager lets you structure large development efforts into hierarchical sub-
systems, where build decisions are delegated to the subsystem level, and thus different
compilation environments (switch settings) used for different subsystems.

e You can organize GNAT projects in a hierarchy: a child project can extend a parent
project, inheriting the parent’s source files and optionally overriding any of them with
alternative versions (see Section 11.6 [Project Extension], page 175).

Several tools support project files, generally in addition to specifying the information on
the command line itself). They share common switches to control the loading of the project
(in particular ‘-Pprojectfile’ and ‘-Xvbl=value’).
The Project Manager supports a wide range of development strategies, for systems of
all sizes. Here are some typical practices that are easily handled:
e Using a common set of source files and generating object files in different directories
via different switch settings. It can be used for instance, for generating separate sets
of object files for debugging and for production.

150 GNAT User’s Guide

e Using a mostly-shared set of source files with different versions of some units or sub-
units. It can be used for instance, for grouping and hiding

all OS dependencies in a small number of implementation units.

Project files can be used to achieve some of the effects of a source versioning system (for
example, defining separate projects for the different sets of sources that comprise different
releases) but the Project Manager is independent of any source configuration management
tool that might be used by the developers.

The various sections below introduce the different concepts related to projects. Each
section starts with examples and use cases, and then goes into the details of related project
file capabilities.

11.2 Building With Projects

In its simplest form, a unique project is used to build a single executable. This section
concentrates on such a simple setup. Later sections will extend this basic model to more
complex setups.

The following concepts are the foundation of project files, and will be further detailed
later in this documentation. They are summarized here as a reference.

Project file:
A text file using an Ada-like syntax, generally using the ‘. gpr’ extension. It de-
fines build-related characteristics of an application. The characteristics include
the list of sources, the location of those sources, the location for the generated
object files, the name of the main program, and the options for the various tools
involved in the build process.

Project attribute:
A specific project characteristic is defined by an attribute clause. Its value is a
string or a sequence of strings. All settings in a project are defined through a list
of predefined attributes with precise semantics. See Section 11.9.10 [Attributes],
page 195.

Package in a project:
Global attributes are defined at the top level of a project. Attributes affecting
specific tools are grouped in a package whose name is related to tool’s function.
The most common packages are Builder, Compiler, Binder, and Linker. See
Section 11.9.4 [Packages|, page 189.

Project variables:
In addition to attributes, a project can use variables to store intermediate values
and avoid duplication in complex expressions. It can be initialized with a value
coming from the environment. A frequent use of variables is to define scenarios.
See Section 11.9.6 [External Values|, page 192, See Section 11.4 [Scenarios in
Projects], page 167, and See Section 11.9.8 [Variables|, page 193.

Source files and source directories:
A source file is associated with a language through a naming convention. For
instance, foo.c is typically the name of a C source file; bar.ads or bar.1.ada
are two common naming conventions for a file containing an Ada spec. A

Chapter 11: GNAT Project Manager 151

compilation unit is often composed of a main source file and potentially sev-
eral auxiliary ones, such as header files in C. The naming conventions can be
user defined See Section 11.2.9 [Naming Schemes|, page 160, and will drive the
builder to call the appropriate compiler for the given source file. Source files
are searched for in the source directories associated with the project through
the Source_Dirs attribute. By default, all the files (in these source directories)
following the naming conventions associated with the declared languages are
considered to be part of the project. It is also possible to limit the list of source
files using the Source_Files or Source_List_File attributes. Note that those last
two attributes only accept basenames with no directory information.

Object files and object directory:
An object file is an intermediate file produced by the compiler from a compila-
tion unit. It is used by post-compilation tools to produce final executables or
libraries. Object files produced in the context of a given project are stored in a
single directory that can be specified by the Object_Dir attribute. In order to
store objects in two or more object directories, the system must be split into
distinct subsystems with their own project file. /first exam

The following subsections introduce gradually all the attributes of interest for simple
build needs. Here is the simple setup that will be used in the following examples.

The Ada source files ‘pack.ads’, ‘pack.adb’, and ‘proc.adb’ are in the ‘common/’ direc-
tory. The file ‘proc.adb’ contains an Ada main subprogram Proc that withs package Pack.
We want to compile these source files with the switch ‘-02’, and put the resulting files in
the directory ‘obj/’.

common/
pack.ads
pack.adb
proc.adb
common/release/
proc.ali, proc.o pack.ali, pack.o
Our project is to be called Build. The name of the file is the name of the project (case-
insensitive) with the ‘. gpr’ extension, therefore the project file name is ‘build.gpr’. This

is not mandatory, but a warning is issued when this convention is not followed.

This is a very simple example, and as stated above, a single project file is enough for it.
We will thus create a new file, that for now should contain the following code:

project Build is
end Build;

11.2.1 Source Files and Directories

When you create a new project, the first thing to describe is how to find the corresponding
source files. This is the only settings that are needed by all the tools that will use this
project (builder, compiler, binder and linker for the compilation, IDEs to edit the source
files,. . .).

First step is to declare the source directories, which are the directories to be searched
to find source files. In the case of the example, the ‘common’ directory is the only source
directory.

There are several ways of defining source directories:

152 GNAT User’s Guide

e When the attribute Source_Dirs is not used, a project contains a single source directory
which is the one where the project file itself resides. In our example, if ‘build.gpr’ is
placed in the ‘common’ directory, the project has the needed implicit source directory.

e The attribute Source_Dirs can be set to a list of path names, one for each of
the source directories. Such paths can either be absolute names (for instance
‘"/usr/local/common/"’" on UNIX), or relative to the directory in which the project
file resides (for instance "." if ‘build.gpr’ is inside ‘common/’, or "common" if it is
one level up). Each of the source directories must exist and be readable.

The syntax for directories is platform specific. For portability, however, the project
manager will always properly translate UNIX-like path names to the native format of
specific platform. For instance, when the same project file is to be used both on Unix
and Windows, "/" should be used as the directory separator rather than "\".

e The attribute Source_Dirs can automatically include subdirectories using a special

syntax inspired by some UNIX shells. If any of the path in the list ends with " **"
then that path and all its subdirectories (recursively) are included in the list of source
directories. For instance, ‘**’ and ‘./**’ represent the complete directory tree rooted
at Il.ll'
When using that construct, it can sometimes be convenient to also use the attribute
Excluded_Source_Dirs, which is also a list of paths. Each entry specifies a directory
whose immediate content, not including subdirs, is to be excluded. It is also possible
to exclude a complete directory subtree using the "**" notation.

It is often desirable to remove, from the source directories, directory subtrees rooted
at some subdirectories. An example is the subdirectories created by a Version Control
System such as Subversion that creates directory subtrees rooted at subdirectories
".svn". To do that, attribute Ignore_Source_Sub_Dirs can be used. It specifies the list
of simple file names for the roots of these undesirable directory subtrees.

for Source_Dirs use ("./*x");
for Ignore_Source_Sub_Dirs use (".svn");

When applied to the simple example, and because we generally prefer to have the project
file at the toplevel directory rather than mixed with the sources, we will create the following
file

build.gpr
project Build is
for Source_Dirs use ("common"); -- <<<<

end Build;
Once source directories have been specified, one may need to indicate source files of interest.
By default, all source files present in the source directories are considered by the project
manager. When this is not desired, it is possible to specify the list of sources to consider
explicitly. In such a case, only source file base names are indicated and not their absolute
or relative path names. The project manager is in charge of locating the specified source
files in the specified source directories.

e By default, the project manager search for all source files of all specified languages in
all the source directories.

Since the project manager was initially developed for Ada environments, the default
language is usually Ada and the above project file is complete: it defines without ambi-

Chapter 11: GNAT Project Manager 153

guity the sources composing the project: that is to say, all the sources in subdirectory
"common" for the default language (Ada) using the default naming convention.

However, when compiling a multi-language application, or a pure C application, the
project manager must be told which languages are of interest, which is done by setting
the Languages attribute to a list of strings, each of which is the name of a language.
Tools like gnatmake only know about Ada, while other tools like gprbuild know about
many more languages such as C, C++, Fortran, assembly and others can be added
dynamically.

Even when using only Ada, the default naming might not be suitable. Indeed, how
does the project manager recognizes an "Ada file" from any other file? Project files
can describe the naming scheme used for source files, and override the default (see
Section 11.2.9 [Naming Schemes|, page 160). The default is the standard GNAT ex-
tension (‘.adb’ for bodies and ‘.ads’ for specs), which is what is used in our example,
explaining why no naming scheme is explicitly specified. See Section 11.2.9 [Naming
Schemes]|, page 160.

e Source_Files In some cases, source directories might contain files that should not be
included in a project. One can specify the explicit list of file names to be considered
through the Source_Files attribute. When this attribute is defined, instead of looking
at every file in the source directories, the project manager takes only those names into
consideration reports errors if they cannot be found in the source directories or does
not correspond to the naming scheme.

e For various reasons, it is sometimes useful to have a project with no sources (most of the
time because the attributes defined in the project file will be reused in other projects,
as explained in see Section 11.3 [Organizing Projects into Subsystems|, page 163. To
do this, the attribute Source_Files is set to the empty list, i.e. (). Alternatively,
Source_Dirs can be set to the empty list, with the same result.

e Source_List_File If there is a great number of files, it might be more convenient to
use the attribute Source_List_File, which specifies the full path of a file. This file must
contain a list of source file names (one per line, no directory information) that are
searched as if they had been defined through Source_Files. Such a file can easily be
created through external tools.

A warning is issued if both attributes Source_Files and Source_List_File are given
explicit values. In this case, the attribute Source_Files prevails.

e Excluded_Source_Files Specifying an explicit list of files is not always convenient.It
might be more convenient to use the default search rules with specific exceptions.
This can be done thanks to the attribute Excluded_Source_Files (or its synonym Lo-
cally_Removed_Files). Its value is the list of file names that should not be taken into ac-
count. This attribute is often used when extending a project, See Section 11.6 [Project
Extension], page 175. A similar attribute Excluded_Source_List_File plays the same
role but takes the name of file containing file names similarly to Source_List_File.

In most simple cases, such as the above example, the default source file search behavior
provides the expected result, and we do not need to add anything after setting Source_
Dirs. The project manager automatically finds ‘pack.ads’, ‘pack.adb’ and ‘proc.adb’ as
source files of the project.

154 GNAT User’s Guide

Note that by default a warning is issued when a project has no sources attached to it
and this is not explicitly indicated in the project file.

11.2.2 Duplicate Sources in Projects

If the order of the source directories is known statically, that is if "/**" is not used in
the string list Source_Dirs, then there may be several files with the same source file name
sitting in different directories of the project. In this case, only the file in the first directory
is considered as a source of the project and the others are hidden. If "/**" is used in the
string list Source_Dirs, it is an error to have several files with the same source file name
in the same directory "/**" subtree, since there would be an ambiguity as to which one
should be used. However, two files with the same source file name may exist in two single
directories or directory subtrees. In this case, the one in the first directory or directory
subtree is a source of the project.

If there are two sources in different directories of the same "/**" subtree, one way to
resolve the problem is to exclude the directory of the file that should not be used as a source
of the project.

11.2.3 Object and Exec Directory

The next step when writing a project is to indicate where the compiler should put the
object files. In fact, the compiler and other tools might create several different kind of files
(for GNAT, there is the object file and the ALI file for instance). One of the important
concepts in projects is that most tools may consider source directories as read-only and
do not attempt to create new or temporary files there. Instead, all files are created in the
object directory. It is of course not true for project-aware IDEs, whose purpose it is to
create the source files.

The object directory is specified through the Object_Dir attribute. Its value is the path
to the object directory, either absolute or relative to the directory containing the project file.
This directory must already exist and be readable and writable, although some tools have
a switch to create the directory if needed (See the switch -p for gnatmake and gprbuild).

If the attribute Object_Dir is not specified, it defaults to the project directory, that is
the directory containing the project file.

For our example, we can specify the object dir in this way:
project Build is
for Source_Dirs use ("common");
for Object_Dir use "obj"; -- <<<<
end Build;
As mentioned earlier, there is a single object directory per project. As a result, if you have
an existing system where the object files are spread in several directories, you can either
move all of them into the same directory if you want to build it with a single project file, or
study the section on subsystems (see Section 11.3 [Organizing Projects into Subsystems],
page 163) to see how each separate object directory can be associated with one of the
subsystem constituting the application.

When the linker is called, it usually creates an executable. By default, this executable
is placed in the object directory of the project. It might be convenient to store it in its own
directory.

Chapter 11: GNAT Project Manager 155

This can be done through the Exec_Dir attribute, which, like Object_Dir contains a
single absolute or relative path and must point to an existing and writable directory, unless
you ask the tool to create it on your behalf. When not specified, It defaults to the object
directory and therefore to the project file’s directory if neither Object_Dir nor Ezec_Dir
was specified.

In the case of the example, let’s place the executable in the root of the hierarchy, ie the
same directory as ‘build.gpr’. Hence the project file is now
project Build is
for Source_Dirs use ("common");
for Object_Dir use "obj";
for Exec_Dir use "."; -- <<<<
end Build;

11.2.4 Main Subprograms

In the previous section, executables were mentioned. The project manager needs to be
taught what they are. In a project file, an executable is indicated by pointing to source file
of the main subprogram. In C this is the file that contains the main function, and in Ada
the file that contains the main unit.

There can be any number of such main files within a given project, and thus several
executables can be built in the context of a single project file. Of course, one given exe-
cutable might not (and in fact will not) need all the source files referenced by the project.
As opposed to other build environments such as makefile, one does not need to specify
the list of dependencies of each executable, the project-aware builders knows enough of the
semantics of the languages to build ands link only the necessary elements.

The list of main files is specified via the Main attribute. It contains a list of file names
(no directories). If a project defines this attribute, it is not necessary to identify main files
on the command line when invoking a builder, and editors like GPS will be able to create
extra menus to spawn or debug the corresponding executables.

project Build is
for Source_Dirs use ("common");
for Object_Dir use "obj";
for Exec_Dir use ".";

for Main use ("proc.adb"); -- <<<<
end Build;

If this attribute is defined in the project, then spawning the builder with a command such
as

gnatmake -Pbuild

automatically builds all the executables corresponding to the files listed in the Main at-
tribute. It is possible to specify one or more executables on the command line to build a
subset of them.

11.2.5 Tools Options in Project Files

We now have a project file that fully describes our environment, and can be used to build
the application with a simple gnatmake command as seen in the previous section. In fact,
the empty project we showed immediately at the beginning (with no attribute at all) could
already fulfill that need if it was put in the ‘common’ directory.

156 GNAT User’s Guide

Of course, we always want more control. This section will show you how to specify the
compilation switches that the various tools involved in the building of the executable should
use.

Since source names and locations are described into the project file, it is not necessary
to use switches on the command line for this purpose (switches such as -1 for gecc). This
removes a major source of command line length overflow. Clearly, the builders will have
to communicate this information one way or another to the underlying compilers and tools
they call but they usually use response files for this and thus should not be subject to
command line overflows.

Several tools are participating to the creation of an executable: the compiler produces
object files from the source files; the binder (in the Ada case) creates an source file that
takes care, among other things, of elaboration issues and global variables initialization; and
the linker gathers everything into a single executable that users can execute. All these tools
are known by the project manager and will be called with user defined switches from the
project files. However, we need to introduce a new project file concept to express which
switches to be used for any of the tools involved in the build.

A project file is subdivided into zero or more packages, each of which contains the
attributes specific to one tool (or one set of tools). Project files use an Ada-like syntax for
packages. Package names permitted in project files are restricted to a predefined set (see
Section 11.9.4 [Packages|, page 189), and the contents of packages are limited to a small set
of constructs and attributes (see Section 11.9.10 [Attributes], page 195).

Our example project file can be extended with the following empty packages. At this
stage, they could all be omitted since they are empty, but they show which packages would
be involved in the build process.

project Build is
for Source_Dirs use ("common");
for Object_Dir use "obj";
for Exec_Dir use ".";
for Main use ("proc.adb");

package Builder is --<<< for gnatmake and gprbuild
end Builder;

package Compiler is --<<< for the compiler
end Compiler;

package Binder is --<<< for the binder
end Binder;

package Linker is --<<< for the linker
end Linker;
end Build;

Let’s first examine the compiler switches. As stated in the initial description of the example,
we want to compile all files with ‘-02’. This is a compiler switch, although it is usual,
on the command line, to pass it to the builder which then passes it to the compiler. It
is recommended to use directly the right package, which will make the setup easier to
understand for other people.

Several attributes can be used to specify the switches:

Chapter 11: GNAT Project Manager 157

Default_Switches:

Switches:

This is the first mention in this manual of an indexed attribute. When this
attribute is defined, one must supply an indez in the form of a literal string. In
the case of Default_Switches, the index is the name of the language to which the
switches apply (since a different compiler will likely be used for each language,
and each compiler has its own set of switches). The value of the attribute is a
list of switches.

In this example, we want to compile all Ada source files with the switch ‘=027,
and the resulting project file is as follows (only the Compiler package is shown):
package Compiler is
for Default_Switches ("Ada") use ("-02");
end Compiler;

in some cases, we might want to use specific switches for one or more files.
For instance, compiling ‘proc.adb’ might not be possible at high level of op-
timization because of a compiler issue. In such a case, the Switches attribute
(indexed on the file name) can be used and will override the switches defined
by Default_Switches. Our project file would become:

package Compiler is
for Default_Switches ("Ada")

use ("-02");
for Switches ("proc.adb")
use ("-00");

end Compiler;

Switches may take a pattern as an index, such as in:

package Compiler is
for Default_Switches ("Ada")
use ("-02");
for Switches ("pkg*")
use ("-00");
end Compiler;

Sources ‘pkg.adb’ and ‘pkg-child.adb’ would be compiled with -O0, not -O2.

Switches can also be given a language name as index instead of a file name
in which case it has the same semantics as Default_Switches. However, indexes
with wild cards are never valid for language name.

Local_Configuration_Pragmas:

this attribute may specify the path of a file containing configuration pragmas for
use by the Ada compiler, such as pragma Restrictions (No_Tasking). These
pragmas will be used for all the sources of the project.

The switches for the other tools are defined in a similar manner through the De-
fault_Switches and Switches attributes, respectively in the Builder package (for gnatmake
and gprbuild), the Binder package (binding Ada executables) and the Linker package (for
linking executables).

158 GNAT User’s Guide

11.2.6 Compiling with Project Files

Now that our project files are written, let’s build our executable. Here is the command we
would use from the command line:
gnatmake -Pbuild

This will automatically build the executables specified through the Main attribute: for each,
it will compile or recompile the sources for which the object file does not exist or is not
up-to-date; it will then run the binder; and finally run the linker to create the executable
itself.

gnatmake only knows how to handle Ada files. By using gprbuild as a builder, you
could automatically manage C files the same way: create the file ‘utils.c’ in the ‘common’
directory, set the attribute Languages to " (Ada, C)", and run
gprbuild -Pbuild

Gprbuild knows how to recompile the C files and will recompile them only if one of their
dependencies has changed. No direct indication on how to build the various elements is
given in the project file, which describes the project properties rather than a set of actions
to be executed. Here is the invocation of gprbuild when building a multi-language program:

$ gprbuild -Pbuild
gcc —-c proc.adb
gcc -c pack.adb
gcc -c utils.c
gprbind proc

écc proc.o -o proc
Notice the three steps described earlier:
e The first three gcc commands correspond to the compilation phase.
e The gprbind command corresponds to the post-compilation phase.

e The last gcc command corresponds to the final link.

The default output of GPRbuild’s execution is kept reasonably simple and easy to un-
derstand. In particular, some of the less frequently used commands are not shown, and
some parameters are abbreviated. So it is not possible to rerun the effect of the gprbuild
command by cut-and-pasting its output. GPRbuild’s option -v provides a much more
verbose output which includes, among other information, more complete compilation, post-
compilation and link commands.

11.2.7 Executable File Names

By default, the executable name corresponding to a main file is computed from the main
source file name. Through the attribute Builder.Executable, it is possible to change this
default.

For instance, instead of building proc (or proc.exe on Windows), we could configure
our project file to build "procl" (resp procl.exe) with the following addition:

project Build is
.. -- same as before
package Builder is
for Executable ("proc.adb") use "procl";
end Builder
end Build;

Chapter 11: GNAT Project Manager 159

Attribute Executable_Suffix, when specified, may change the suffix of the executable files,
when no attribute Executable applies: its value replace the platform-specific executable
suffix. The default executable suffix is empty on UNIX and ".exe" on Windows.

It is also possible to change the name of the produced executable by using the command
line switch ‘-o’. When several mains are defined in the project, it is not possible to use
the ‘-0’ switch and the only way to change the names of the executable is provided by
Attributes Executable and Executable_Suffix.

11.2.8 Avoid Duplication With Variables

To illustrate some other project capabilities, here is a slightly more complex project using
similar sources and a main program in C:

project C_Main is
for Languages use ("Ada", "C");
for Source_Dirs use ("common");
for Object_Dir use "obj";

for Main use ("main.c");
package Compiler is
C_Switches := ("-pedantic");

for Default_Switches ("C") use C_Switches;
for Default_Switches ("Ada") use ("-gnaty");
for Switches ("main.c") use C_Switches & ("-g");
end Compiler;
end C_Main;

This project has many similarities with the previous one. As expected, its Main attribute
now refers to a C source. The attribute Ezrec_Dir is now omitted, thus the resulting exe-
cutable will be put in the directory ‘obj’.

The most noticeable difference is the use of a variable in the Compiler package to store
settings used in several attributes. This avoids text duplication, and eases maintenance (a
single place to modify if we want to add new switches for C files). We will revisit the use
of variables in the context of scenarios (see Section 11.4 [Scenarios in Projects|, page 167).

In this example, we see how the file ‘main.c’ can be compiled with the switches used
for all the other C files, plus ‘-g’. In this specific situation the use of a variable could have
been replaced by a reference to the Default_Switches attribute:

for Switches ("c_main.c") use Compiler’Default_Switches ("C") & ("-g");
Note the tick (’) used to refer to attributes defined in a package.
Here is the output of the GPRbuild command using this project:

$gprbuild -Pc_main

gcc -c -pedantic -g main.c
gcc —-c -gnaty proc.adb

gcc -c -gnaty pack.adb

gcc —-c -pedantic utils.c
gprbind main.bexch

gcc main.o -o main

The default switches for Ada sources, the default switches for C sources (in the compilation
of ‘1lib.c’), and the specific switches for ‘main.c’ have all been taken into account.

160 GNAT User’s Guide

11.2.9 Naming Schemes

Sometimes an Ada software system is ported from one compilation environment to another
(say GNAT), and the file are not named using the default GNAT conventions. Instead of
changing all the file names, which for a variety of reasons might not be possible, you can
define the relevant file naming scheme in the Naming package of your project file.

The naming scheme has two distinct goals for the project manager: it allows finding of
source files when searching in the source directories, and given a source file name it makes
it possible to guess the associated language, and thus the compiler to use.

Note that the use by the Ada compiler of pragmas Source_File_Name is not supported
when using project files. You must use the features described in this paragraph. You can
however specify other configuration pragmas.

The following attributes can be defined in package Naming:

Casing: Its value must be one of "lowercase" (the default if unspecified), "uppercase"
or "mixedcase". It describes the casing of file names with regards to the
Ada unit name. Given an Ada unit My_Unit, the file name will respectively
be ‘my_unit.adb’ (lowercase), ‘MY_UNIT.ADB’ (uppercase) or ‘My_Unit.adb’
(mixedcase). On Windows, file names are case insensitive, so this attribute
is irrelevant.

Dot_Replacement:
This attribute specifies the string that should replace the "." in unit names.
Its default value is "-" so that a unit Parent.Child is expected to be found in
the file ‘parent-child.adb’. The replacement string must satisfy the following
requirements to avoid ambiguities in the naming scheme:

- It must not be empty
- It cannot start or end with an alphanumeric character
- It cannot be a single underscore
- It cannot start with an underscore followed by an alphanumeric
- It cannot contain a dot ’ .’ except if the entire string is "."
Spec_Suffix and Specification_Suffix:
For Ada, these attributes give the suffix used in file names that contain spec-
ifications. For other languages, they give the extension for files that contain

declaration (header files in C for instance). The attribute is indexed on the
language. The two attributes are equivalent, but the latter is obsolescent.

If the value of the attribute is the empty string, it indicates to the Project
Manager that the only specifications/header files for the language are those
specified with attributes Spec or Specification_Exceptions.

If Spec_Suffix ("Ada") is not specified, then the default is ".ads".
A non empty value must satisfy the following requirements:
- It must include at least one dot

- If Dot_Replacement is a single dot, then it cannot include more than one
dot.

Chapter 11: GNAT Project Manager 161

Body_Suffix and Implementation_Suffix:
These attributes give the extension used for file names that contain code (bodies
in Ada). They are indexed on the language. The second version is obsolescent
and fully replaced by the first attribute.

For each language of a project, one of these two attributes need to be specified,
either in the project itself or in the configuration project file.

If the value of the attribute is the empty string, it indicates to the Project
Manager that the only source files for the language are those specified with
attributes Body or Implementation_Exceptions.

These attributes must satisfy the same requirements as Spec_Suffix. In addi-
tion, they must be different from any of the values in Spec_Suffix. If Body_
Suffix ("Ada") is not specified, then the default is ".adb".

If Body_Suffix ("Ada") and Spec_Suffix ("Ada") end with the same string,
then a file name that ends with the longest of these two suffixes will be a body
if the longest suffix is Body_Suffix ("Ada") or a spec if the longest suffix is
Spec_Suffix ("Ada").

If the suffix does not start with a ’.’, a file with a name exactly equal to the
suffix will also be part of the project (for instance if you define the suffix as
Makefile.in, a file called ‘Makefile.in’ will be part of the project. This
capability is usually not interesting when building. However, it might become
useful when a project is also used to find the list of source files in an editor, like
the GNAT Programming System (GPS).

Separate_Suffix:
This attribute is specific to Ada. It denotes the suffix used in file names that
contain separate bodies. If it is not specified, then it defaults to same value as
Body_Suffix ("Ada").

The value of this attribute cannot be the empty string.

Otherwise, the same rules apply as for the Body_Suffix attribute. The only
accepted index is "Ada".

Spec or Specification:
This attribute Spec can be used to define the source file name for a given Ada
compilation unit’s spec. The index is the literal name of the Ada unit (case
insensitive). The value is the literal base name of the file that contains this
unit’s spec (case sensitive or insensitive depending on the operating system).
This attribute allows the definition of exceptions to the general naming scheme,
in case some files do not follow the usual convention.

When a source file contains several units, the relative position of the unit can
be indicated. The first unit in the file is at position 1

for Spec ("MyPack.MyChild") use "mypack.mychild.spec";
for Spec ("top") use "foo.a" at 1;
for Spec ("foo") use "foo.a" at 2;

Body or Implementation:
These attribute play the same role as Spec for Ada bodies.

162 GNAT User’s Guide

Specification_Exceptions and Implementation_Exceptions:
These attributes define exceptions to the naming scheme for languages other
than Ada. They are indexed on the language name, and contain a list of file
names respectively for headers and source code.

For example, the following package models the Apex file naming rules:
package Naming is
for Casing use "lowercase";
for Dot_Replacement use ".";
for Spec_Suffix ("Ada") wuse ".l.ada";
for Body_Suffix ("Ada") wuse ".2.ada";
end Naming;

11.2.10 Installation

After building an application or a library it is often required to install it into the development
environment. For instance this step is required if the library is to be used by another
application. The gprinstall tool provides an easy way to install libraries, executable or
object code generated during the build. The Install package can be used to change the
default locations.

The following attributes can be defined in package Install:

Active
Whether the project is to be installed, values are true (default) or false.
Artifacts
An array attribute to declare a set of files not part of the sources to be installed.
The array discriminant is the directory where the file is to be installed. If a
relative directory then Prefix (see below) is prepended.
Prefix:

Root directory for the installation.

Exec_Subdir
Subdirectory of Prefix where executables are to be installed. Default is bin.

Lib_Subdir
Subdirectory of Prefix where directory with the library or object files is to be
installed. Default is lib.

Sources_Subdir
Subdirectory of Prefix where directory with sources is to be installed. Default
is include.

Project_Subdir
Subdirectory of Prefix where the generated project file is to be installed. Default
is share/gpr.

11.2.11 Distributed support

For large projects the compilation time can become a limitation in the development cycle.
To cope with that, GPRbuild supports distributed compilation.

The following attributes can be defined in package Remote:

Chapter 11: GNAT Project Manager 163

Root_Dir:

Root directory of the project’s sources. The default value is the project’s di-
rectory.

11.3 Organizing Projects into Subsystems

A subsystem is a coherent part of the complete system to be built. It is represented by a set
of sources and one single object directory. A system can be composed of a single subsystem
when it is simple as we have seen in the first section. Complex systems are usually composed
of several interdependent subsystems. A subsystem is dependent on another subsystem if
knowledge of the other one is required to build it, and in particular if visibility on some of
the sources of this other subsystem is required. Each subsystem is usually represented by
its own project file.

In this section, the previous example is being extended. Let’s assume some sources of our
Build project depend on other sources. For instance, when building a graphical interface,
it is usual to depend upon a graphical library toolkit such as GtkAda. Furthermore, we
also need sources from a logging module we had previously written.

11.3.1 Project Dependencies

GtkAda comes with its own project file (appropriately called ‘gtkada.gpr’), and we will
assume we have already built a project called ‘logging.gpr’ for the logging module. With
the information provided so far in ‘build.gpr’, building the application would fail with an
error indicating that the gtkada and logging units that are relied upon by the sources of
this project cannot be found.

This is easily solved by adding the following with clauses at the beginning of our project:

with "gtkada.gpr";

with "a/b/logging.gpr";

project Build is

... ~—— as before

end Build;
When such a project is compiled, gnatmake will automatically check the other projects and
recompile their sources when needed. It will also recompile the sources from Build when
needed, and finally create the executable. In some cases, the implementation units needed
to recompile a project are not available, or come from some third-party and you do not
want to recompile it yourself. In this case, the attribute Externally_Built to "true" can
be set, indicating to the builder that this project can be assumed to be up-to-date, and
should not be considered for recompilation. In Ada, if the sources of this externally built
project were compiled with another version of the compiler or with incompatible options,
the binder will issue an error.

The project’s with clause has several effects. It provides source visibility between
projects during the compilation process. It also guarantees that the necessary object files
from Logging and GtkAda are available when linking Build.

As can be seen in this example, the syntax for importing projects is similar to the syntax
for importing compilation units in Ada. However, project files use literal strings instead of
names, and the with clause identifies project files rather than packages.

Each literal string after with is the path (absolute or relative) to a project file. The
.gpr extension is optional, although we recommend adding it. If no extension is specified,

164 GNAT User’s Guide

and no project file with the ‘. gpr’ extension is found, then the file is searched for exactly
as written in the with clause, that is with no extension.

As mentioned above, the path after a with has to be a literal string, and you cannot
use concatenation, or lookup the value of external variables to change the directories from
which a project is loaded. A solution if you need something like this is to use aggregate
projects (see Section 11.7 [Aggregate Projects], page 178).

When a relative path or a base name is used, the project files are searched relative to
each of the directories in the project path. This path includes all the directories found with
the following algorithm, in that order, as soon as a matching file is found, the search stops:

e First, the file is searched relative to the directory that contains the current project file.

e Then it is searched relative to all the directories specified in the environment variables
GPR_PROJECT_PATH_FILE, GPR_PROJECT_PATH and ADA_PROJECT_PATH
(in that order) if they exist. The value of GPR_PROJECT_PATH_FILE, when defined,
is the path name of a text file that contains project directory path names, one per line.
GPR_PROJECT_PATH and ADA_PROJECT_PATH, when defined, contain project
directory path names separated by directory separators. ADA_PROJECT_PATH is
used for compatibility, it is recommended to use GPR_PROJECT_PATH_FILE or
GPR_PROJECT_PATH.

e Finally, it is searched relative to the default project directories. Such directories de-
pends on the tool used. The different locations searched in the specified order are:

e ‘<prefix>/<target>/lib/gnat’ (for gnatmake in all cases, and for gprbuild if
option ‘--target’ is specified)

e ‘<prefix>/<target>/share/gpr’ (for gnatmake in all cases, and for gprbuild if
option ‘--target’ is specified)

e ‘<prefix>/share/gpr/’ (for gnatmake and gprbuild)

e ‘<prefix>/lib/gnat/’ (for gnatmake and gprbuild)

In our example, ‘gtkada.gpr’ is found in the predefined directory if it was installed at
the same root as GNAT.

Some tools also support extending the project path from the command line, generally
through the ‘-aP’. You can see the value of the project path by using the gnatls -v
command.

Any symbolic link will be fully resolved in the directory of the importing project file
before the imported project file is examined.

Any source file in the imported project can be used by the sources of the importing
project, transitively. Thus if A imports B, which imports C, the sources of A may depend on
the sources of C, even if A does not import C explicitly. However, this is not recommended,
because if and when B ceases to import C, some sources in A will no longer compile. gprbuild
has a switch ‘--no-indirect-imports’ that will report such indirect dependencies.

One very important aspect of a project hierarchy is that a given source can only belong
to one project (otherwise the project manager would not know which settings apply to it
and when to recompile it). It means that different project files do not usually share source
directories or when they do, they need to specify precisely which project owns which sources
using attribute Source_Files or equivalent. By contrast, 2 projects can each own a source

Chapter 11: GNAT Project Manager 165

with the same base file name as long as they live in different directories. The latter is not
true for Ada Sources because of the correlation between source files and Ada units.

11.3.2 Cyclic Project Dependencies

Cyclic dependencies are mostly forbidden: if A imports B (directly or indirectly) then B
is not allowed to import A. However, there are cases when cyclic dependencies would be
beneficial. For these cases, another form of import between projects exists: the limited
with. A project A that imports a project B with a straight with may also be imported,
directly or indirectly, by B through a limited with.

The difference between straight with and limited with is that the name of a project
imported with a limited with cannot be used in the project importing it. In particular,
its packages cannot be renamed and its variables cannot be referred to.

with "b.gpr";
with "c.gpr";
project A is
For Exec_Dir use B’Exec_Dir; -- ok
end A;

limited with "a.gpr"; -- Cyclic dependency: A -> B -> A
project B is

For Exec_Dir use A’Exec_Dir; -- not ok
end B;

with "d.gpr";
project C is
end C;

limited with "a.gpr"; -- Cyclic dependency: A -> C -> D -> A
project D is

For Exec_Dir use A’Exec_Dir; -- not ok
end D;

11.3.3 Sharing Between Projects

When building an application, it is common to have similar needs in several of the projects
corresponding to the subsystems under construction. For instance, they will all have the
same compilation switches.

As seen before (see Section 11.2.5 [Tools Options in Project Files|, page 155), setting
compilation switches for all sources of a subsystem is simple: it is just a matter of adding a
Compiler.Default_Switches attribute to each project files with the same value. Of course,
that means duplication of data, and both places need to be changed in order to recompile
the whole application with different switches. It can become a real problem if there are
many subsystems and thus many project files to edit.

There are two main approaches to avoiding this duplication:

e Since ‘build.gpr’ imports ‘logging.gpr’, we could change it to reference the attribute
in Logging, either through a package renaming, or by referencing the attribute. The
following example shows both cases:

project Logging is
package Compiler is
for Switches ("Ada")
use ("-02");

166 GNAT User’s Guide

end Compiler;
package Binder is
for Switches ("Ada")
use (u_Eu) ;
end Binder;
end Logging;

with "logging.gpr";
project Build is
package Compiler renames Logging.Compiler;
package Binder is
for Switches ("Ada") use Logging.Binder’Switches ("Ada");
end Binder;
end Build;

The solution used for Compiler gets the same value for all attributes of the package,
but you cannot modify anything from the package (adding extra switches or some
exceptions). The second version is more flexible, but more verbose.

If you need to refer to the value of a variable in an imported project, rather than an
attribute, the syntax is similar but uses a "." rather than an apostrophe. For instance:

with "imported";
project Main is

Varl := Imported.Var;
end Main;

e The second approach is to define the switches in a third project. That project is setup
without any sources (so that, as opposed to the first example, none of the project plays
a special role), and will only be used to define the attributes. Such a project is typically
called ‘shared.gpr’.

abstract project Shared is
for Source_Files use (); -- no sources
package Compiler is
for Switches ("Ada")
use ("-02");
end Compiler;
end Shared;

with "shared.gpr";
project Logging is

package Compiler renames Shared.Compiler;
end Logging;

with "shared.gpr";
project Build is

package Compiler renames Shared.Compiler;
end Build;

As for the first example, we could have chosen to set the attributes one by one rather
than to rename a package. The reason we explicitly indicate that Shared has no sources
is so that it can be created in any directory and we are sure it shares no sources with
Build or Logging, which of course would be invalid.

Chapter 11: GNAT Project Manager 167

Note the additional use of the abstract qualifier in ‘shared.gpr’. This qualifier is
optional, but helps convey the message that we do not intend this project to have
sources (see Section 11.9.2 [Qualified Projects|, page 188 for more qualifiers).

11.3.4 Global Attributes

We have already seen many examples of attributes used to specify a special option of one of
the tools involved in the build process. Most of those attributes are project specific. That
it to say, they only affect the invocation of tools on the sources of the project where they
are defined.

There are a few additional attributes that apply to all projects in a hierarchy as long as
they are defined on the "main" project. The main project is the project explicitly mentioned
on the command-line. The project hierarchy is the "with"-closure of the main project.

Here is a list of commonly used global attributes:

Builder.Global_Configuration_Pragmas:
This attribute points to a file that contains configuration pragmas to use when
building executables. These pragmas apply for all executables built from this
project hierarchy. As we have seen before, additional pragmas can be spec-
ified on a per-project basis by setting the Compiler.Local_Configuration_
Pragmas attribute.

Builder.Global_Compilation_Switches:
This attribute is a list of compiler switches to use when compiling any source file
in the project hierarchy. These switches are used in addition to the ones defined
in the Compiler package, which only apply to the sources of the corresponding
project. This attribute is indexed on the name of the language.

Using such global capabilities is convenient. It can also lead to unexpected behavior.
Especially when several subsystems are shared among different main projects and the dif-
ferent global attributes are not compatible. Note that using aggregate projects can be a
safer and more powerful replacement to global attributes.

11.4 Scenarios in Projects

Various aspects of the projects can be modified based on scenarios. These are user-defined
modes that change the behavior of a project. Typical examples are the setup of platform-
specific compiler options, or the use of a debug and a release mode (the former would
activate the generation of debug information, when the second will focus on improving code
optimization).

Let’s enhance our example to support a debug and a release modes.The issue is to let
the user choose what kind of system he is building: use ‘-g’ as compiler switches in debug
mode and ‘-02’ in release mode. We will also setup the projects so that we do not share
the same object directory in both modes, otherwise switching from one to the other might
trigger more recompilations than needed or mix objects from the 2 modes.

One naive approach is to create two different project files, say ‘build_debug.gpr’ and
‘build_release.gpr’, that set the appropriate attributes as explained in previous sections.
This solution does not scale well, because in presence of multiple projects depending on

168 GNAT User’s Guide

each other, you will also have to duplicate the complete hierarchy and adapt the project
files to point to the right copies.

Instead, project files support the notion of scenarios controlled by external values. Such
values can come from several sources (in decreasing order of priority):

Command line:
When launching gnatmake or gprbuild, the user can pass extra ‘-X’ switches
to define the external value. In our case, the command line might look like

gnatmake -Pbuild.gpr -Xmode=debug
or gnatmake -Pbuild.gpr -Xmode=release

Environment variables:
When the external value does not come from the command line, it can come
from the value of environment variables of the appropriate name. In our case,
if an environment variable called "mode" exist, its value will be taken into
account.

External function second parameter

We now need to get that value in the project. The general form is to use the predefined
function external which returns the current value of the external. For instance, we could
setup the object directory to point to either ‘obj/debug’ or ‘obj/release’ by changing our
project to

project Build is
for Object_Dir use "obj/" & external ("mode", "debug");
... —— as before
end Build;
The second parameter to external is optional, and is the default value to use if "mode" is
not set from the command line or the environment.

In order to set the switches according to the different scenarios, other constructs have
to be introduced such as typed variables and case constructions.

A typed variable is a variable that can take only a limited number of values, similar to
an enumeration in Ada. Such a variable can then be used in a case construction and create
conditional sections in the project. The following example shows how this can be done:

project Build is
type Mode_Type is ("debug", "release"); -- all possible values
Mode : Mode_Type := external ("mode", "debug"); -- a typed variable

package Compiler is
case Mode is
when "debug" =>
for Switches ("Ada")
use (n_gn) ;
when "release" =>
for Switches ("Ada")
use ("-02");
end case;
end Compiler;
end Build;

The project has suddenly grown in size, but has become much more flexible. Mode_Type
defines the only valid values for the mode variable. If any other value is read from the
environment, an error is reported and the project is considered as invalid.

Chapter 11: GNAT Project Manager 169

The Mode variable is initialized with an external value defaulting to "debug". This
default could be omitted and that would force the user to define the value. Finally, we can
use a case construction to set the switches depending on the scenario the user has chosen.

Most aspects of the projects can depend on scenarios. The notable exception are project
dependencies (with clauses), which may not depend on a scenario.

Scenarios work the same way with project hierarchies: you can either duplicate a variable
similar to Mode in each of the project (as long as the first argument to external is always
the same and the type is the same), or simply set the variable in the ‘shared.gpr’ project
(see Section 11.3.3 [Sharing Between Projects], page 165).

11.5 Library Projects

So far, we have seen examples of projects that create executables. However, it is also
possible to create libraries instead. A library is a specific type of subsystem where, for
convenience, objects are grouped together using system-specific means such as archives or
windows DLLs.

Library projects provide a system- and language-independent way of building both static
and dynamic libraries. They also support the concept of standalone libraries (SAL) which
offers two significant properties: the elaboration (e.g. initialization) of the library is either
automatic or very simple; a change in the implementation part of the library implies minimal
post-compilation actions on the complete system and potentially no action at all for the
rest of the system in the case of dynamic SALs.

There is a restriction on shared library projects: by default, they are only allowed to
import other shared library projects. They are not allowed to import non library projects
or static library projects.

The GNAT Project Manager takes complete care of the library build, rebuild and in-
stallation tasks, including recompilation of the source files for which objects do not exist
or are not up to date, assembly of the library archive, and installation of the library (i.e.,
copying associated source, object and ‘ALI’ files to the specified location).

11.5.1 Building Libraries

Let’s enhance our example and transform the logging subsystem into a library. In order
to do so, a few changes need to be made to ‘logging.gpr’. A number of specific attributes
needs to be defined: at least Library_Name and Library_Dir; in addition, a number of
other attributes can be used to specify specific aspects of the library. For readability, it is
also recommended (although not mandatory), to use the qualifier 1ibrary in front of the
project keyword.

Library_Name:
This attribute is the name of the library to be built. There is no restriction on
the name of a library imposed by the project manager, except for stand-alone
libraries whose names must follow the syntax of Ada identifiers; however, there
may be system specific restrictions on the name. In general, it is recommended
to stick to alphanumeric characters (and possibly single underscores) to help
portability.

170 GNAT User’s Guide

Library_Dir:

This attribute is the path (absolute or relative) of the directory where the library
is to be installed. In the process of building a library, the sources are compiled,
the object files end up in the explicit or implicit Object_Dir directory. When
all sources of a library are compiled, some of the compilation artifacts, including
the library itself, are copied to the library_dir directory. This directory must
exists and be writable. It must also be different from the object directory so
that cleanup activities in the Library_Dir do not affect recompilation needs.

Here is the new version of ‘logging.gpr’ that makes it a library:

library project Logging is -- "library" is optiomal
for Library_Name use "logging"; -- will create "liblogging.a" on Unix
for Object_Dir use "obj";
for Library_Dir use "lib"; -- different from object_dir

end Logging;

Once the above two attributes are defined, the library project is valid and is enough for
building a library with default characteristics. Other library-related attributes can be used
to change the defaults:

Library_Kind:

The value of this attribute must be either "static", "dynamic" or
"relocatable" (the latter is a synonym for dynamic). It indicates which kind
of library should be built (the default is to build a static library, that is an
archive of object files that can potentially be linked into a static executable).
When the library is set to be dynamic, a separate image is created that will
be loaded independently, usually at the start of the main program execution.
Support for dynamic libraries is very platform specific, for instance on
Windows it takes the form of a DLL while on GNU/Linux, it is a dynamic elf
image whose suffix is usually ‘.so’. Library project files, on the other hand,
can be written in a platform independent way so that the same project file can
be used to build a library on different operating systems.

If you need to build both a static and a dynamic library, it is recommended use
two different object directories, since in some cases some extra code needs to
be generated for the latter. For such cases, one can either define two different
project files, or a single one which uses scenarios to indicate the various kinds
of library to be built and their corresponding object_dir.

Library_ALI_Dir:
This attribute may be specified to indicate the directory where the ALI files
of the library are installed. By default, they are copied into the Library_
Dir directory, but as for the executables where we have a separate Exec_Dir
attribute, you might want to put them in a separate directory since there can
be hundreds of them. The same restrictions as for the Library_Dir attribute

apply.
Library_Version:
This attribute is platform dependent, and has no effect on VMS and Windows.

On Unix, it is used only for dynamic libraries as the internal name of the
library (the "soname"). If the library file name (built from the Library_Name)

Chapter 11: GNAT Project Manager 171

is different from the Library_Version, then the library file will be a symbolic
link to the actual file whose name will be Library_Version. This follows the
usual installation schemes for dynamic libraries on many Unix systems.
project Logging is
Version := "1";
for Library_Dir use "lib";
for Library_Name use "logging";
for Library_Kind use "dynamic";
for Library_Version use "liblogging.so." & Version;
end Logging;
After the compilation, the directory ‘1ib’ will contain both a ‘libdummy.so.1’
library and a symbolic link to it called ‘libdummy.so’.

Library_GCC:
This attribute is the name of the tool to use instead of "gcc" to link shared
libraries. A common use of this attribute is to define a wrapper script that
accomplishes specific actions before calling gee (which itself is calling the linker
to build the library image).

Library_Options:
This attribute may be used to specify additional switches (last switches) when
linking a shared library.

Leading_Library_Options:
This attribute, that is taken into account only by gprbuild, may be used to
specified leading options (first switches) when linking a shared library.

Linker.Linker_Options:

This attribute specifies additional switches to be given to the linker when linking
an executable. It is ignored when defined in the main project and taken into
account in all other projects that are imported directly or indirectly. These
switches complement the Linker.Switches defined in the main project. This
is useful when a particular subsystem depends on an external library: adding
this dependency as a Linker_Options in the project of the subsystem is more
convenient than adding it to all the Linker.Switches of the main projects that
depend upon this subsystem.

11.5.2 Using Library Projects

When the builder detects that a project file is a library project file, it recompiles all sources
of the project that need recompilation and rebuild the library if any of the sources have
been recompiled. It then groups all object files into a single file, which is a shared or a static
library. This library can later on be linked with multiple executables. Note that the use
of shard libraries reduces the size of the final executable and can also reduce the memory
footprint at execution time when the library is shared among several executables.

It is also possible to build multi-language libraries. When using gprbuild as a builder,
multi-language library projects allow naturally the creation of multi-language libraries .
gnatmake, does not try to compile non Ada sources. However, when the project is multi-
language, it will automatically link all object files found in the object directory, whether or
not they were compiled from an Ada source file. This specific behavior does not apply to

172 GNAT User’s Guide

Ada-only projects which only take into account the objects corresponding to the sources of
the project.

A non-library project can import a library project. When the builder is invoked on the
former, the library of the latter is only rebuilt when absolutely necessary. For instance, if
a unit of the library is not up-to-date but non of the executables need this unit, then the
unit is not recompiled and the library is not reassembled. For instance, let’s assume in our
example that logging has the following sources: ‘logl.ads’, ‘logl.adb’, ‘log2.ads’ and
‘log2.adb’. If ‘logl.adb’ has been modified, then the library ‘liblogging’ will be rebuilt
when compiling all the sources of Build only if ‘proc.ads’, ‘pack.ads’ or ‘pack.adb’ include
a "with Logl".

To ensure that all the sources in the Logging library are up to date, and that all the
sources of Build are also up to date, the following two commands needs to be used:
gnatmake -Plogging.gpr
gnatmake -Pbuild.gpr
All ‘ALY’ files will also be copied from the object directory to the library directory. To build
executables, gnatmake will use the library rather than the individual object files.

Library projects can also be useful to describe a library that need to be used but, for
some reason, cannot be rebuilt. For instance, it is the case when some of the library sources
are not available. Such library projects need simply to use the Externally_Built attribute
as in the example below:

library project Extern_Lib is

for Languages use ("Ada", "C");

for Source_Dirs wuse ("lib_src");

for Library_Dir use "1lib2";

for Library_Kind use "dynamic";

for Library_Name use "12";

for Externally_Built use "true"; -- <<<<
end Extern_Lib;

In the case of externally built libraries, the Object_Dir attribute does not need to be
specified because it will never be used.

The main effect of using such an externally built library project is mostly to affect
the linker command in order to reference the desired library. It can also be achieved by
using Linker.Linker_Options or Linker.Switches in the project corresponding to the
subsystem needing this external library. This latter method is more straightforward in
simple cases but when several subsystems depend upon the same external library, finding
the proper place for the Linker.Linker_Options might not be easy and if it is not placed
properly, the final link command is likely to present ordering issues. In such a situation, it
is better to use the externally built library project so that all other subsystems depending
on it can declare this dependency thanks to a project with clause, which in turn will trigger
the builder to find the proper order of libraries in the final link command.

11.5.3 Stand-alone Library Projects

A stand-alone library is a library that contains the necessary code to elaborate the Ada units
that are included in the library. A stand-alone library is a convenient way to add an Ada
subsystem to a more global system whose main is not in Ada since it makes the elaboration
of the Ada part mostly transparent. However, stand-alone libraries are also useful when the

Chapter 11: GNAT Project Manager 173

main is in Ada: they provide a means for minimizing relinking & redeployment of complex
systems when localized changes are made.

The name of a stand-alone library, specified with attribute Library_Name, must have
the syntax of an Ada identifier.

The most prominent characteristic of a stand-alone library is that it offers a distinction
between interface units and implementation units. Only the former are visible to units
outside the library. A stand-alone library project is thus characterised by a third attribute,
usually Library_Interface, in addition to the two attributes that make a project a Library
Project (Library_Name and Library_Dir). This third attribute may also be Interfaces.
Library_Interface only works when the interface is in Ada and takes a list of units as
parameter. Interfaces works for any supported language and takes a list of sources as
parameter.

Library_Interface:
This attribute defines an explicit subset of the units of the project. Units from
projects importing this library project may only "with" units whose sources are
listed in the Library_Interface. Other sources are considered implementation
units.
for Library_Dir use "1lib";

for Library_Name use "loggin";
for Library_Interface use ("lib1", "1ib2"); -- unit names

Interfaces This attribute defines an explicit subset of the source files of a project. Sources
from projects importing this project, can only depend on sources from this
subset. This attribute can be used on non library projects. It can also be used
as a replacement for attribute Library_Interface, in which case, units have
to be replaced by source files. For multi-language library projects, it is the only
way to make the project a Stand-Alone Library project whose interface is not
purely Ada.

Library_Standalone:

This attribute defines the kind of standalone library to build. Values are either
standard (the default), no or encapsulated. When standard is used the
code to elaborate and finalize the library is embedded, when encapsulated
is used the library can furthermore only depends on static libraries (including
the GNAT runtime). This attribute can be set to no to make it clear that
the library should not be standalone in which case the Library_Interface
should not defined. Note that this attribute only applies to shared libraries, so
Library_Kind must be set to dynamic.

for Library_Dir use "lib";

for Library_Name use "loggin";

for Library_Kind use "dynamic";

for Library_Interface use ("libl", "1ib2"); -- wunit names
for Library_Standalone use "encapsulated";

In order to include the elaboration code in the stand-alone library, the binder is invoked
on the closure of the library units creating a package whose name depends on the library
name (b~logging.ads/b in the example). This binder-generated package includes initializa-
tion and finalization procedures whose names depend on the library name (logginginit

174 GNAT User’s Guide

and loggingfinal in the example). The object corresponding to this package is included
in the library.

Library_Auto_Init:
A dynamic stand-alone Library is automatically initialized if automatic initial-
ization of Stand-alone Libraries is supported on the platform and if attribute
Library_Auto_Init is not specified or is specified with the value "true". A
static Stand-alone Library is never automatically initialized. Specifying "false"
for this attribute prevent automatic initialization.

When a non-automatically initialized stand-alone library is used in an exe-
cutable, its initialization procedure must be called before any service of the
library is used. When the main subprogram is in Ada, it may mean that the
initialization procedure has to be called during elaboration of another package.

Library_Dir:
For a stand-alone library, only the ‘ALI’ files of the interface units (those that
are listed in attribute Library_Interface) are copied to the library directory.
As a consequence, only the interface units may be imported from Ada units
outside of the library. If other units are imported, the binding phase will fail.

Binder.Default_Switches:
When a stand-alone library is bound, the switches that are specified in the
attribute Binder.Default_Switches ("Ada") are used in the call to gnatbind.

Library_Src_Dir:

This attribute defines the location (absolute or relative to the project direc-
tory) where the sources of the interface units are copied at installation time.
These sources includes the specs of the interface units along with the closure of
sources necessary to compile them successfully. That may include bodies and
subunits, when pragmas Inline are used, or when there is a generic units in the
spec. This directory cannot point to the object directory or one of the source
directories, but it can point to the library directory, which is the default value
for this attribute.

Library_Symbol_Policy:
This attribute controls the export of symbols and, on some platforms (like
VMS) that have the notions of major and minor IDs built in the library files,
it controls the setting of these IDs. It is not supported on all platforms (where
it will just have no effect). It may have one of the following values:

- "autonomous" or "default": exported symbols are not controlled

- "compliant": if attribute Library_Reference_Symbol_File is not defined,
then it is equivalent to policy "autonomous". If there are exported symbols
in the reference symbol file that are not in the object files of the interfaces,
the major ID of the library is increased. If there are symbols in the object
files of the interfaces that are not in the reference symbol file, these symbols
are put at the end of the list in the newly created symbol file and the minor
ID is increased.

Chapter 11: GNAT Project Manager 175

- "controlled": the attribute Library_Reference_Symbol_File must be de-
fined. The library will fail to build if the exported symbols in the object
files of the interfaces do not match exactly the symbol in the symbol file.

- "restricted": The attribute Library_Symbol_File must be defined. The
library will fail to build if there are symbols in the symbol file that are not
in the exported symbols of the object files of the interfaces. Additional
symbols in the object files are not added to the symbol file.

- "direct": The attribute Library_Symbol_File must be defined and must
designate an existing file in the object directory. This symbol file is passed
directly to the underlying linker without any symbol processing.

Library_Reference_Symbol_File
This attribute may define the path name of a reference symbol file that is read
when the symbol policy is either "compliant" or "controlled", on platforms that
support symbol control, such as VMS, when building a stand-alone library. The
path may be an absolute path or a path relative to the project directory.

Library_Symbol_File
This attribute may define the name of the symbol file to be created when
building a stand-alone library when the symbol policy is either "compliant",
"controlled" or "restricted", on platforms that support symbol control, such as
VMS. When symbol policy is "direct", then a file with this name must exist in
the object directory.

11.5.4 Installing a library with project files

When using project files, a usable version of the library is created in the directory specified
by the Library_Dir attribute of the library project file. Thus no further action is needed
in order to make use of the libraries that are built as part of the general application build.

You may want to install a library in a context different from where the library is built.
This situation arises with third party suppliers, who may want to distribute a library in
binary form where the user is not expected to be able to recompile the library. The simplest
option in this case is to provide a project file slightly different from the one used to build the
library, by using the externally_built attribute. Section 11.5.2 [Using Library Projects],
page 171

Another option is to use gprinstall to install the library in a different context than
the build location. A project to use this library is generated automatically by gprinstall
which also copy, in the install location, the minimum set of sources needed to use the library.
Section 11.2.10 [Installation], page 162

11.6 Project Extension

During development of a large system, it is sometimes necessary to use modified versions
of some of the source files, without changing the original sources. This can be achieved
through the project extension facility.

Suppose for instance that our example Build project is built every night for the whole
team, in some shared directory. A developer usually need to work on a small part of the
system, and might not want to have a copy of all the sources and all the object files (mostly

176 GNAT User’s Guide

because that would require too much disk space, time to recompile everything). He prefers
to be able to override some of the source files in his directory, while taking advantage of all
the object files generated at night.

Another example can be taken from large software systems, where it is common to
have multiple implementations of a common interface; in Ada terms, multiple versions of
a package body for the same spec. For example, one implementation might be safe for use
in tasking programs, while another might only be used in sequential applications. This can
be modeled in GNAT using the concept of project extension. If one project (the “child”)
extends another project (the “parent”) then by default all source files of the parent project
are inherited by the child, but the child project can override any of the parent’s source files
with new versions, and can also add new files or remove unnecessary ones. This facility is
the project analog of a type extension in object-oriented programming. Project hierarchies
are permitted (an extending project may itself be extended), and a project that extends a
project can also import other projects.

A third example is that of using project extensions to provide different versions of the
same system. For instance, assume that a Common project is used by two development
branches. One of the branches has now been frozen, and no further change can be done to
it or to Common. However, the other development branch still needs evolution of Common.
Project extensions provide a flexible solution to create a new version of a subsystem while
sharing and reusing as much as possible from the original one.

A project extension inherits implicitly all the sources and objects from the project it
extends. It is possible to create a new version of some of the sources in one of the additional
source dirs of the extending project. Those new versions hide the original versions. Adding
new sources or removing existing ones is also possible. Here is an example on how to extend
the project Build from previous examples:

project Work extends "../bld/build.gpr" is

end Work;
The project after extends is the one being extended. As usual, it can be specified using
an absolute path, or a path relative to any of the directories in the project path (see
Section 11.3.1 [Project Dependencies], page 163). This project does not specify source or
object directories, so the default value for these attribute will be used that is to say the
current directory (where project Work is placed). We can already compile that project with

gnatmake -Pwork
If no sources have been placed in the current directory, this command won’t do anything,
since this project does not change the sources it inherited from Build, therefore all the
object files in Build and its dependencies are still valid and are reused automatically.

Suppose we now want to supply an alternate version of ‘pack.adb’ but use the existing
versions of ‘pack.ads’ and ‘proc.adb’. We can create the new file Work’s current directory
(likely by copying the one from the Build project and making changes to it. If new packages
are needed at the same time, we simply create new files in the source directory of the
extending project.

When we recompile, gnatmake will now automatically recompile this file (thus creating
‘pack.o’ in the current directory) and any file that depends on it (thus creating ‘proc.o’).
Finally, the executable is also linked locally.

Note that we could have obtained the desired behavior using project import rather
than project inheritance. A base project would contain the sources for ‘pack.ads’ and

Chapter 11: GNAT Project Manager 177

‘proc.adb’, and Work would import base and add ‘pack.adb’. In this scenario, base
cannot contain the original version of ‘pack.adb’ otherwise there would be 2 versions of the
same unit in the closure of the project and this is not allowed. Generally speaking, it is not
recommended to put the spec and the body of a unit in different projects since this affects
their autonomy and reusability.

In a project file that extends another project, it is possible to indicate that an inherited
source is not part of the sources of the extending project. This is necessary sometimes
when a package spec has been overridden and no longer requires a body: in this case, it
is necessary to indicate that the inherited body is not part of the sources of the project,
otherwise there will be a compilation error when compiling the spec.

For that purpose, the attribute Excluded_Source_Files is used. Its value is a list of file
names. It is also possible to use attribute Excluded_Source_List_File. Its value is the
path of a text file containing one file name per line.

project Work extends "../bld/build.gpr" is
for Source_Files use ("pack.ads");
-- New spec of Pkg does not need a completion
for Excluded_Source_Files use ("pack.adb");
end Work;
All packages that are not declared in the extending project are inherited from the project
being extended, with their attributes, with the exception of Linker’Linker_Options which
is never inherited. In particular, an extending project retains all the switches specified in
the project being extended.

At the project level, if they are not declared in the extending project, some attributes
are inherited from the project being extended. They are: Languages, Main (for a root non
library project) and Library_Name (for a project extending a library project)

11.6.1 Project Hierarchy Extension

One of the fundamental restrictions in project extension is the following: A project is not
allowed to import directly or indirectly at the same time an extending project and one of
its ancestors.

By means of example, consider the following hierarchy of projects.

a.gpr contains package Al
b.gpr, imports a.gpr and contains Bl, which depends on Al
c.gpr, imports b.gpr and contains C1, which depends on Bl

If we want to locally extend the packages A1l and C1, we need to create several extending
projects:
a_ext.gpr which extends a.gpr, and overrides Al

b_ext.gpr which extends b.gpr and imports a_ext.gpr
c_ext.gpr which extends c.gpr, imports b_ext.gpr and overrides C1

project A_Ext extends "a.gpr" is
for Source_Files use ("al.adb", "al.ads");
end A_Ext;

with "a_ext.gpr";
project B_Ext extends "b.gpr" is
end B_Ext;

with "b_ext.gpr";
project C_Ext extends "c.gpr" is

178 GNAT User’s Guide

for Source_Files use ("cl.adb");
end C_Ext;
The extension ‘b_ext.gpr’ is required, even though we are not overriding any of the sources
of ‘b.gpr’ because otherwise ‘c_expr.gpr’ would import ‘b.gpr’ which itself knows nothing
about ‘a_ext.gpr’.

When extending a large system spanning multiple projects, it is often inconvenient to
extend every project in the hierarchy that is impacted by a small change introduced in a
low layer. In such cases, it is possible to create an implicit extension of entire hierarchy
using extends all relationship.

When the project is extended using extends all inheritance, all projects that are im-
ported by it, both directly and indirectly, are considered virtually extended. That is, the
project manager creates implicit projects that extend every project in the hierarchy; all
these implicit projects do not control sources on their own and use the object directory of
the "extending all" project.

It is possible to explicitly extend one or more projects in the hierarchy in order to modify
the sources. These extending projects must be imported by the "extending all" project,
which will replace the corresponding virtual projects with the explicit ones.

When building such a project hierarchy extension, the project manager will ensure that
both modified sources and sources in implicit extending projects that depend on them, are
recompiled.

Thus, in our example we could create the following projects instead:

a_ext.gpr, extends a.gpr and overrides Al
c_ext.gpr, "extends all" c.gpr, imports a_ext.gpr and overrides Cl

project A_Ext extends "a.gpr" is
for Source_Files use ("al.adb", "al.ads");
end A_Ext;

with "a_ext.gpr";
project C_Ext extends all "c.gpr" is
for Source_Files use ("cl.adb");
end C_Ext;
When building project ‘c_ext.gpr’, the entire modified project space is considered for
recompilation, including the sources of ‘b.gpr’ that are impacted by the changes in A1 and
C1.

11.7 Aggregate Projects

Aggregate projects are an extension of the project paradigm, and are meant to solve a
few specific use cases that cannot be solved directly using standard projects. This section
will go over a few of these use cases to try to explain what you can use aggregate projects
for.

11.7.1 Building all main programs from a single project tree

Most often, an application is organized into modules and submodules, which are very con-
veniently represented as a project tree or graph (the root project A withs the projects for
each modules (say B and C), which in turn with projects for submodules.

Chapter 11: GNAT Project Manager 179

Very often, modules will build their own executables (for testing purposes for instance),
or libraries (for easier reuse in various contexts).

However, if you build your project through gnatmake or gprbuild, using a syntax similar
to

gprbuild -PA.gpr

this will only rebuild the main programs of project A, not those of the imported projects
B and C. Therefore you have to spawn several gnatmake commands, one per project, to build
all executables. This is a little inconvenient, but more importantly is inefficient because
gnatmake needs to do duplicate work to ensure that sources are up-to-date, and cannot
easily compile things in parallel when using the -j switch.

Also libraries are always rebuilt when building a project.

You could therefore define an aggregate project Agg that groups A, B and C. Then,
when you build with

gprbuild -PAgg.gpr
this will build all mains from A, B and C.
aggregate project Agg is
for Project_Files use ("a.gpr", "b.gpr", "c.gpr");
end Agg;
If B or C do not define any main program (through their Main attribute), all their
sources are built. When you do not group them in the aggregate project, only those sources
that are needed by A will be built.

If you add a main to a project P not already explicitly referenced in the aggregate
project, you will need to add "p.gpr" in the list of project files for the aggregate project, or
the main will not be built when building the aggregate project.

Aggregate projects are only supported with gprbuild, but not with gnatmake.

11.7.2 Building a set of projects with a single command

One other case is when you have multiple applications and libraries that are built indepen-
dently from each other (but can be built in parallel). For instance, you have a project tree
rooted at A, and another one (which might share some subprojects) rooted at B.

Using only gprbuild, you could do
gprbuild -PA.gpr
gprbuild -PB.gpr
to build both. But again, gprbuild has to do some duplicate work for those files that
are shared between the two, and cannot truly build things in parallel efficiently.

If the two projects are really independent, share no sources other than through a common
subproject, and have no source files with a common basename, you could create a project C
that imports A and B. But these restrictions are often too strong, and one has to build them
independently. An aggregate project does not have these limitations and can aggregate two
project trees that have common sources.

This scenario is particularly useful in environments like VxWorks 653 where the applica-
tions running in the multiple partitions can be built in parallel through a single gprbuild
command. This also works nicely with Annex E.

180 GNAT User’s Guide

11.7.3 Define a build environment

The environment variables at the time you launch gprbuild will influence the view
these tools have of the project (PATH to find the compiler, ADA_PROJECT_PATH or
GPR_PROJECT_PATH to find the projects, environment variables that are referenced in
project files through the "external" statement,...). Several command line switches can
be used to override those (-X or -aP), but on some systems and with some projects, this
might make the command line too long, and on all systems often make it hard to read.

An aggregate project can be used to set the environment for all projects built through
that aggregate. One of the nice aspects is that you can put the aggregate project under
configuration management, and make sure all your user have a consistent environment when
building. The syntax looks like

aggregate project Agg is
for Project_Files use ("A.gpr", "B.gpr");

for Project_Path use ("../dirl", "../dirl/dir2");
for External ("BUILD") use "PRODUCTION";

package Builder is
for Switches ("Ada") use ("-q");
end Builder;
end Agg;

One of the often requested features in projects is to be able to reference external variables
in with statements, as in

with external("SETUP") & "path/prj.gpr"; -- ILLEGAL
project MyProject is

end MyProject;

For various reasons, this isn’t authorized. But using aggregate projects provide an
elegant solution. For instance, you could use a project file like:
aggregate project Agg is
for Project_Path use (external("SETUP") % "path");

for Project_Files use ("myproject.gpr");
end Agg;

with "prj.gpr"; -- searched on Agg’Project_Path
project MyProject is

end MyProject;

11.7.4 Performance improvements in builder

The loading of aggregate projects is optimized in gprbuild, so that all files are searched
for only once on the disk (thus reducing the number of system calls and contributing to
faster compilation times especially on systems with sources on remote servers). As part of
the loading, gprbuild computes how and where a source file should be compiled, and even
if it is found several times in the aggregated projects it will be compiled only once.

Since there is no ambiguity as to which switches should be used, files can be compiled
in parallel (through the usual -j switch) and this can be done while maximizing the use of
CPUs (compared to launching multiple gprbuild and gnatmake commands in parallel).

Chapter 11: GNAT Project Manager 181

11.7.5 Syntax of aggregate projects

An aggregate project follows the general syntax of project files. The recommended extension
is still ‘.gpr’. However, a special aggregate qualifier must be put before the keyword
project.

An aggregate project cannot with any other project (standard or aggregate), except
an abstract project which can be used to share attribute values. Also, aggregate projects
cannot be extended or imported though a with clause by any other project. Building other
aggregate projects from an aggregate project is done through the Project_Files attribute
(see below).

An aggregate project does not have any source files directly (only through other standard
projects). Therefore a number of the standard attributes and packages are forbidden in an
aggregate project. Here is the (non exhaustive) list:

e Languages

e Source_Files, Source_List_File and other attributes dealing with list of sources.
e Source_Dirs, Exec_Dir and Object_Dir

e Library_Dir, Library_Name and other library-related attributes

e Main

e Roots

e Externally_Built

e Inherit_Source_Path

e Excluded_Source_Dirs

e Locally_Removed_Files

e Excluded_Source_Files

e Excluded_Source_List_File

e Interfaces

The only package that is authorized (albeit optional) is Builder. Other packages (in

particular Compiler, Binder and Linker) are forbidden. It is an error to have any of these
(and such an error prevents the proper loading of the aggregate project).

Three new attributes have been created, which can only be used in the context of ag-
gregate projects:

Project_Files:
This attribute is compulsory (or else we are not aggregating any project, and
thus not doing anything). It specifies a list of ‘. gpr’ files that are grouped in
the aggregate. The list may be empty. The project files can be either other
aggregate projects, or standard projects. When grouping standard projects,
you can have both the root of a project tree (and you do not need to specify
all its imported projects), and any project within the tree.

Basically, the idea is to specify all those projects that have main programs you
want to build and link, or libraries you want to build. You can even specify
projects that do not use the Main attribute nor the Library_* attributes, and
the result will be to build all their source files (not just the ones needed by
other projects).

182 GNAT User’s Guide

The file can include paths (absolute or relative). Paths are relative to the
location of the aggregate project file itself (if you use a base name, we ex-
pect to find the .gpr file in the same directory as the aggregate project file).
The environment variables ADA_PROJECT_PATH, GPR_PROJECT_PATH and GPR_
PROJECT_PATH_FILE are not used to find the project files. The extension ‘. gpr’
is mandatory, since this attribute contains file names, not project names.

Paths can also include the "*" and "*x*" globbing patterns. The latter indi-
cates that any subdirectory (recursively) will be searched for matching files.
The latter ("**") can only occur at the last position in the directory part (ie
"a/**/*.gpr" is supported, but not "**/a/*.gpr"). Starting the pattern with
"xx" is equivalent to starting with "./*x*".

For now, the pattern "*" is only allowed in the filename part, not in the direc-
tory part. This is mostly for efficiency reasons to limit the number of system
calls that are needed.

Here are a few valid examples:

for Project_Files use ("a.gpr", "subdir/b.gpr");
-— two specific projects relative to the directory of agg.gpr

for Project_Files use ("**/*.gpr");
-- all projects recursively

Project_Path:
This attribute can be used to specify a list of directories in which to look for
project files in with statements.

When you specify a project in Project_Files say "x/y/a.gpr"), and this projects
imports a project "b.gpr", only b.gpr is searched in the project path. a.gpr must
be exactly at <dir of the aggregate>/x/y/a.gpr.

This attribute, however, does not affect the search for the aggregated project
files specified with Project_Files.

Each aggregate project has its own (that is if aggl.gpr includes agg2.gpr, they
can potentially both have a different project path).

This project path is defined as the concatenation, in that order, of:
e the current directory;
e followed by the command line -aP switches;

e then the directories from the GPR_PROJECT_PATH and
ADA_PROJECT_PATH environment variables;

e then the directories from the Project_Path attribute;

e and finally the predefined directories.
In the example above, agg2.gpr’s project path is not influenced by the attribute
aggl’Project_Path, nor is aggl influenced by agg2’Project_Path.
This can potentially lead to errors. In the following example:

| Aggl.gpr | -=--includes--=-->| Agg2.gpr |
| ’project_pathl| | ’project_path |

Chapter 11: GNAT Project Manager 183

External:

includes includes

v v
o + oo +
| P.gpr |<-————————- withs -—----—- | Q.gpr |
+—————— o \ e +

I |

withs |

I |

v v
o= + pommm - +
| R.gpr | | R’.gpr |
o + fomm— +

When looking for p.gpr, both aggregates find the same physical file on the
disk. However, it might happen that with their different project paths, both
aggregate projects would in fact find a different r.gpr. Since we have a common
project (p.gpr) "with"ing two different r.gpr, this will be reported as an error
by the builder.

Directories are relative to the location of the aggregate project file.

Here are a few valid examples:
for Project_Path use ("/usr/local/gpr", "gpr/");

This attribute can be used to set the value of environment variables as retrieved
through the external statement in projects. It does not affect the environment
variables themselves (so for instance you cannot use it to change the value of
your PATH as seen from the spawned compiler).
This attribute affects the external values as seen in the rest of the aggreate
projects, and in the aggregated projects.
The exact value of external a variable comes from one of three sources (each
level overrides the previous levels):

e An External attribute in aggregate project, for instance for External

("BUILD_MODE") use "DEBUG";

e Environment variables
These override the value given by the attribute, so that users can override
the value set in the (presumably shared with others in his team) aggregate
project.

e The -X command line switch to gprbuild
This always takes precedence.

This attribute is only taken into account in the main aggregate project (i.e. the
one specified on the command line to gprbuild), and ignored in other aggregate
projects. It is invalid in standard projects. The goal is to have a consistent
value in all projects that are built through the aggregate, which would not be
the case in the diamond case: A groups the aggregate projects B and C, which
both (either directly or indirectly) build the project P. If B and C could set
different values for the environment variables, we would have two different views
of P, which in particular might impact the list of source files in P.

184 GNAT User’s Guide

11.7.6 package Builder in aggregate projects

As we mentioned before, only the package Builder can be specified in an aggregate project.
In this package, only the following attributes are valid:

Switches: This attribute gives the list of switches to use for gprbuild. Because no mains
can be specified for aggregate projects, the only possible index for attribute
Switches is others. All other indexes will be ignored.

Example:
for Switches (other) use ("-v", "-k", "-j8");

These switches are only read from the main aggregate project (the one passed
on the command line), and ignored in all other aggregate projects or projects.

It can only contain builder switches, not compiler switches.

Global_Compilation_Switches
This attribute gives the list of compiler switches for the various languages. For
instance,
for Global_Compilation_Switches ("Ada") use ("01", "-g");
for Global_Compilation_Switches ("C") use ("-02");
This attribute is only taken into account in the aggregate project specified on
the command line, not in other aggregate projects.

In the projects grouped by that aggregate, the attribute Builder.Global_Compilation_Switchesl
is also ignored. However, the attribute Compiler.Default_Switches will be

taken into account (but that of the aggregate have higher priority). The

attribute Compiler.Switches is also taken into account and can be used to

override the switches for a specific file. As a result, it always has priority.

The rules are meant to avoid ambiguities when compiling. For instance, aggre-
gate project Agg groups the projects A and B, that both depend on C. Here is
an extra for all of these projects:
aggregate project Agg is
for Project_Files use ("a.gpr", "b.gpr");
package Builder is
for Global_Compilation_Switches ("Ada") use ("-02");
end Builder;
end Agg;

with "c.gpr";
project A is
package Builder is
for Global_Compilation_Switches ("Ada") use ("-01");
-- ignored
end Builder;

package Compiler is
for Default_Switches ("Ada")
use ("‘01", u_gu);
for Switches ("a_filel.adb")
use ("-00");
end Compiler;
end A;

with "c.gpr";

Chapter 11: GNAT Project Manager 185

project B is
package Compiler is
for Default_Switches ("Ada") use ("-00");
end Compiler;
end B;

project C is
package Compiler is
for Default_Switches ("Ada")
use ("-03",
"-gnatn") ;
for Switches ("c_filel.adb")
use ("‘UO", u_gn);
end Compiler;
end C;

then the following switches are used:

e all files from project A except a_filel.adb are compiled with "-O2 -g", since
the aggregate project has priority.

e the file a_filel.adb is compiled with "-O0", since the Compiler.Switches has
priority

e all files from project B are compiled with "-O2", since the aggregate project
has priority

e all files from C are compiled with "-O2 -gnatn", except for c_filel.adb which
is compiled with "-O0 -g"

Even though C is seen through two paths (through A and through B), the
switches used by the compiler are unambiguous.

Global_Configuration_Pragmas
This attribute can be used to specify a file containing configuration pragmas,
to be passed to the Ada compiler. Since we ignore the package Builder in
other aggregate projects and projects, only those pragmas defined in the main
aggregate project will be taken into account.
Projects can locally add to those by wusing the Compiler.Local_
Configuration_Pragmas attribute if they need.

Global_Config_File
This attribute, indexed with a language name, can be used to specify a config
when compiling sources of the language. For Ada, these files are configuration
pragmas files.

For projects that are built through the aggregate, the package Builder is ignored, except
for the Executable attribute which specifies the name of the executables resulting from the
link of the main programs, and for the Executable_Suffix.

11.8 Aggregate Library Projects

Aggregate library projects make it possible to build a single library using object files
built using other standard or library projects. This gives the flexibility to describe an
application as having multiple modules (a GUI, database access, ...) using different project
files (so possibly built with different compiler options) and yet create a single library (static
or relocatable) out of the corresponding object files.

186 GNAT User’s Guide

11.8.1 Building aggregate library projects

For example, we can define an aggregate project Agg that groups A, B and C:
aggregate library project Agg is
for Project_Files use ("a.gpr", "b.gpr", "c.gpr");
for Library_Name use ("agg");
for Library_Dir use ("lagg");
end Agg;
Then, when you build with:
gprbuild agg.gpr
This will build all units from projects A, B and C and will create a static library named
‘libagg.a’ into the ‘lagg’ directory. An aggregate library project has the same set of
restriction as a standard library project.
Note that a shared aggregate library project cannot aggregates a static library project.
In platforms where a compiler option is required to create relocatable object files, a Builder
package in the aggregate library project may be used:

aggregate library project Agg is
for Project_Files use ("a.gpr", "b.gpr", "c.gpr");
for Library_Name use ("agg");
for Library_Dir use ("lagg");
for Library_Kind use "relocatable";

package Builder is
for Global_Compilation_Switches ("Ada") use ("-fPIC");
end Builder;
end Agg;

With the above aggregate library Builder package, the —fPIC option will be passed to
the compiler when building any source code from projects ‘a.gpr’, ‘b.gpr’ and ‘c.gpr’.

11.8.2 Syntax of aggregate library projects

An aggregate library project follows the general syntax of project files. The recommended
extension is still ‘. gpr’. However, a special aggregate 1library qualifier must be put before
the keyword project.

An aggregate library project cannot with any other project (standard or aggregate),
except an abstract project which can be used to share attribute values.

An aggregate library project does not have any source files directly (only through other
standard projects). Therefore a number of the standard attributes and packages are forbid-
den in an aggregate library project. Here is the (non exhaustive) list:

e Languages

e Source_Files, Source_List_File and other attributes dealing with list of sources.
e Source_Dirs, Exec_Dir and Object_Dir

e Main

e Roots

e Externally_Built

e Inherit_Source_Path

e Excluded_Source_Dirs

e Locally_Removed_Files

Chapter 11: GNAT Project Manager 187

e Excluded_Source_Files
e Excluded_Source_List_File

e Interfaces

The only package that is authorized (albeit optional) is Builder.

The Project_Files attribute (See see Section 11.7 [Aggregate Projects|, page 178) is
used to described the aggregated projects whose object files have to be included into the
aggregate library. The environment variables ADA_PROJECT_PATH, GPR_PROJECT_PATH and
GPR_PROJECT_PATH_FILE are not used to find the project files.

11.9 Project File Reference

This section describes the syntactic structure of project files, the various constructs that
can be used. Finally, it ends with a summary of all available attributes.

11.9.1 Project Declaration

Project files have an Ada-like syntax. The minimal project file is:

project Empty is

end Empty;
The identifier Empty is the name of the project. This project name must be present after
the reserved word end at the end of the project file, followed by a semi-colon.

Identifiers (i.e. the user-defined names such as project or variable names) have the same
syntax as Ada identifiers: they must start with a letter, and be followed by zero or more
letters, digits or underscore characters; it is also illegal to have two underscores next to each
other. Identifiers are always case-insensitive ("Name" is the same as "name").

simple_name ::
name

= identifier

= simple_name { . simple_name }

Strings are used for values of attributes or as indexes for these attributes. They are in
general case sensitive, except when noted otherwise (in particular, strings representing file
names will be case insensitive on some systems, so that "file.adb" and "File.adb" both

represent the same file).

Reserved words are the same as for standard Ada 95, and cannot be used for identifiers.
In particular, the following words are currently used in project files, but others could be
added later on. In bold are the extra reserved words in project files: all, at, case,
end, for, is, limited, null, others, package, renames, type, use, when, with,
extends, external, project.

Comments in project files have the same syntax as in Ada, two consecutive hyphens
through the end of the line.

A project may be an independent project, entirely defined by a single project file. Any
source file in an independent project depends only on the predefined library and other
source files in the same project. But a project may also depend on other projects, either
by importing them through with clauses, or by extending at most one other project. Both
types of dependency can be used in the same project.

A path name denotes a project file. It can be absolute or relative. An absolute path name
includes a sequence of directories, in the syntax of the host operating system, that identifies
uniquely the project file in the file system. A relative path name identifies the project file,

188 GNAT User’s Guide

relative to the directory that contains the current project, or relative to a directory listed
in the environment variables ADA_PROJECT_PATH and GPR_PROJECT_PATH. Path
names are case sensitive if file names in the host operating system are case sensitive. As a
special case, the directory separator can always be "/" even on Windows systems, so that
project files can be made portable across architectures. The syntax of the environment
variable ADA_PROJECT_PATH and GPR_PROJECT_PATH is a list of directory names
separated by colons on UNIX and semicolons on Windows.

A given project name can appear only once in a context clause.

It is illegal for a project imported by a context clause to refer, directly or indirectly,
to the project in which this context clause appears (the dependency graph cannot contain
cycles), except when one of the with clause in the cycle is a limited with.

with "other_project.gpr";

project My_Project extends "extended.gpr" is

end My_Project;
These dependencies form a directed graph, potentially cyclic when using limited with. The
subprogram reflecting the extends relations is a tree.

A project’s immediate sources are the source files directly defined by that project, either
implicitly by residing in the project source directories, or explicitly through any of the
source-related attributes. More generally, a project sources are the immediate sources of
the project together with the immediate sources (unless overridden) of any project on which
it depends directly or indirectly.

A project hierarchy can be created, where projects are children of other projects. The
name of such a child project must be Parent.Child, where Parent is the name of the parent
project. In particular, this makes all with clauses of the parent project automatically visible
in the child project.

project context_clause project_declaration
{with_clause}

with path_name { , path_name } ;
string_literal

context_clause ::
with_clause
path_name

project_declaration ::= simple_project_declaration | project_extension
simple_project_declaration ::=
project <project_>name is
{declarative_item}
end <project_>simple_name;

11.9.2 Qualified Projects

Before the reserved project, there may be one or two qualifiers, that is identifiers or
reserved words, to qualify the project. The current list of qualifiers is:

abstract: qualifies a project with no sources. Such a
project must either have no declaration of attributes Source_Dirs, Source_
Files, Languages or Source_List_File, or one of Source_Dirs, Source_
Files, or Languages must be declared as empty. If it extends another project,
the project it extends must also be a qualified abstract project.

standard: a standard project is a non library project with sources.
This is the default (implicit) qualifier.

Chapter 11: GNAT Project Manager 189

aggregate: a project whose sources are aggregated from other
project files.

aggregate library: a library whose sources are aggregated
from other project or library project files.

library: a library project must declare both attributes
Library_Name and Library_Dir.

configuration: a configuration project cannot be in a project tree.
It describes compilers and other tools to gprbuild.

11.9.3 Declarations

Declarations introduce new entities that denote types, variables, attributes, and packages.
Some declarations can only appear immediately within a project declaration. Others can
appear within a project or within a package.

declarative_item ::= simple_declarative_item
| typed_string_declaration
| package_declaration

simple_declarative_item ::= variable_declaration
| typed_variable_declaration
| attribute_declaration
| case_construction
| empty_declaration

empty_declaration ::= null ;

An empty declaration is allowed anywhere a declaration is allowed. It has no effect.

11.9.4 Packages

A project file may contain packages, that group attributes (typically all the attributes that
are used by one of the GNAT tools).

A package with a given name may only appear once in a project file. The following pack-
ages are currently supported in project files (See see Section 11.9.10 [Attributes|, page 195
for the list of attributes that each can contain).

Binder This package specifies characteristics useful when invoking the binder either
directly via the gnat driver or when using a builder such as gnatmake or
gprbuild. See Section 11.2.4 [Main Subprograms|, page 155.

Builder This package specifies the compilation options used when building an executable
or a library for a project. Most of the options should be set in one of Compiler,
Binder or Linker packages, but there are some general options that should be
defined in this package. See Section 11.2.4 [Main Subprograms|, page 155, and
see Section 11.2.7 [Executable File Names]|, page 158 in particular.

Clean This package specifies the options used when cleaning a project or a project
tree using the tools gnatclean or gprclean.

Compiler This package specifies the compilation options used by the compiler for each
languages. See Section 11.2.5 [Tools Options in Project Files], page 155.

190 GNAT User’s Guide

Cross_Reference
This package specifies the options used when calling the library tool gnatxref
via the gnat driver. Its attributes Default_Switches and Switches have the same
semantics as for the package Builder.

Finder This package specifies the options used when calling the search tool gnatfind
via the gnat driver. Its attributes Default_Switches and Switches have the same
semantics as for the package Builder.

Gnatls This package specifies the options to use when invoking gnatls via the gnat
driver.
IDE This package specifies the options used when starting an integrated development

environment, for instance GPS or Gnatbench.

Install This package specifies the options used when installing a project with
gprinstall. See Section 11.2.10 [Installation], page 162.

Linker This package specifies the options used by the linker. See Section 11.2.4 [Main
Subprograms|, page 155.

Naming This package specifies the naming conventions that apply to the source files in
a project. In particular, these conventions are used to automatically find all
source files in the source directories, or given a file name to find out its language
for proper processing. See Section 11.2.9 [Naming Schemes], page 160.

Remote This package is used by gprbuild to describe how distributed compilation
should be done.

Stack This package specifies the options used when calling the tool gnatstack via
the gnat driver. Its attributes Default_Switches and Switches have the same
semantics as for the package Builder.

Synchronize
This package specifies the options used when calling the tool gnatsync via the
gnat driver.

In its simplest form, a package may be empty:
project Simple is
package Builder is
end Builder;
end Simple;
A package may contain attribute declarations, variable declarations and case constructions,
as will be described below.

When there is ambiguity between a project name and a package name, the name always
designates the project. To avoid possible confusion, it is always a good idea to avoid naming
a project with one of the names allowed for packages or any name that starts with gnat.

A package can also be defined by a renaming declaration. The new package renames a
package declared in a different project file, and has the same attributes as the package it
renames. The name of the renamed package must be the same as the name of the renaming
package. The project must contain a package declaration with this name, and the project
must appear in the context clause of the current project, or be its parent project. It is not

Chapter 11: GNAT Project Manager 191

possible to add or override attributes to the renaming project. If you need to do so, you
should use an extending declaration (see below).

Packages that are renamed in other project files often come from project files that have
no sources: they are just used as templates. Any modification in the template will be
reflected automatically in all the project files that rename a package from the template.
This is a very common way to share settings between projects.

Finally, a package can also be defined by an extending declaration. This is similar to a
renaming declaration, except that it is possible to add or override attributes.

package_declaration ::= package_spec | package_renaming | package_extension
package_spec ::=
package <package_>simple_name is
{simple_declarative_item}
end package_identifier ;
package_renaming ::==
package <package_>simple_name renames <project_>simple_name.package_identifier ;
package_extension ::==
package <package_>simple_name extends <project_>simple_name.package_identifier is
{simple_declarative_item}
end package_identifier ;

11.9.5 Expressions

An expression is any value that can be assigned to an attribute or a variable. It is either
a literal value, or a construct requiring runtime computation by the project manager. In a
project file, the computed value of an expression is either a string or a list of strings.
A string value is one of:
o A literal string, for instance "comm/my_proj.gpr"
e The name of a variable that evaluates to a string (see Section 11.9.8 [Variables],
page 193)
e The name of an attribute that evaluates to a string (see Section 11.9.10 [Attributes],
page 195)
e An external reference (see Section 11.9.6 [External Values|, page 192)

e A concatenation of the above, as in "prefix_" & Var.

A list of strings is one of the following:

e A parenthesized comma-separated list of zero or more string expressions, for instance
(File_Name, "gnat.adc", File_Name & ".orig") or ().

e The name of a variable that evaluates to a list of strings

e The name of an attribute that evaluates to a list of strings

e A concatenation of a list of strings and a string (as defined above), for instance ("A",
"B") & "C"

e A concatenation of two lists of strings

The following is the grammar for expressions

string_literal ::= "{string_element}" -- Same as Ada
string_expression ::= string_literal

| variable_name

| external_value

| attribute_reference

192 GNAT User’s Guide

| (string_expression { & string_expression })
string_list ::= (string_expression { , string_expression })
| string_variable_name
| string_attribute_reference
term ::= string_expression | string_list
expression ::= term { & term } -- Concatenation

Concatenation involves strings and list of strings. As soon as a list of strings is involved,
the result of the concatenation is a list of strings. The following Ada declarations show the
existing operators:

function "&" (X : String; Y : String) return String;
function "&" (X : String_List; Y : String) return String_List;
function "&" (X : String_List; Y : String List) return String List;

Here are some specific examples:

List := () & File_Name; -- One string in this list

List2 := List & (File_Name & ".orig"); -- Two strings

Big_List := List & Lists2; -- Three strings

Illegal := "gnat.adc" & List2; -- TIllegal, must start with list

11.9.6 External Values

An external value is an expression whose value is obtained from the command that invoked
the processing of the current project file (typically a gnatmake or gprbuild command).

There are two kinds of external values, one that returns a single string, and one that
returns a string list.

The syntax of a single string external value is:

external_value ::= external (string literal [, string_literal])

The first string_literal is the string to be used on the command line or in the environment to
specify the external value. The second string_literal, if present, is the default to use if there
is no specification for this external value either on the command line or in the environment.

Typically, the external value will either exist in the environment variables or be specified
on the command line through the ‘-Xvbl=value’ switch. If both are specified, then the
command line value is used, so that a user can more easily override the value.

The function external always returns a string. It is an error if the value was not found
in the environment and no default was specified in the call to external.

An external reference may be part of a string expression or of a string list expression,
and can therefore appear in a variable declaration or an attribute declaration.

Most of the time, this construct is used to initialize typed variables, which are then used
in case statements to control the value assigned to attributes in various scenarios. Thus
such variables are often called scenario variables.

The syntax for a string list external value is:

external_value ::= external_as_list (string_literal , string_literal)

The first string_literal is the string to be used on the command line or in the environ-
ment to specify the external value. The second string_literal is the separator between each
component of the string list.

If the external value does not exist in the environment or on the command line, the
result is an empty list. This is also the case, if the separator is an empty string or if the
external value is only one separator.

Chapter 11: GNAT Project Manager 193

Any separator at the beginning or at the end of the external value is discarded. Then,
if there is no separator in the external value, the result is a string list with only one
string. Otherwise, any string between the beginning and the first separator, between two
consecutive separators and between the last separator and the end are components of the
string list.

external_as_list ("SWITCHES", ",")

If the external value is "-O2,-g", the result is ("-O2", "-g").
If the external value is ",-O2,-g,", the result is also ("-O2", "-g").
if the external value is "-gnatv", the result is ("-gnatv").
If the external value is ",,", the result is ("").

If the external value is ",", the result is (), the empty string list.

11.9.7 Typed String Declaration

A type declaration introduces a discrete set of string literals. If a string variable is declared
to have this type, its value is restricted to the given set of literals. These are the only named
types in project files. A string type may only be declared at the project level, not inside a
package.
typed_string_declaration ::=

type <typed_string_>_simple_name is (string_literal {, string_literal});
The string literals in the list are case sensitive and must all be different. They may include
any graphic characters allowed in Ada, including spaces. Here is an example of a string
type declaration:

type 0S is ("NT", "nt", "Unix", "GNU/Linux", "other 0S");

Variables of a string type are called typed variables; all other variables are called untyped
variables. Typed variables are particularly useful in case constructions, to support condi-
tional attribute declarations. (see Section 11.9.9 [Case Constructions|, page 194).

A string type may be referenced by its name if it has been declared in the same project
file, or by an expanded name whose prefix is the name of the project in which it is declared.

11.9.8 Variables

Variables store values (strings or list of strings) and can appear as part of an expression.
The declaration of a variable creates the variable and assigns the value of the expression
to it. The name of the variable is available immediately after the assignment symbol, if
you need to reuse its old value to compute the new value. Before the completion of its first
declaration, the value of a variable defaults to the empty string ("").

A typed variable can be used as part of a case expression to compute the value, but it can
only be declared once in the project file, so that all case constructions see the same value for
the variable. This provides more consistency and makes the project easier to understand.
The syntax for its declaration is identical to the Ada syntax for an object declaration. In
effect, a typed variable acts as a constant.

An untyped variable can be declared and overridden multiple times within the same
project. It is declared implicitly through an Ada assignment. The first declaration estab-
lishes the kind of the variable (string or list of strings) and successive declarations must
respect the initial kind. Assignments are executed in the order in which they appear, so the

194 GNAT User’s Guide

new value replaces the old one and any subsequent reference to the variable uses the new
value.
A variable may be declared at the project file level, or within a package.

typed_variable_declaration ::=
<typed_variable_>simple_name : <typed_string_>name := string_expression;
variable_declaration ::= <variable_>simple_name := expression;

Here are some examples of variable declarations:

This_0S : 0S := external ("0OS"); -- a typed variable declaration
That_0S := "GNU/Linux"; -- an untyped variable declaration
Name = "readme.txt";

Save_Name := Name & ".saved";

Empty_List := O;

List_With_One_Element := ("-gnaty");

List_With_Two_Elements := List_With_One_Element & "-gnatg";
Long_List := ("main.ada", "packl_.ada", "packl.ada", "pack2_.ada");

A variable reference may take several forms:
e The simple variable name, for a variable in the current package (if any) or in the current
project

e An expanded name, whose prefix is a context name.

A context may be one of the following:
e The name of an existing package in the current project
e The name of an imported project of the current project

e The name of an ancestor project (i.e., a project extended by the current project, either
directly or indirectly)

e An expanded name whose prefix is an imported/parent project name, and whose se-
lector is a package name in that project.

11.9.9 Case Constructions

A case statement is used in a project file to effect conditional behavior. Through this state-
ment, you can set the value of attributes and variables depending on the value previously
assigned to a typed variable.

All choices in a choice list must be distinct. Unlike Ada, the choice lists of all alternatives
do not need to include all values of the type. An others choice must appear last in the list
of alternatives.

The syntax of a case construction is based on the Ada case statement (although the
null statement for empty alternatives is optional).

The case expression must be a typed string variable, whose value is often given by an
external reference (see Section 11.9.6 [External Values], page 192).

Each alternative starts with the reserved word when, either a list of literal strings sepa-
rated by the "|" character or the reserved word others, and the "=>" token. Each literal
string must belong to the string type that is the type of the case variable. After each =>,
there are zero or more statements. The only statements allowed in a case construction
are other case constructions, attribute declarations and variable declarations. String type

Chapter 11: GNAT Project Manager 195

declarations and package declarations are not allowed. Variable declarations are restricted
to variables that have already been declared before the case construction.

case_statement ::=
case <typed_variable_>name is {case_item} end case ;

case_item ::=
when discrete_choice_list =>
{case_statement
| attribute_declaration
| variable_declaration
| empty_declaration}

discrete_choice_list ::= string literal {| string_literal} | others

Here is a typical example:
project MyProj is
type 0S_Type is ("GNU/Linux", "Unix", "NT", "VMS");
0S : 0S_Type := externmal ("0S", "GNU/Linux");

package Compiler is
case 0S is
when "GNU/Linux" | "Unix" =>
for Switches ("Ada")
use ("-gnath");
when "NT" =>
for Switches ("Ada")
use ("-gnatP");
when others =>
null;
end case;
end Compiler;
end MyProj;

11.9.10 Attributes

A project (and its packages) may have attributes that define the project’s properties. Some
attributes have values that are strings; others have values that are string lists.
attribute_declaration ::=
simple_attribute_declaration | indexed_attribute_declaration
simple_attribute_declaration ::= for attribute_designator use expression ;
indexed_attribute_declaration ::=
for <indexed_attribute_>simple_name (string_literal) use expression ;
attribute_designator ::=
<simple_attribute_>simple_name
| <indexed_attribute_>simple_name (string_literal)
There are two categories of attributes: simple attributes and indexed attributes. Each
simple attribute has a default value: the empty string (for string attributes) and the empty
list (for string list attributes). An attribute declaration defines a new value for an attribute,
and overrides the previous value. The syntax of a simple attribute declaration is similar to

that of an attribute definition clause in Ada.

Some attributes are indexed. These attributes are mappings whose domain is a set of
strings. They are declared one association at a time, by specifying a point in the domain
and the corresponding image of the attribute. Like untyped variables and simple attributes,
indexed attributes may be declared several times. Each declaration supplies a new value
for the attribute, and replaces the previous setting.

196 GNAT User’s Guide

Here are some examples of attribute declarations:

-- simple attributes
for Object_Dir use "objects";
for Source_Dirs use ("units", "test/drivers");

-- indexed attributes
for Body ("main") use "Main.ada";
for Switches ("main.ada")
use ("—V", "-gnatv");
for Switches ("main.ada") use Builder’Switches ("main.ada") & "-g";

-- indexed attributes copy (from package Builder in project Default)

-- The package name must always be specified, even if it is the current

-- package.

for Default_Switches use Default.Builder’Default_Switches;
Attributes references may appear anywhere in expressions, and are used to retrieve the value
previously assigned to the attribute. If an attribute has not been set in a given package or
project, its value defaults to the empty string or the empty list.

attribute_reference ::= attribute_prefix ’ <simple_attribute>_simple_name [(string_literal) I}
attribute_prefix ::= project
| <project_>simple_name
| package_identifier
| <project_>simple_name . package_identifier
Examples are:

project’0Object_Dir
Naming’Dot_Replacement
Imported_Project’Source_Dirs
Imported_Project.Naming’Casing
Builder’Default_Switches ("Ada")

The prefix of an attribute may be:
e project for an attribute of the current project
e The name of an existing package of the current project
e The name of an imported project
e The name of a parent project that is extended by the current project

e An expanded name whose prefix is imported/parent project name, and whose selector
is a package name

In the following sections, all predefined attributes are succinctly described, first the
project level attributes, that is those attributes that are not in a package, then the attributes
in the different packages.

It is possible for different tools to create dynamically new packages with attributes, or
new attribute in predefined packages. These attributes are not documented here.

The attributes under Configuration headings are usually found only in configuration
project files.

The characteristics of each attribute are indicated as follows:
e Type of value

The value of an attribute may be a single string, indicated by the word "single", or a
string list, indicated by the word "list".

Chapter 11: GNAT Project Manager 197

e Read-only

When the attribute is read-only, that is when it is not allowed to declare the attribute,
this is indicated by the words "read-only".

e Optional index

If it is allowed in the value of the attribute (both single and list) to have an optional
index, this is indicated by the words "optional index".

e Indexed attribute
When an it is an indexed attribute, this is indicated by the word "indexed".
e Case-sensitivity of the index

For an indexed attribute, if the index is case-insensitive, this is indicated by the words
"case-insensitive index".

e File name index

For an indexed attribute, when the index is a file name, this is indicated by the words
"file name index". The index may or may not be case-sensitive, depending on the
platform.

e others allowed in index

For an indexed attribute, if it is allowed to use others as the index, this is indicated by
the words "others allowed".

When others is used as the index of an indexed attribute, the value of the attribute
indexed by others is used when no other index would apply.

11.9.10.1 Project Level Attributes

e General
e Name: single, read-only
The name of the project.
e Project_Dir: single, read-only
The path name of the project directory.
e Main: list, optional index
The list of main sources for the executables.
e Languages: list
The list of languages of the sources of the project.
e Roots: list, indexed, file name index

The index is the file name of an executable source. Indicates the list of units from
the main project that need to be bound and linked with their closures with the
executable. The index is either a file name, a language name or "*". The roots
for an executable source are those in Roots with an index that is the executable
source file name, if declared. Otherwise, they are those in Roots with an index
that is the language name of the executable source, if present. Otherwise, they are
those in Roots ("*"), if declared. If none of these three possibilities are declared,
then there are no roots for the executable source.

e Externally_Built: single

Indicates if the project is externally built. Only case-insensitive values allowed are
"true" and "false", the default.

198

GNAT User’s Guide

e Directories

Object_Dir: single
Indicates the object directory for the project.
Exec_Dir: single

Indicates the exec directory for the project, that is the directory where the exe-
cutables are.

Source_Dirs: list
The list of source directories of the project.
Inherit_Source_Path: list, indexed, case-insensitive index

Index is a language name. Value is a list of language names. Indicates that in the
source search path of the index language the source directories of the languages in
the list should be included.

Example:
for Inherit_Source_Path ("C++") use ("C");
Exclude_Source_Dirs: list

The list of directories that are included in Source_Dirs but are not source directories
of the project.

Ignore_Source_Sub_Dirs: list

Value is a list of simple names for subdirectories that are removed from the list of
source directories, including theur subdirectories.

e Source Files

Source_Files: list

Value is a list of source file simple names.
Locally_Removed_Files: list

Obsolescent. Equivalent to Excluded_Source_Files.
Excluded_Source_Files: list

Value is a list of simple file names that are not sources of the project. Allows
to remove sources that are inherited or found in the source directories and that
match the naming scheme.

Source_List_File: single

Value is a text file name that contains a list of source file simple names, one on
each line.

Excluded_Source_List_File: single

Value is a text file name that contains a list of file simple names that are not
sources of the project.

Interfaces: list

Value is a list of file names that constitutes the interfaces of the project.

e Aggregate Projects

Project_Files: list
Value is the list of aggregated projects.

Chapter 11: GNAT Project Manager 199

Project_Path: list

Value is a list of directories that are added to the project search path when looking
for the aggregated projects.

External: single, indexed

Index is the name of an external reference. Value is the value of the external
reference to be used when parsing the aggregated projects.

e Libraries

Library_Dir: single
Value is the name of the library directory. This attribute needs to be declared for
each library project.

Library_Name: single

Value is the name of the library. This attribute needs to be declared or inherited
for each library project.

Library_Kind: single

Specifies the kind of library: static library (archive) or shared library. Case-
insensitive values must be one of "static" for archives (the default) or "dynamic"
or "relocatable" for shared libraries.

Library_Version: single
Value is the name of the library file.
Library_Interface: list

Value is the list of unit names that constitutes the interfaces of a Stand-Alone
Library project.

Library_Standalone: single

Specifies if a Stand-Alone Library (SAL) is encapsulated or not. Only authorized
case-insensitive values are "standard" for non encapsulated SALs, "encapsulated"
for encapsulated SALs or "no" for non SAL library project.

Library_Encapsulated _Options: list

Value is a list of options that need to be used when linking an encapsulated Stand-
Alone Library.

Library_Encapsulated _Supported: single

Indicates if encapsulated Stand-Alone Libraries are supported. Only authorized
case-insensitive values are "true" and "false" (the default).

Library_Auto_Init: single

Indicates if a Stand-Alone Library is auto-initialized. Only authorized
case-insentive values are "true" and "false".

Leading_Library_Options: list

Value is a list of options that are to be used at the beginning of the command line
when linking a shared library.

Library_Options: list

Value is a list of options that are to be used when linking a shared library.

200

GNAT User’s Guide

Library_Rpath_Options: list, indexed, case-insensitive index

Index is a language name. Value is a list of options for an invocation of the compiler
of the language. This invocation is done for a shared library project with sources
of the language. The output of the invocation is the path name of a shared library
file. The directory name is to be put in the run path option switch when linking
the shared library for the project.

Library_Src_Dir: single

Value is the name of the directory where copies of the sources of the interfaces of
a Stand-Alone Library are to be copied.

Library_ALI_Dir: single

Value is the name of the directory where the ALI files of the interfaces of a Stand-
Alone Library are to be copied. When this attribute is not declared, the directory
is the library directory.

Library_gcc: single

Obsolescent attribute. Specify the linker driver used to link a shared library. Use
instead attribute Linker’Driver.

Library_Symbol_File: single
Value is the name of the library symbol file.
Library_Symbol_Policy: single

Indicates the symbol policy kind. Only authorized case-insensitive values are "au-
tonomous", "default", "compliant", "controlled" or "direct".

Library_Reference_Symbol_File: single

Value is the name of the reference symbol file.

e Configuration - General

Default_Language: single

Value is the case-insensitive name of the language of a project when attribute
Languages is not specified.

Run_Path_Option: list

Value is the list of switches to be used when specifying the run path option in an
executable.

Run_Path_Origin: single

Value is the the string that may replace the path name of the executable directory
in the run path options.

Separate_Run_Path_Options: single

Indicates if there may be or not several run path options specified when linking an
executable. Only authorized case-insensitive b=values are "true" or "false" (the
default).

Toolchain_Version: single, indexed, case-insensitive index
Index is a language name. Specify the version of a toolchain for a language.
Toolchain_Description: single, indexed, case-insensitive index

Obsolescent. No longer used.

Chapter 11: GNAT Project Manager 201

Object_Generated: single, indexed, case-insensitive index

Index is a language name. Indicates if invoking the compiler for a language pro-
duces an object file. Only authorized case-insensitive values are "false" and "true"
(the default).

Objects_Linked: single, indexed, case-insensitive index

Index is a language name. Indicates if the object files created by the compiler for
a language need to be linked in the executable. Only authorized case-insensitive
values are "false" and "true" (the default).

Target: single

Value is the name of the target platform.

e Configuration - Libraries

Library_Builder: single

Value is the path name of the application that is to be used to build libraries.
Usually the path name of "gprlib".

Library_Support: single

Indicates the level of support of libraries. Only authorized case-insensitive values
are "static_only", "full" or "none" (the default).

e Configuration - Archives

Archive_Builder: list

Value is the name of the application to be used to create a static library (archive),
followed by the options to be used.

Archive_Builder_Append_Option: list

Value is the list of options to be used when invoking the archive builder to add
project files into an archive.

Archive_Indexer: list

Value is the name of the archive indexer, followed by the required options.
Archive_Suffix: single

Value is the extension of archives. When not declared, the extension is ".a".
Library_Partial_Linker: list

Value is the name of the partial linker executable, followed by the required options.

e Configuration - Shared Libraries

Shared_Library_Prefix: single

Value is the prefix in the name of shared library files. When not declared, the
prefix is "lib".

Shared_Library_Suffix: single

Value is the the extension of the name of shared library files. When not declared,
the extension is ".so".

Symbolic_Link_Supported: single

Indicates if symbolic links are supported on the platform. Only authorized case-
insensitive values are "true" and "false" (the default).

202

GNAT User’s Guide

Library_Major_Minor_Id_Supported: single

Indicates if major and minor ids for shared library names are supported on the
platform. Only authorized case-insensitive values are "true" and "false" (the de-
fault).

Library_Auto_Init_Supported: single

Indicates if auto-initialization of Stand-Alone Libraries is supported. Only autho-
rized case-insensitive values are "true" and "false" (the default).

Shared_Library_Minimum_Switches: list

Value is the list of required switches when linking a shared library.
Library_Version_Switches: list

Value is the list of switches to specify a internal name for a shared library.
Library_Install Name_Option: single

Value is the name of the option that needs to be used, concatenated with the path
name of the library file, when linking a shared library.

Runtime_Library_Dir: single, indexed, case-insensitive index

Index is a language name. Value is the path name of the directory where the
runtime libraries are located.

Runtime_Source_Dir: single, indexed, case-insensitive index

Index is a language name. Value is the path name of the directory where the
sources of runtime libraries are located.

11.9.10.2 Package Binder Attributes

e General

e Default_Switches: list, indexed, case-insensitive index

Index is a language name. Value is the list of switches to be used when binding
code of the language, if there is no applicable attribute Switches.

Switches: list, optional index, indexed, case-insensitive index, others allowed

Index is either a language name or a source file name. Value is the list of switches
to be used when binding code. Index is either the source file name of the executable
to be bound or the language name of the code to be bound.

e Configuration - Binding

e Driver: single, indexed, case-insensitive index

Index is a language name. Value is the name of the application to be used when
binding code of the language.

Required_Switches: list, indexed, case-insensitive index

Index is a language name. Value is the list of the required switches to be used
when binding code of the language.

Prefix: single, indexed, case-insensitive index

Index is a language name. Value is a prefix to be used for the binder exchange file

name for the language. Used to have different binder exchange file names when
binding different languages.

Chapter 11: GNAT Project Manager 203

e Objects_Path: single,indexed, case-insensitive index

Index is a language name. Value is the name of the environment variable that
contains the path for the object directories.
e Object_Path_File: single,indexed, case-insensitive index

Index is a language name. Value is the name of the environment variable. The
value of the environment variable is the path name of a text file that contains the
list of object directories.

11.9.10.3 Package Builder Attributes

Default_Switches: list, indexed, case-insensitive index

Index is a language name. Value is the list of builder switches to be used when building
an executable of the language, if there is no applicable attribute Switches.

Switches: list, optional index, indexed, case-insensitive index, others allowed

Index is either a language name or a source file name. Value is the list of builder
switches to be used when building an executable. Index is either the source file name
of the executable to be built or its language name.

Global_Compilation_Switches: list, optional index, indexed, case-insensitive index

Index is either a language name or a source file name. Value is the list of compilation
switches to be used when building an executable. Index is either the source file name
of the executable to be built or its language name.

Executable: single, indexed, case-insensitive index

Index is an executable source file name. Value is the simple file name of the executable
to be built.

Executable_Suffix: single

Value is the extension of the file names of executable. When not specified, the extension
is the default extension of executables on the platform.

Global_Configuration_Pragmas: single

Value is the file name of a configuration pragmas file that is specified to the Ada
compiler when compiling any Ada source in the project tree.

Global_Config_File: single, indexed, case-insensitive index

Index is a language name. Value is the file name of a configuration file that is specified
to the compiler when compiling any source of the language in the project tree.

11.9.10.4 Package Clean Attributes

Switches: list
Value is a list of switches to be used by the cleaning application.
Source_Artifact_Extensions: list, indexed, case-insensitive index

Index is a language names. Value is the list of extensions for file names derived from
object file names that need to be cleaned in the object directory of the project.

Object_Artifact_Extensions: list, indexed, case-insensitive index

Index is a language names. Value is the list of extensions for file names derived from
source file names that need to be cleaned in the object directory of the project.

204

GNAT User’s Guide

o Artifacts_In_Object_Dir: single

Value is a list of file names expressed as regular expressions that are to be deleted by
gprclean in the object directory of the project.

e Artifacts_In_Exec_Dir: single

Value is list of file names expressed as regular expressions that are to be deleted by
gprclean in the exec directory of the main project.

11.9.10.5 Package Compiler Attributes

e General

Default_Switches: list, indexed, case-insensitive index

Index is a language name. Value is a list of switches to be used when invoking
the compiler for the language for a source of the project, if there is no applicable
attribute Switches.

Switches: list, optional index, indexed, case-insensitive index, others allowed

Index is a source file name or a language name. Value is the list of switches to be
used when invoking the compiler for the source or for its language.

Local_Configuration_Pragmas: single

Value is the file name of a configuration pragmas file that is specified to the Ada
compiler when compiling any Ada source in the project.

Local_Config_File: single, indexed, case-insensitive index

Index is a language name. Value is the file name of a configuration file that is
specified to the compiler when compiling any source of the language in the project.

e Configuration - Compiling

Driver: single, indexed, case-insensitive index

Index is a language name. Value is the name of the executable for the compiler of
the language.

Language_Kind: single, indexed, case-insensitive index

Index is a language name. Indicates the kind of the language, either file based
or unit based. Only authorized case-insensitive values are "unit_based" and
"file_based" (the default).

Dependency_Kind: single, indexed, case-insensitive index

Index is a language name. Indicates how the dependencies are handled for the
language. Only authorized case-insensitive values are "makefile", "ali_file",
"ali_closure" or "none" (the default).

Required_Switches: list, indexed, case-insensitive index
Equivalent to attribute Leading_Required_Switches.
Leading_Required_Switches: list, indexed, case-insensitive index

Index is a language name. Value is the list of the minimum switches to be used at
the beginning of the command line when invoking the compiler for the language.

Trailing_Required_Switches: list, indexed, case-insensitive index

Index is a language name. Value is the list of the minimum switches to be used at
the end of the command line when invoking the compiler for the language.

Chapter 11: GNAT Project Manager 205

e PIC_Option: list, indexed, case-insensitive index

Index is a language name. Value is the list of switches to be used when compiling
a source of the language when the project is a shared library project.

e Path_Syntax: single, indexed, case-insensitive index

Index is a language name. Value is the kind of path syntax to be used when
invoking the compiler for the language. Only authorized case-insensitive values
are "canonical" and "host" (the default).

e Source_File_Switches: single, indexed, case-insensitive index

Index is a language name. Value is a list of switches to be used just before the
path name of the source to compile when invoking the compiler for a source of the
language.

e Object_File_Suffix: single, indexed, case-insensitive index

Index is a language name. Value is the extension of the object files created by the
compiler of the language. When not specified, the extension is the default one for
the platform.

e Object_File_Switches: list, indexed, case-insensitive index

Index is a language name. Value is the list of switches to be used by the compiler
of the language to specify the path name of the object file. When not specified,
the switch used is "-o".

e Multi_Unit_Switches: list, indexed, case-insensitive index

Index is a language name. Value is the list of switches to be used to compile a
unit in a multi unit source of the language. The index of the unit in the source is
concatenated with the last switches in the list.

e Multi_Unit_Object_Separator: single, indexed, case-insensitive index

Index is a language name. Value is the string to be used in the object file name
before the index of the unit, when compiling a unit in a multi unit source of the
language.

e Configuration - Mapping Files
o Mapping_File_Switches: list, indexed, case-insensitive index

Index is a language name. Value is the list of switches to be used to specify a
mapping file when invoking the compiler for a source of the language.

e Mapping_Spec_Suffix: single, indexed, case-insensitive index

Index is a language name. Value is the suffix to be used in a mapping file to
indicate that the source is a spec.

o Mapping_Body_Suffix: single, indexed, case-insensitive index

Index is a language name. Value is the suffix to be used in a mapping file to
indicate that the source is a body.

e Configuration - Config Files
e Config_File_Switches: list: single, indexed, case-insensitive index

Index is a language name. Value is the list of switches to specify to the compiler
of the language a configuration file.

206

GNAT User’s Guide

Config_Body_File_Name: single, indexed, case-insensitive index

Index is a language name. Value is the template to be used to indicate a configu-
ration specific to a body of the language in a configuration file.

Config_Body_File_Name_Index: single, indexed, case-insensitive index

Index is a language name. Value is the template to be used to indicate a con-
figuration specific to the body a unit in a multi unit source of the language in a
configuration file.

Config_Body_File_Name_Pattern: single, indexed, case-insensitive index

Index is a language name. Value is the template to be used to indicate a configu-
ration for all bodies of the languages in a configuration file.

Config_Spec_File_Name: single, indexed, case-insensitive index

Index is a language name. Value is the template to be used to indicate a configu-
ration specific to a spec of the language in a configuration file.

Config_Spec_File_Name_Index: single, indexed, case-insensitive index

Index is a language name. Value is the template to be used to indicate a con-
figuration specific to the spec a unit in a multi unit source of the language in a
configuration file.

Config_Spec_File_Name_Pattern: single, indexed, case-insensitive index

Index is a language name. Value is the template to be used to indicate a configu-
ration for all specs of the languages in a configuration file.

Config_File_Unique: single, indexed, case-insensitive index

Index is a language name. Indicates if there should be only one configuration file
specified to the compiler of the language. Only authorized case-insensitive values
are "true" and "false" (the default).

e Configuration - Dependencies

e Dependency_Switches: list, indexed, case-insensitive index

Index is a language name. Value is the list of switches to be used to specify to
the compiler the dependency file when the dependency kind of the language is file
based, and when Dependency_Driver is not specified for the language.

Dependency_Driver: list, indexed, case-insensitive index

Index is a language name. Value is the name of the executable to be used to create
the dependency file for a source of the language, followed by the required switches.

e Configuration - Search Paths

e Include_Switches: list, indexed, case-insensitive index

Index is a language name. Value is the list of switches to specify to the compiler
of the language to indicate a directory to look for sources.

Include_Path: single, indexed, case-insensitive index

Index is a language name. Value is the name of an environment variable that
contains the path of all the directories that the compiler of the language may
search for sources.

Chapter 11: GNAT Project Manager 207

e Include_Path_File: single, indexed, case-insensitive index

Index is a language name. Value is the name of an environment variable the value
of which is the path name of a text file that contains the directories that the
compiler of the language may search for sources.

e Object_Path_Switches: list, indexed, case-insensitive index

Index is a language name. Value is the list of switches to specify to the compiler
of the language the name of a text file that contains the list of object directories.
When this attribute is not declared, the text file is not created.

11.9.10.6 Package Cross_Reference Attributes

Default_Switches: list, indexed, case-insensitive index

Index is a language name. Value is a list of switches to be used when invoking gnatxref
for a source of the language, if there is no applicable attribute Switches.

Switches: list, optional index, indexed, case-insensitive index, others allowed

Index is a source file name. Value is the list of switches to be used when invoking
gnatxref for the source.

11.9.10.7 Package Finder Attributes

Default_Switches: list, indexed, case-insensitive index

Index is a language name. Value is a list of switches to be used when invoking gnatfind
for a source of the language, if there is no applicable attribute Switches.

Switches: list, optional index, indexed, case-insensitive index, others allowed

Index is a source file name. Value is the list of switches to be used when invoking
gnatfind for the source.

11.9.10.8 Package gnatls Attributes

Switches: list

Value is a list of switches to be used when invoking gnatls.

11.9.10.9 Package IDE Attributes

Default_Switches: list, indexed

Index is the name of an external tool that the GNAT Programming System (GPS) is
supporting. Value is a list of switches to use when invoking that tool.

Remote_Host: single

Value is a string that designates the remote host in a cross-compilation environment, to
be used for remote compilation and debugging. This attribute should not be specified
when running on the local machine.

Program_Host: single

Value is a string that specifies the name of IP address of the embedded target in a
cross-compilation environment, on which the program should execute.

Communication_Protocol: single

Value is the name of the protocol to use to communicate with the target in a cross-
compilation environment, for example "wtx" or "vxworks".

208

GNAT User’s Guide

Compiler_Command: single, indexed, case-insensitive index

Index is a language Name. Value is a string that denotes the command to be used
to invoke the compiler. The value of Compiler_Command ("Ada") is expected to be
compatible with gnatmake, in particular in the handling of switches.

Debugger_Command: single

Value is a string that specifies the name of the debugger to be used, such as gdb,
powerpc-wrs-vxworks-gdb or gdb-4.

gnatlist: single

Value is a string that specifies the name of the gnatls utility to be used to retrieve in-
formation about the predefined path; for example, "gnatls", "powerpc-wrs-vxworks-
gnatls".

VCS_Kind: single

Value is a string used to specify the Version Control System (VCS) to be used for this
project, for example "Subversion", "ClearCase". If the value is set to "Auto", the IDE
will try to detect the actual VCS used on the list of supported ones.

VCS_File_Check: single

Value is a string that specifies the command used by the VCS to check the validity of
a file, either when the user explicitly asks for a check, or as a sanity check before doing
the check-in.

VCS_Log_Check: single

Value is a string that specifies the command used by the VCS to check the validity of
a log file.

Documentation_Dir: single

Value is the directory used to generate the documentation of source code.

11.9.10.10 Package Install Attributes

Prefix: single

Value is the install destination directory.
Sources_Subdir: single

Value is the sources directory or subdirectory of Prefix.
Exec_Subdir: single

Value is the executables directory or subdirectory of Prefix.
Lib_Subdir: single

Value is library directory or subdirectory of Prefix.
Project_Subdir: single

Value is the project directory or subdirectory of Prefix.
Active: single

Indicates that the project is to be installed or not. Case-insensitive value "false" means
that the project is not to be installed, all other values mean that the project is to be
installed.

Chapter 11: GNAT Project Manager 209

11.9.10.11 Package Linker Attributes

e General

Required_Switches: list

Value is a list of switches that are required when invoking the linker to link an
executable.

Default_Switches: list, indexed, case-insensitive index

Index is a language name. Value is a list of switches for the linker when linking an
executable for a main source of the language, when there is no applicable Switches.
Leading_Switches: list, optional index, indexed, case-insensitive index, others al-
lowed

Index is a source file name or a language name. Value is the list of switches to be
used at the beginning of the command line when invoking the linker to build an
executable for the source or for its language.

Switches: list, optional index, indexed, case-insensitive index, others allowed
Index is a source file name or a language name. Value is the list of switches to
be used when invoking the linker to build an executable for the source or for its
language.

Trailing_Switches: list, optional index, indexed, case-insensitive index, others al-
lowed

Index is a source file name or a language name. Value is the list of switches to
be used at the end of the command line when invoking the linker to build an
executable for the source or for its language. These switches may override the
Required_Switches.

Linker_Options: list

Value is a list of switches/options that are to be added when linking an executable
from a project importing the current project directly or indirectly. Linker_Options
are not used when linking an executable from the current project.
Map_File_Option: single

Value is the switch to specify the map file name that the linker needs to create.

e Configuration - Linking

Driver: single

Value is the name of the linker executable.

e Configuration - Response Files

Max_Command_Line_Length: single

Value is the maximum number of character in the command line when invoking
the linker to link an executable.

Response_File_Format: single

Indicates the kind of response file to create when the length of the linking com-
mand line is too large. Only authorized case-insensitive values are "none", "gnu",
"object_list", "gcc_gnu", "gcc_option_list" and "gcc_object_list".

Response_File_Switches: list

Value is the list of switches to specify a response file to the linker.

210

GNAT User’s Guide

11.9.10.12 Package Naming Attributes

Specification_Suffix: single, indexed, case-insensitive index

Equivalent to attribute Spec_Suffix.

Spec_Suffix: single, indexed, case-insensitive index

Index is a language name. Value is the extension of file names for specs of the language.
Implementation_Suffix: single, indexed, case-insensitive index

Equivalent to attribute Body_Suffix.

Body_Suffix: single, indexed, case-insensitive index

Index is a language name. Value is the extension of file names for bodies of the language.
Separate_Suffix: single

Value is the extension of file names for subunits of Ada.

Casing: single

Indicates the casing of sources of the Ada language. Only authorized case-insensitive
values are "lowercase", "uppercase" and "mixedcase".

Dot_Replacement: single

Value is the string that replace the dot of unit names in the source file names of the
Ada language.

Specification: single, optional index, indexed, case-insensitive index
Equivalent to attribute Spec.

Spec: single, optional index, indexed, case-insensitive index

Index is a unit name. Value is the file name of the spec of the unit.
Implementation: single, optional index, indexed, case-insensitive index
Equivalent to attribute Body.

Body: single, optional index, indexed, case-insensitive index

Index is a unit name. Value is the file name of the body of the unit.
Specification_Exceptions: list, indexed, case-insensitive index

Index is a language name. Value is a list of specs for the language that do not necessarily
follow the naming scheme for the language and that may or may not be found in the
source directories of the project.

Implementation_Exceptions: list, indexed, case-insensitive index

Index is a language name. Value is a list of bodies for the language that do not
necessarily follow the naming scheme for the language and that may or may not be
found in the source directories of the project.

11.9.10.13 Package Remote Attributes

Included_Patterns: list

If this attribute is defined it sets the patterns to synchronized from the master to the
slaves. It is exclusive with Excluded_Patterns, that is it is an error to define both.
Included_Artifact_Patterns: list

If this attribute is defined it sets the patterns of compilation artifacts to synchronized
from the slaves to the build master. This attribute replace the default hard-coded
patterns.

Chapter 11: GNAT Project Manager 211

o Excluded_Patterns: list

Set of patterns to ignore when synchronizing sources from the build master to the
slaves. A set of predefined patterns are supported (e.g. *.0, *.ali, *.exe, etc.), this
attributes make it possible to add some more patterns.

e Root_Dir: single

Value is the root directory used by the slave machines.

11.9.10.14 Package Stack Attributes

e Switches: list

Value is the list of switches to be used when invoking gnatstack.

11.9.10.15 Package Synchronize Attributes

e Default_Switches: list, indexed, case-insensitive index

Index is a language name. Value is a list of switches to be used when invoking gnatsync
for a source of the language, if there is no applicable attribute Switches.

e Switches: list, optional index, indexed, case-insensitive index, others allowed

Index is a source file name. Value is the list of switches to be used when invoking
gnatsync for the source.

Chapter 12: Tools Supporting Project Files 213

12 Tools Supporting Project Files

12.1 gnatmake and Project Files

This section covers several topics related to gnatmake and project files: defining switches
for gnatmake and for the tools that it invokes; specifying configuration pragmas; the use of
the Main attribute; building and rebuilding library project files.

12.1.1 Switches Related to Project Files
The following switches are used by GNAT tools that support project files:

‘-Pproject’
Indicates the name of a project file. This project file will be parsed with the
verbosity indicated by ‘-vPx’, if any, and using the external references indicated
by ‘=X’ switches, if any. There may zero, one or more spaces between ‘-P’ and
project.

There must be only one ‘-P’ switch on the command line.

Since the Project Manager parses the project file only after all the switches on
the command line are checked, the order of the switches ‘-P’, ‘-vPx’ or ‘=X’ is
not significant.

‘-~Xname=value’
Indicates that external variable name has the value value. The Project Manager

will use this value for occurrences of external (name) when parsing the project
file.

If name or value includes a space, then name=value should be put between
quotes.

-X0S=NT

-X"user=John Doe"
Several ‘=X’ switches can be used simultaneously. If several ‘-X’ switches specify
the same name, only the last one is used.

An external variable specified with a ‘=X’ switch takes precedence over the value
of the same name in the environment.

-vPx’

Indicates the verbosity of the parsing of GNAT project files.
‘-vP0O’ means Default; ‘-vP1’ means Medium; ‘-vP2’ means High.
The default is Default: no output for syntactically correct project files. If

several ‘-vPx’ switches are present, only the last one is used.

‘-aP<dir>’
Add directory <dir> at the beginning of the project search path, in order, after
the current working directory.

‘-el’ Follow all symbolic links when processing project files.

‘--subdirs=<subdir>’
This switch is recognized by gnatmake and gnatclean. It indicate that the real
directories (except the source directories) are the subdirectories <subdir> of the

214 GNAT User’s Guide

directories specified in the project files. This applies in particular to object
directories, library directories and exec directories. If the subdirectories do not
exist, they are created automatically.

12.1.2 Switches and Project Files

For each of the packages Builder, Compiler, Binder, and Linker, you can specify a
Default_Switches attribute, a Switches attribute, or both; as their names imply, these
switch-related attributes affect the switches that are used for each of these GNAT com-
ponents when gnatmake is invoked. As will be explained below, these component-specific
switches precede the switches provided on the gnatmake command line.

The Default_Switches attribute is an attribute indexed by language name (case insen-
sitive) whose value is a string list. For example:
package Compiler is
for Default_Switches ("Ada")
use ("-gnaty",
"'V") ;
end Compiler;
The Switches attribute is indexed on a file name (which may or may not be case sensitive,
depending on the operating system) whose value is a string list. For example:
package Builder is
for Switches ("mainl.adb")

use ("-02");
for Switches ("main2.adb")
use (u_gu) ;

end Builder;

For the Builder package, the file names must designate source files for main subprograms.
For the Binder and Linker packages, the file names must designate ‘ALI’ or source files
for main subprograms. In each case just the file name without an explicit extension is
acceptable.

For each tool used in a program build (gnatmake, the compiler, the binder, and the
linker), the corresponding package contributes a set of switches for each file on which the
tool is invoked, based on the switch-related attributes defined in the package. In particular,
the switches that each of these packages contributes for a given file f comprise:

e the value of attribute Switches (f), if it is specified in the package for the given file,

e otherwise, the value of Default_Switches ("Ada"), if it is specified in the package.
If neither of these attributes is defined in the package, then the package does not contribute
any switches for the given file.

When gnatmake is invoked on a file, the switches comprise two sets, in the following
order: those contributed for the file by the Builder package; and the switches passed on
the command line.

When gnatmake invokes a tool (compiler, binder, linker) on a file, the switches passed
to the tool comprise three sets, in the following order:
1. the applicable switches contributed for the file by the Builder package in the project
file supplied on the command line;

2. those contributed for the file by the package (in the relevant project file — see below)
corresponding to the tool; and

Chapter 12: Tools Supporting Project Files 215

3. the applicable switches passed on the command line.

The term applicable switches reflects the fact that gnatmake switches may or may not
be passed to individual tools, depending on the individual switch.

gnatmake may invoke the compiler on source files from different projects. The Project
Manager will use the appropriate project file to determine the Compiler package for each
source file being compiled. Likewise for the Binder and Linker packages.

As an example, consider the following package in a project file:
project Projl is
package Compiler is
for Default_Switches ("Ada")
use ("-g");
for Switches ("a.adb")
use ("-01");
for Switches ("b.adb")
use ("-02",
"-gnaty") ;
end Compiler;
end Proji;

If gnatmake is invoked with this project file, and it needs to compile, say, the files ‘a.adb’,
‘b.adb’, and ‘c.adb’, then ‘a.adb’ will be compiled with the switch ‘-01’, ‘b.adb’ with
switches ‘-02’ and ‘-gnaty’, and ‘c.adb’ with ‘-g’.

The following example illustrates the ordering of the switches contributed by different
packages:
project Proj2 is
package Builder is
for Switches ("main.adb")
use (u_gn,

ll_Olll ,
"—f") ;

end Builder;

package Compiler is
for Switches ("main.adb")
use ("-02");
end Compiler;
end Proj2;

If you issue the command:
gnatmake -Pproj2 -00 main

then the compiler will be invoked on ‘main.adb’ with the following sequence of switches
-g -01 -02 -00

with the last ‘-0’ switch having precedence over the earlier ones; several other switches
(such as ‘-c’) are added implicitly.

The switches ‘-g’ and ‘-01’ are contributed by package Builder, ‘02’ is contributed by
the package Compiler and ‘-00’ comes from the command line.

The ‘-g’ switch will also be passed in the invocation of Gnatlink.

A final example illustrates switch contributions from packages in different project files:

216 GNAT User’s Guide

project Proj3 is
for Source_Files use ("pack.ads", "pack.adb");
package Compiler is
for Default_Switches ("Ada")
use ("-gnata");
end Compiler;
end Proj3;

with "Proj3";
project Proj4 is

for Source_Files use ("foo_main.adb", "bar_main.adb");

package Builder is

for Switches ("foo_main.adb")
use (II_SII s
||_g||) ;

end Builder;

end Proj4;

-- Ada source file:
with Pack;
procedure Foo_Main is

end Foo_Main;
If the command is

gnatmake -PProj4 foo_main.adb -cargs -gnato

then the switches passed to the compiler for ‘foo_main.adb’ are ‘-g’ (contributed by the
package Proj4.Builder) and ‘-gnato’ (passed on the command line). When the imported
package Pack is compiled, the switches used are ‘-g’ from Proj4.Builder, ‘-gnata’ (con-
tributed from package Proj3.Compiler, and ‘~gnato’ from the command line.

When using gnatmake with project files, some switches or arguments may be expressed
as relative paths. As the working directory where compilation occurs may change, these
relative paths are converted to absolute paths. For the switches found in a project file, the
relative paths are relative to the project file directory, for the switches on the command line,
they are relative to the directory where gnatmake is invoked. The switches for which this
occurs are: -I,-A, -L, -a0, -al,, -al, as well as all arguments that are not switches (arguments
to switch -o, object files specified in package Linker or after -largs on the command line).
The exception to this rule is the switch —RT'S= for which a relative path argument is never
converted.

12.1.3 Specifying Configuration Pragmas

When using gnatmake with project files, if there exists a file ‘gnat.adc’ that contains
configuration pragmas, this file will be ignored.

Configuration pragmas can be defined by means of the following attributes in project
files: Global_Configuration_Pragmas in package Builder and Local_Configuration_
Pragmas in package Compiler.

Both these attributes are single string attributes. Their values is the path name of a
file containing configuration pragmas. If a path name is relative, then it is relative to the
project directory of the project file where the attribute is defined.

When compiling a source, the configuration pragmas used are, in order, those listed in
the file designated by attribute Global_Configuration_Pragmas in package Builder of

Chapter 12: Tools Supporting Project Files 217

the main project file, if it is specified, and those listed in the file designated by attribute
Local_Configuration_Pragmas in package Compiler of the project file of the source, if it
exists.

12.1.4 Project Files and Main Subprograms

When using a project file, you can invoke gnatmake with one or several main subprograms,
by specifying their source files on the command line.

gnatmake -Pprj mainl.adb main2.adb main3.adb

Each of these needs to be a source file of the same project, except when the switch -u is
used.

When -u is not used, all the mains need to be sources of the same project, one of
the project in the tree rooted at the project specified on the command line. The pack-
age Builder of this common project, the "main project" is the one that is considered by
gnatmake.

When -u is used, the specified source files may be in projects imported directly or
indirectly by the project specified on the command line. Note that if such a source file
is not part of the project specified on the command line, the switches found in package
Builder of the project specified on the command line, if any, that are transmitted to the
compiler will still be used, not those found in the project file of the source file.

When using a project file, you can also invoke gnatmake without explicitly specifying
any main, and the effect depends on whether you have defined the Main attribute. This
attribute has a string list value, where each element in the list is the name of a source file
(the file extension is optional) that contains a unit that can be a main subprogram.

If the Main attribute is defined in a project file as a non-empty string list and the switch
‘-u’ is not used on the command line, then invoking gnatmake with this project file but
without any main on the command line is equivalent to invoking gnatmake with all the file
names in the Main attribute on the command line.

Example:
project Prj is
for Main use ("mainl.adb", "main2.adb", "main3.adb");
end Prj;
With this project file, "gnatmake -Pprj" is equivalent to "gnatmake -Pprj mainl.adb
main2.adb main3.adb".

When the project attribute Main is not specified, or is specified as an empty string list,
or when the switch ‘-u’ is used on the command line, then invoking gnatmake with no main
on the command line will result in all immediate sources of the project file being checked,
and potentially recompiled. Depending on the presence of the switch ‘-u’, sources from
other project files on which the immediate sources of the main project file depend are also
checked and potentially recompiled. In other words, the ‘-u’ switch is applied to all of the
immediate sources of the main project file.

When no main is specified on the command line and attribute Main exists and includes
several mains, or when several mains are specified on the command line, the default switches
in package Builder will be used for all mains, even if there are specific switches specified
for one or several mains.

218 GNAT User’s Guide

But the switches from package Binder or Linker will be the specific switches for each
main, if they are specified.

12.1.5 Library Project Files

When gnatmake is invoked with a main project file that is a library project file, it is not
allowed to specify one or more mains on the command line.

When a library project file is specified, switches -b and -1 have special meanings.

e -b is only allowed for stand-alone libraries. It indicates to gnatmake that gnatbind
should be invoked for the library.

e -1 may be used for all library projects. It indicates to gnatmake that the binder gener-
ated file should be compiled (in the case of a stand-alone library) and that the library
should be built.

12.2 The GNAT Driver and Project Files

A number of GNAT tools, other than gnatmake can benefit from project files: (gnatbind,
gnatclean, gnatfind, gnatlink, gnatls, and gnatxref). However, none of these tools
can be invoked directly with a project file switch (‘-P’). They must be invoked through the
gnat driver.

The gnat driver is a wrapper that accepts a number of commands and calls the corre-
sponding tool. It was designed initially for VMS platforms (to convert VMS qualifiers to
Unix-style switches), but it is now available on all GNAT platforms.

On non-VMS platforms, the gnat driver accepts the following commands (case insensi-

tive):

e BIND to invoke gnatbind

e CHOP to invoke gnatchop

e CLEAN to invoke gnatclean

e COMP or COMPILE to invoke the compiler

e FIND to invoke gnatfind

e KR or KRUNCH to invoke gnatkr

e LINK to invoke gnatlink

e LS or LIST to invoke gnatls

e MAKE to invoke gnatmake

e NAME to invoke gnatname

e PREP or PREPROCESS to invoke gnatprep

e XREF to invoke gnatxref

(note that the compiler is invoked using the command gnatmake -f -u -c).

On non-VMS platforms, between gnat and the command, two special switches may be
used:

e -v to display the invocation of the tool.

e —dn to prevent the gnat driver from removing the temporary files it has created. These
temporary files are configuration files and temporary file list files.

Chapter 12: Tools Supporting Project Files 219

The command may be followed by switches and arguments for the invoked tool.

gnat bind -C main.ali
gnat 1ls -a main
gnat chop foo.txt

Switches may also be put in text files, one switch per line, and the text files may be specified
with their path name preceded by '@’.

gnat bind Qargs.txt main.ali

In addition, for commands BIND, COMP or COMPILE, FIND, LS or LIST, LINK, and
XREF, the project file related switches (‘-P’, ‘-X’ and ‘-vPx’) may be used in addition to
the switches of the invoking tool.

For each of the following commands, there is optionally a corresponding package in the
main project.

e package Binder for command BIND (invoking gnatbind)

e package Compiler for command COMP or COMPILE (invoking the compiler)
e package Cross_Reference for command XREF (invoking gnatxref)

e package Finder for command FIND (invoking gnatfind)

e package Gnatls for command LS or LIST (invoking gnatls)

e package Linker for command LINK (invoking gnatlink)

Package Gnatls has a unique attribute Switches, a simple variable with a string list value.
It contains switches for the invocation of gnatls.
project Projl is
package gnatls is
for Switches
use (u_an,
n_vn);
end gnatls;
end Proji;

All other packages have two attribute Switches and Default_Switches.

Switches is an indexed attribute, indexed by the source file name, that has a string list
value: the switches to be used when the tool corresponding to the package is invoked for
the specific source file.

Default_Switches is an attribute, indexed by the programming language that has a
string list value. Default_Switches ("Ada") contains the switches for the invocation of
the tool corresponding to the package, except if a specific Switches attribute is specified
for the source file.

project Proj is
for Source_Dirs use ("*x*");

package gnatls is
for Switches use
(u_an,
"-V");
end gnatls;

220 GNAT User’s Guide

package Compiler is
for Default_Switches ("Ada")
use ("-gnatv",
"-gnatwa") ;
end Binder;

package Binder is
for Default_Switches ("Ada")
use (u_Cu s
||_e||) ;
end Binder;

package Linker is
for Default_Switches ("Ada")
use (u_Cn) ;
for Switches ("main.adb")
use (u_Cu s
"—V",
"-V");
end Linker;

package Finder is
for Default_Switches ("Ada")
use (u_au s
u_fu) ;
end Finder;

package Cross_Reference is
for Default_Switches ("Ada")
use ("-a",
n -f n s
n _dll ,
Il_ull ;
end Cross_Reference;
end Proj;

With the above project file, commands such as

gnat comp -Pproj main

gnat 1ls -Pproj main

gnat xref -Pproj main

gnat bind -Pproj main.ali

gnat link -Pproj main.ali
will set up the environment properly and invoke the tool with the switches found in the pack-
age corresponding to the tool: Default_Switches ("Ada") for all tools, except Switches
("main.adb") for gnatlink.

Chapter 13: The Cross-Referencing Tools gnatxref and gnatfind 221

13 The Cross-Referencing Tools gnatxref and
gnatfind

The compiler generates cross-referencing information (unless you set the ‘-gnatx’ switch),
which are saved in the ‘.ali’ files. This information indicates where in the source each
entity is declared and referenced. Note that entities in package Standard are not included,
but entities in all other predefined units are included in the output.

Before using any of these two tools, you need to compile successfully your application,
so that GNAT gets a chance to generate the cross-referencing information.

The two tools gnatxref and gnatfind take advantage of this information to provide
the user with the capability to easily locate the declaration and references to an entity.
These tools are quite similar, the difference being that gnatfind is intended for locating
definitions and/or references to a specified entity or entities, whereas gnatxref is oriented
to generating a full report of all cross-references.

To use these tools, you must not compile your application using the ‘-gnatx’ switch
on the gnatmake command line (see Chapter 6 [The GNAT Make Program gnatmake],
page 111). Otherwise, cross-referencing information will not be generated.

Note: to invoke gnatxref or gnatfind with a project file, use the gnat driver (see
Section 12.2 [The GNAT Driver and Project Files|, page 218).

13.1 gnatxref Switches

The command invocation for gnatxref is:

$ gnatxref [switches| sourcefilel [sourcefile2 ...]

where

sourcefilel
sourcefile2 identifies the source files for which a report is to be generated. The “with”ed
units will be processed too. You must provide at least one file.

These file names are considered to be regular expressions, so for instance spec-
ifying ‘sourcex.adb’ is the same as giving every file in the current directory
whose name starts with ‘source’ and whose extension is ‘adb’.

You shouldn’t specify any directory name, just base names. gnatxref and
gnatfind will be able to locate these files by themselves using the source path.
If you specify directories, no result is produced.

The switches can be:

‘~-version’
Display Copyright and version, then exit disregarding all other options.

‘-=help’ If ‘--version’ was not used, display usage, then exit disregarding all other
options.

-a If this switch is present, gnatfind and gnatxref will parse the read-only files
found in the library search path. Otherwise, these files will be ignored. This
option can be used to protect Gnat sources or your own libraries from being
parsed, thus making gnatfind and gnatxref much faster, and their output
much smaller. Read-only here refers to access or permissions status in the file
system for the current user.

222 GNAT User’s Guide

‘-aIDIR’ When looking for source files also look in directory DIR. The order in which
source file search is undertaken is the same as for gnatmake.

‘-~a0DIR’ When searching for library and object files, look in directory DIR. The order
in which library files are searched is the same as for gnatmake.

‘-nostdinc’
Do not look for sources in the system default directory.

‘-nostdlib’
Do not look for library files in the system default directory.

‘--ext=extension’
Specify an alternate ali file extension. The default is ali and other extensions
(e.g. gli for C/C++ sources when using ‘-fdump-xref’) may be specified via
this switch. Note that if this switch overrides the default, which means that
only the new extension will be considered.

‘-—RTS=rts-path’
Specifies the default location of the runtime library. Same meaning as the
equivalent gnatmake flag (see Section 6.2 [Switches for gnatmake|, page 112).

~q’ If this switch is set gnatxref will output the parent type reference for each
matching derived types.

~f’ If this switch is set, the output file names will be preceded by their directory
(if the file was found in the search path). If this switch is not set, the directory
will not be printed.

-g If this switch is set, information is output only for library-level entities, ignoring
local entities. The use of this switch may accelerate gnatfind and gnatxref.

‘~-IDIR’ Equivalent to ‘-a0DIR -aIDIR’.

‘-pFILE’ Specify a project file to use See Chapter 11 [GNAT Project Manager|, page 149.
If you need to use the ‘.gpr’ project files, you should use gnatxref through the
GNAT driver (gnat xref -Pproject).

By default, gnatxref and gnatfind will try to locate a project file in the
current directory.

If a project file is either specified or found by the tools, then the content of
the source directory and object directory lines are added as if they had been
specified respectively by ‘-al’ and ‘-a0’.

-u Output only unused symbols. This may be really useful if you give your main
compilation unit on the command line, as gnatxref will then display every
unused entity and ’with’ed package.

-v Instead of producing the default output, gnatxref will generate a ‘tags’ file
that can be used by vi. For examples how to use this feature, see Section 13.5
[Examples of gnatxref Usage|, page 227. The tags file is output to the standard
output, thus you will have to redirect it to a file.

All these switches may be in any order on the command line, and may even appear after
the file names. They need not be separated by spaces, thus you can say ‘gnatxref -ag’
instead of ‘gnatxref -a -g’.

Chapter 13: The Cross-Referencing Tools gnatxref and gnatfind 223

13.2 gnatfind Switches

The command line for gnatfind is:

$ gnatfind [switches| pattern[:sourcefile[:line[: column]]|

where

pattern

sourcefile

line

column

filel file2 . .

[filel file2 ...]

An entity will be output only if it matches the regular expression found in
pattern, see Section 13.4 [Regular Expressions in gnatfind and gnatxref]
page 226.

9

Omitting the pattern is equivalent to specifying ‘*’, which will match any entity.
Note that if you do not provide a pattern, you have to provide both a sourcefile
and a line.

Entity names are given in Latin-1, with uppercase/lowercase equivalence for
matching purposes. At the current time there is no support for 8-bit codes
other than Latin-1, or for wide characters in identifiers.

gnatfind will look for references, bodies or declarations of symbols referenced
in ‘sourcefile’, at line line and column column. See Section 13.6 [Examples
of gnatfind Usage|, page 229 for syntax examples.

is a decimal integer identifying the line number containing the reference to the
entity (or entities) to be located.

is a decimal integer identifying the exact location on the line of the first char-
acter of the identifier for the entity reference. Columns are numbered from
1.

The search will be restricted to these source files. If none are given, then the
search will be done for every library file in the search path. These file must
appear only after the pattern or sourcefile.

These file names are considered to be regular expressions, so for instance spec-
ifying ‘sourcex.adb’ is the same as giving every file in the current directory
whose name starts with ‘source’ and whose extension is ‘adb’.

The location of the spec of the entity will always be displayed, even if it isn’t in
one of ‘filel’, ‘file2’,... The occurrences of the entity in the separate units
of the ones given on the command line will also be displayed.

Note that if you specify at least one file in this part, gnatfind may sometimes
not be able to find the body of the subprograms.

At least one of 'sourcefile’ or 'pattern’ has to be present on the command line.

The following switches are available:

‘-=help’

Display Copyright and version, then exit disregarding all other options.

If ‘--version’ was not used, display usage, then exit disregarding all other
options.

If this switch is present, gnatfind and gnatxref will parse the read-only files
found in the library search path. Otherwise, these files will be ignored. This

224 GNAT User’s Guide

option can be used to protect Gnat sources or your own libraries from being
parsed, thus making gnatfind and gnatxref much faster, and their output
much smaller. Read-only here refers to access or permission status in the file
system for the current user.

‘-aIDIR’ When looking for source files also look in directory DIR. The order in which
source file search is undertaken is the same as for gnatmake.

‘-a0DIR’ When searching for library and object files, look in directory DIR. The order
in which library files are searched is the same as for gnatmake.

‘-nostdinc’
Do not look for sources in the system default directory.

‘-nostdlib’
Do not look for library files in the system default directory.

‘--ext=extension’
Specify an alternate ali file extension. The default is ali and other extensions
(e.g. gli for C/C++ sources when using ‘~fdump-xref’) may be specified via
this switch. Note that if this switch overrides the default, which means that
only the new extension will be considered.

‘--RTS=rts-path’
Specifies the default location of the runtime library. Same meaning as the
equivalent gnatmake flag (see Section 6.2 [Switches for gnatmake|, page 112).

~d’ If this switch is set, then gnatfind will output the parent type reference for
each matching derived types.

‘-e’ By default, gnatfind accept the simple regular expression set for ‘pattern’. If
this switch is set, then the pattern will be considered as full Unix-style regular
expression.

il If this switch is set, the output file names will be preceded by their directory

(if the file was found in the search path). If this switch is not set, the directory
will not be printed.

3)

-g If this switch is set, information is output only for library-level entities, ignoring
local entities. The use of this switch may accelerate gnatfind and gnatxref.

‘~-IDIR’ Equivalent to ‘~a0DIR -aIDIR’.

‘-pFILE’ Specify a project file (see Chapter 11 [GNAT Project Manager|, page 149) to
use. By default, gnatxref and gnatfind will try to locate a project file in the
current directory.

If a project file is either specified or found by the tools, then the content of
the source directory and object directory lines are added as if they had been
specified respectively by ‘-al’ and ‘-a0’.

-r By default, gnatfind will output only the information about the declaration,
body or type completion of the entities. If this switch is set, the gnatfind will
locate every reference to the entities in the files specified on the command line
(or in every file in the search path if no file is given on the command line).

Chapter 13: The Cross-Referencing Tools gnatxref and gnatfind 225

-s If this switch is set, then gnatfind will output the content of the Ada source
file lines were the entity was found.

-t If this switch is set, then gnatfind will output the type hierarchy for the
specified type. It act like -d option but recursively from parent type to parent
type. When this switch is set it is not possible to specify more than one file.

All these switches may be in any order on the command line, and may even appear after
the file names. They need not be separated by spaces, thus you can say ‘gnatxref -ag’
instead of ‘gnatxref -a -g’.

As stated previously, gnatfind will search in every directory in the search path. You can
force it to look only in the current directory if you specify * at the end of the command
line.

13.3 Project Files for gnatxref and gnatfind

Project files allow a programmer to specify how to compile its application, where to find
sources, etc. These files are used primarily by GPS, but they can also be used by the two
tools gnatxref and gnatfind.

A project file name must end with ‘.gpr’. If a single one is present in the current
directory, then gnatxref and gnatfind will extract the information from it. If multiple
project files are found, none of them is read, and you have to use the ‘-p’ switch to specify
the one you want to use.

The following lines can be included, even though most of them have default values which
can be used in most cases. The lines can be entered in any order in the file. Except for
‘src_dir’ and ‘obj_dir’, you can only have one instance of each line. If you have multiple
instances, only the last one is taken into account.

src_dir=DIR
[default: "./"] specifies a directory where to look for source files. Multiple
src_dir lines can be specified and they will be searched in the order they are
specified.

obj_dir=DIR
[default: "./"] specifies a directory where to look for object and library files.

Multiple obj_dir lines can be specified, and they will be searched in the order
they are specified

comp_opt=SWITCHES
[default: ""] creates a variable which can be referred to subsequently by using
the ${comp_opt} notation. This is intended to store the default switches given
to gnatmake and gcc.

bind_opt=SWITCHES
[default: ""] creates a variable which can be referred to subsequently by using
the ‘¢{bind_opt}’ notation. This is intended to store the default switches given
to gnatbind.

link_opt=SWITCHES
[default: ""] creates a variable which can be referred to subsequently by using
the ‘${link_opt}’ notation. This is intended to store the default switches given
to gnatlink.

226 GNAT User’s Guide

main=EXECUTABLE
[default: ""] specifies the name of the executable for the application. This
variable can be referred to in the following lines by using the ‘${main}’ notation.

comp_cmd=COMMAND
[default: "gcc -c -I${src_dir} -g -gnatq"] specifies the command used to
compile a single file in the application.

make_cmd=COMMAND
[default: "gnatmake ${main} -aI${src_dir} -a0${obj_dir} -g -gnatq
-cargs ${comp_opt} -bargs ${bind_opt} -largs ${link_opt}"] specifies
the command used to recompile the whole application.

run_cmd=COMMAND
[default: "${main}"] specifies the command used to run the application.

debug_cmd=COMMAND
[default: "gdb ${main}"] specifies the command used to debug the application

gnatxref and gnatfind only take into account the src_dir and obj_dir lines, and ignore
the others.

13.4 Regular Expressions in gnatfind and gnatxref

As specified in the section about gnatfind, the pattern can be a regular expression. Actu-
ally, there are to set of regular expressions which are recognized by the program:

globbing patterns
These are the most usual regular expression. They are the same that you
generally used in a Unix shell command line, or in a DOS session.

Here is a more formal grammar:

regexp ::= term

term = elmt -- matches elmt

term = elmt elmt -- concatenation (elmt then elmt)
term = * -- any string of O or more characters
term =7 -- matches any character

term = [char {char}] -- matches any character listed

term = [char - char] -- matches any character in range

full regular expression
The second set of regular expressions is much more powerful. This is the type
of regular expressions recognized by utilities such a ‘grep’.

The following is the form of a regular expression, expressed in Ada reference
manual style BNF is as follows

Chapter 13: The Cross-Referencing Tools gnatxref and gnatfind 227

regexp ::= term {| term} -- alternation (term or term ...)
term ::= item {item} -- concatenation (item then item)
item ::= elmt -- match elmt
item ::= elmt * -- zero or more elmt’s
item ::= elmt + -- one or more elmt’s
item ::= elmt ? -- matches elmt or nothing
elmt ::= nschar -- matches given character
elmt ::= [nschar {nschar}] -- matches any character listed
elmt ::= [~ nschar {nschar}] -- matches any character not listed
elmt ::= [char - char] -- matches chars in given range
elmt = \ char -- matches given character
elmt ::= . -- matches any single character
elmt = (regexp) -- parens used for grouping
char ::= any character, including special characters
nschar ::= any character except () [].*+7"

Following are a few examples:

‘abcde|fghi’

will match any of the two strings ‘abcde’ and ‘fghi’,
‘abcxd’ will match any string like ‘abd’, ‘abcd’, ‘abced’, ‘abcced’, and so

on,

‘[a-z]+" will match any string which has only lowercase characters in it (and

at least one character.

13.5 Examples of gnatxref Usage

13.5.1 General Usage

For the following examples, we will consider the following units:

228 GNAT User’s Guide

(2
main.ads:

1: with Bar;

2: package Main is

3: procedure Foo (B : in Integer);
4: C : Integer;

5: private

6: D : Integer;

7: end Main;

main.adb:

1: package body Main is

2: procedure Foo (B : in Integer) is
3 begin

4 C := B;

5: D := B;

6: Bar.Print (B);

7 Bar.Print (C);

8 end Foo;

9: end Main;

bar.ads:

1: package Bar is

2: procedure Print (B : Integer);

3: end bar;

- J

The first thing to do is to recompile your application (for instance, in that case
just by doing a ‘gnatmake main’, so that GNAT generates the cross-referencing
information. You can then issue any of the following commands:

gnatxref main.adb
gnatxref generates cross-reference information for main.adb and every unit
'with’ed by main.adb.

The output would be:

B Type: Integer
Decl: bar.ads 2:22

B Type: Integer
Decl: main.ads 3:20
Body: main.adb 2:20
Ref: main.adb 4:13 5:13 6:19

Bar Type: Unit
Decl: bar.ads 1:9
Ref: main.adb :8 7:8

main.ads 1:6

C Type: Integer
Decl: main.ads 4:5
Modi: main.adb 4:8
Ref: main.adb 7:19

D Type: Integer
Decl: main.ads 6:5
Modi: main.adb 5:8

Foo Type: Unit
Decl: main.ads 3:15
Body: main.adb 2:15

Main Type: Unit
Decl: main.ads 2:9

Body: main.adb 1:14

Chapter 13: The Cross-Referencing Tools gnatxref and gnatfind 229

Print Type: Unit
Decl: bar.ads 2:15
Ref: main.adb 6:12 7:12

that is the entity Main is declared in main.ads, line 2, column 9, its body is in
main.adb, line 1, column 14 and is not referenced any where.

The entity Print is declared in bar.ads, line 2, column 15 and it is referenced
in main.adb, line 6 column 12 and line 7 column 12.

gnatxref packagel.adb package2.ads
gnatxref will generates cross-reference information for packagel.adb, pack-
age2.ads and any other package 'with’ed by any of these.

13.5.2 Using gnatxref with vi

gnatxref can generate a tags file output, which can be used directly from vi. Note that
the standard version of vi will not work properly with overloaded symbols. Consider using
another free implementation of vi, such as vim.

$ gnatxref -v gnatfind.adb > tags
will generate the tags file for gnatfind itself (if the sources are in the search path!).

From vi, you can then use the command ‘:tag entity’ (replacing entity by whatever
you are looking for), and vi will display a new file with the corresponding declaration of
entity.

13.6 Examples of gnatfind Usage

gnatfind -f xyz:main.adb
Find declarations for all entities xyz referenced at least once in main.adb. The
references are search in every library file in the search path.

The directories will be printed as well (as the ‘-f’ switch is set)
The output will look like:

directory/main.ads:106:14: xyz <= declaration

directory/main.adb:24:10: xyz <= body

directory/foo.ads:45:23: xyz <= declaration
that is to say, one of the entities xyz found in main.adb is declared at line 12
of main.ads (and its body is in main.adb), and another one is declared at line
45 of foo.ads

gnatfind -fs xyz:main.adb
This is the same command as the previous one, instead gnatfind will display
the content of the Ada source file lines.

The output will look like:

directory/main.ads:106:14: xyz <= declaration
procedure XxXyz;

directory/main.adb:24:10: xyz <= body
procedure xyz is

directory/foo.ads:45:23: xyz <= declaration
xyz : Integer;

This can make it easier to find exactly the location your are looking for.

230 GNAT User’s Guide

gnatfind -r "*x*":main.ads:123 foo.adb
Find references to all entities containing an x that are referenced on line 123 of
main.ads. The references will be searched only in main.ads and foo.adb.

gnatfind main.ads:123
Find declarations and bodies for all entities that are referenced on line 123 of
main.ads.

This is the same as gnatfind "*":main.adb:123.

gnatfind mydir/main.adb:123:45
Find the declaration for the entity referenced at column 45 in line 123 of file
main.adb in directory mydir. Note that it is usual to omit the identifier name
when the column is given, since the column position identifies a unique refer-
ence.

The column has to be the beginning of the identifier, and should not point to
any character in the middle of the identifier.

Chapter 14: File Name Krunching with gnatkr 231

14 File Name Krunching with gnatkr

This chapter discusses the method used by the compiler to shorten the default file names
chosen for Ada units so that they do not exceed the maximum length permitted. It also
describes the gnatkr utility that can be used to determine the result of applying this
shortening.

14.1 About gnatkr

The default file naming rule in GNAT is that the file name must be derived from the unit
name. The exact default rule is as follows:

e Take the unit name and replace all dots by hyphens.

e If such a replacement occurs in the second character position of a name, and the first
character is ‘a’, ‘g’, ‘s’, or ‘i’, then replace the dot by the character ‘~’ (tilde) instead
of a minus.

The reason for this exception is to avoid clashes with the standard names for children
of System, Ada, Interfaces, and GNAT, which use the prefixes ‘s-’, ‘a-’, ‘i-’, and ‘g-’,
respectively.

The ‘-gnatknn’ switch of the compiler activates a “krunching” circuit that limits file
names to nn characters (where nn is a decimal integer). For example, using OpenVMS,
where the maximum file name length is 39, the value of nn is usually set to 39, but if you
want to generate a set of files that would be usable if ported to a system with some different
maximum file length, then a different value can be specified. The default value of 39 for
OpenVMS need not be specified.

The gnatkr utility can be used to determine the krunched name for a given file, when
krunched to a specified maximum length.

14.2 Using gnatkr

The gnatkr command has the form

$ gnatkr name [length]

name is the uncrunched file name, derived from the name of the unit in the standard manner
described in the previous section (i.e., in particular all dots are replaced by hyphens). The
file name may or may not have an extension (defined as a suffix of the form period followed by
arbitrary characters other than period). If an extension is present then it will be preserved
in the output. For example, when krunching ‘hellofile.ads’ to eight characters, the result
will be hellofil.ads.

Note: for compatibility with previous versions of gnatkr dots may appear in the name
instead of hyphens, but the last dot will always be taken as the start of an extension. So
if gnatkr is given an argument such as ‘Hello.World.adb’ it will be treated exactly as if
the first period had been a hyphen, and for example krunching to eight characters gives the
result ‘hellworl.adb’.

Note that the result is always all lower case (except on OpenVMS where it is all upper
case). Characters of the other case are folded as required.

232 GNAT User’s Guide

length represents the length of the krunched name. The default when no argument is
given is 8 characters. A length of zero stands for unlimited, in other words do not chop
except for system files where the implied crunching length is always eight characters.

The output is the krunched name. The output has an extension only if the original argument
was a file name with an extension.

14.3 Krunching Method

The initial file name is determined by the name of the unit that the file contains. The
name is formed by taking the full expanded name of the unit and replacing the separating
dots with hyphens and using lowercase for all letters, except that a hyphen in the second
character position is replaced by a tilde if the first character is ‘a’, ‘i’, ‘g’, or ‘s’. The
extension is .ads for a spec and .adb for a body. Krunching does not affect the extension,

but the file name is shortened to the specified length by following these rules:

e The name is divided into segments separated by hyphens, tildes or underscores and all
hyphens, tildes, and underscores are eliminated. If this leaves the name short enough,
we are done.

e If the name is too long, the longest segment is located (left-most if there are two of
equal length), and shortened by dropping its last character. This is repeated until the
name is short enough.

As an example, consider the krunching of
‘our-strings-wide_fixed.adb’ to fit the name into 8 characters as required by some
operating systems.

our-strings-wide_fixed 22
our strings wide fixed 19
our string wide fixed 18
our strin wide fixed 17

our stri wide fixed 16
our stri wide fixe 15
our str wide fixe 14
our str wid fixe 13
our str wid fix 12
ou str wid fix 11
ou st wid fix 10
ou st wi fix 9
ou st wi fi 8

Final file name: oustwifi.adb

e The file names for all predefined units are always krunched to eight characters. The
krunching of these predefined units uses the following special prefix replacements:

‘ada-’ replaced by ‘a-’
‘gnat-’ replaced by ‘g-’
‘interfaces-’

replaced by ‘i-’
‘system-’ replaced by ‘s-’

These system files have a hyphen in the second character position. That is why normal
user files replace such a character with a tilde, to avoid confusion with system file
names.

Chapter 14: File Name Krunching with gnatkr 233

As an example of this special rule, consider
‘ada-strings-wide_fixed.adb’, which gets krunched as follows:

ada-strings-wide_fixed 22
a- strings wide fixed 18
a- string wide fixed 17
a- strin wide fixed 16

a- stri wide fixed 15
a- stri wide fixe 14
a- str wide fixe 13
a- str wid fixe 12
a- str wid fix 11
a- st wid fix 10
a- st wi fix 9
a- st wi fi 8

Final file name: a-stwifi.adb

Of course no file shortening algorithm can guarantee uniqueness over all possible unit
names, and if file name krunching is used then it is your responsibility to ensure that no
name clashes occur. The utility program gnatkr is supplied for conveniently determining
the krunched name of a file.

14.4 Examples of gnatkr Usage

$ gnatkr
$ gnatkr
$ gnatkr
$ gnatkr
$ gnatkr
$ gnatkr

very_long_unit_name.ads --> velounna.ads
grandparent-parent-child.ads --> grparchi.ads
Grandparent.Parent.Child.ads --> grparchi.ads
grandparent-parent-child --> grparchi
very_long_unit_name.ads/count=6 --> vlunna.ads
very_long_unit_name.ads/count=0 --> very_long_unit_name.ads

Chapter 15: Preprocessing with gnatprep 235

15 Preprocessing with gnatprep

This chapter discusses how to use GNAT’s gnatprep utility for simple preprocessing. Al-
though designed for use with GNAT, gnatprep does not depend on any special GNAT
features. For further discussion of conditional compilation in general, see Appendix E
[Conditional Compilation], page 351.

15.1 Preprocessing Symbols

Preprocessing symbols are defined in definition files and referred to in sources to be pre-
processed. A Preprocessing symbol is an identifier, following normal Ada (case-insensitive)
rules for its syntax, with the restriction that all characters need to be in the ASCII set (no
accented letters).

15.2 Using gnatprep

To call gnatprep use
$ gnatprep [switches| infile outfile [deffile]

where
switches is an optional sequence of switches as described in the next section.

infile is the full name of the input file, which is an Ada source file containing prepro-
cessor directives.

outfile is the full name of the output file, which is an Ada source in standard Ada
form. When used with GNAT, this file name will normally have an ads or adb
suffix.

deffile is the full name of a text file containing definitions of preprocessing symbols

to be referenced by the preprocessor. This argument is optional, and can be
replaced by the use of the ‘-D’ switch.

15.3 Switches for gnatprep

‘-b’ Causes both preprocessor lines and the lines deleted by preprocessing to be
replaced by blank lines in the output source file, preserving line numbers in the
output file.

‘~c’ Causes both preprocessor lines and the lines deleted by preprocessing to be

retained in the output source as comments marked with the special string "--!
". This option will result in line numbers being preserved in the output file.

=C’ Causes comments to be scanned. Normally comments are ignored by gnatprep.
If this option is specified, then comments are scanned and any $symbol substitu-
tions performed as in program text. This is particularly useful when structured
comments are used (e.g., when writing programs in the SPARK dialect of Ada).
Note that this switch is not available when doing integrated preprocessing (it
would be useless in this context since comments are ignored by the compiler in
any case).

236

GNAT User’s Guide

‘-Dsymbol=value’

Defines a new preprocessing symbol, associated with value. If no value is given
on the command line, then symbol is considered to be True. This switch can
be used in place of a definition file.

Causes a Source_Reference pragma to be generated that references the original
input file, so that error messages will use the file name of this original file. The
use of this switch implies that preprocessor lines are not to be removed from
the file, so its use will force ‘-b’ mode if ‘-c’ has not been specified explicitly.

Note that if the file to be preprocessed contains multiple units, then it will be
necessary to gnatchop the output file from gnatprep. If a Source_Reference
pragma is present in the preprocessed file, it will be respected by gnatchop -r
so that the final chopped files will correctly refer to the original input source
file for gnatprep.

Causes a sorted list of symbol names and values to be listed on the standard
output file.

Causes undefined symbols to be treated as having the value FALSE in the
context of a preprocessor test. In the absence of this option, an undefined
symbol in a #if or #elsif test will be treated as an error.

Note: if neither ‘-b’ nor ‘-c’ is present, then preprocessor lines and deleted lines are com-
pletely removed from the output, unless -r is specified, in which case -b is assumed.

15.4 Form of Definitions File

The definitions file contains lines of the form

symbol

:= value

where symbol is a preprocessing symbol, and value is one of the following:

e Empty,

corresponding to a null substitution

e A string literal using normal Ada syntax

e Any sequence of characters from the set (letters, digits, period, underline).

Comment lines may also appear in the definitions file, starting with the usual --, and
comments may be added to the definitions lines.

15.5 Form of Input Text for gnatprep

The input text may contain preprocessor conditional inclusion lines, as well as general
symbol substitution sequences.

The preprocessor conditional inclusion commands have the form

Chapter 15: Preprocessing with gnatprep 237

-

#if expression [then]
lines

#elsif expression [then
lines

#elsif expression [then
lines

#else
lines

#end if;

-

In this example, expression is defined by the following grammar:

expression ::= <symbol>

expression ::= <symbol> = "<value>"
expression ::= <symbol> = <symbol>
expression ::= <symbol> = <integer>
expression ::= <symbol> > <integer>
expression ::= <symbol> >= <integer>
expression ::= <symbol> < <integer>
expression ::= <symbol> <= <integer>
expression ::= <symbol> ’Defined

expression ::= not expression

expression ::= expression and expression
expression ::= expression or expression
expression ::= expression and then expression
expression ::= expression or else expression
expression ::= (expression)

The following restriction exists: it is not allowed to have "and" or "or" following "not"
in the same expression without parentheses. For example, this is not allowed:
not X or Y

This should be one of the following:
(not X) or Y
not (X or Y)
For the first test (ezpression ::= <symbol>) the symbol must have either the value true
or false, that is to say the right-hand of the symbol definition must be one of the (case-
insensitive) literals True or False. If the value is true, then the corresponding lines are
included, and if the value is false, they are excluded.

When comparing a symbol to an integer, the integer is any non negative literal integer
as defined in the Ada Reference Manual, such as 3, 16#FF# or 2#11#. The symbol value
must also be a non negative integer. Integer values in the range 0 .. 2**31-1 are supported.

The test (expression ::= <symbol> ’Defined) is true only if the symbol has been defined
in the definition file or by a ‘-D’ switch on the command line. Otherwise, the test is false.

The equality tests are case insensitive, as are all the preprocessor lines.

If the symbol referenced is not defined in the symbol definitions file, then the effect
depends on whether or not switch ‘-u’ is specified. If so, then the symbol is treated as if it
had the value false and the test fails. If this switch is not specified, then it is an error to
reference an undefined symbol. It is also an error to reference a symbol that is defined with
a value other than True or False.

The use of the not operator inverts the sense of this logical test. The not operator
cannot be combined with the or or and operators, without parentheses. For example, "if
not X or Y then" is not allowed, but "if (not X) or Y then" and "if not (X or Y) then" are.

238 GNAT User’s Guide

The then keyword is optional as shown

The # must be the first non-blank character on a line, but otherwise the format is free
form. Spaces or tabs may appear between the # and the keyword. The keywords and
the symbols are case insensitive as in normal Ada code. Comments may be used on a
preprocessor line, but other than that, no other tokens may appear on a preprocessor line.
Any number of elsif clauses can be present, including none at all. The else is optional,
as in Ada.

The # marking the start of a preprocessor line must be the first non-blank character on
the line, i.e., it must be preceded only by spaces or horizontal tabs.
Symbol substitution outside of preprocessor lines is obtained by using the sequence
$symbol
anywhere within a source line, except in a comment or within a string literal. The identifier
following the $ must match one of the symbols defined in the symbol definition file, and the
result is to substitute the value of the symbol in place of $symbol in the output file.

Note that although the substitution of strings within a string literal is not possible, it is
possible to have a symbol whose defined value is a string literal. So instead of setting XYZ
to hello and writing:

Header : String := "$XYZ";
you should set XYZ to "hello" and write:
Header : String := $XYZ;

and then the substitution will occur as desired.

Chapter 16: The GNAT Library Browser gnatls 239

16 The GNAT Library Browser gnatls

gnatls is a tool that outputs information about compiled units. It gives the relationship
between objects, unit names and source files. It can also be used to check the source
dependencies of a unit as well as various characteristics.

Note: to invoke gnatls with a project file, use the gnat driver (see Section 12.2 [The
GNAT Driver and Project Files], page 218).

16.1 Running gnatls

The gnatls command has the form

$ gnatls switches object_or_ali_file

The main argument is the list of object or ‘ali’ files (see Section 2.8 [The Ada Library
Information Files|, page 22) for which information is requested.

In normal mode, without additional option, gnatls produces a four-column listing. Each
line represents information for a specific object. The first column gives the full path of the
object, the second column gives the name of the principal unit in this object, the third
column gives the status of the source and the fourth column gives the full path of the
source representing this unit. Here is a simple example of use:

$ gnatls *.o

./demol.o0 demo1l DIF demol.adb

./demo2.0 demo2 0K demo2.adb

./hello.o hi 0K hello.adb
./instr-child.o instr.child MOK instr-child.adb
./instr.o instr 0K instr.adb

./tef.o tef DIF tef.adb
./text_io_example.o text_io_example 0K text_io_example.adb
./tgef.o tgef DIF tgef.adb

The first line can be interpreted as follows: the main unit which is contained in object file
‘demol.0’ is demol, whose main source is in ‘demo1l.adb’. Furthermore, the version of the
source used for the compilation of demol has been modified (DIF). Each source file has a
status qualifier which can be:

0K (unchanged)
The version of the source file used for the compilation of the specified unit
corresponds exactly to the actual source file.

MOK (slightly modified)
The version of the source file used for the compilation of the specified unit
differs from the actual source file but not enough to require recompilation.
If you use gnatmake with the qualifier ‘-m (minimal recompilation)’, a file
marked MOK will not be recompiled.

DIF (modified)
No version of the source found on the path corresponds to the source used to
build this object.

??? (file not found)
No source file was found for this unit.

240 GNAT User’s Guide

HID (hidden, unchanged version not first on PATH)
The version of the source that corresponds exactly to the source used for com-
pilation has been found on the path but it is hidden by another version of the
same source that has been modified.

16.2 Switches for gnatls
gnatls recognizes the following switches:
Display Copyright and version, then exit disregarding all other options.

‘-=help’ If ‘--version’ was not used, display usage, then exit disregarding all other

options.

‘-a’ Consider all units, including those of the predefined Ada library. Especially
useful with ‘-qd’.

‘-d’ List sources from which specified units depend on.

‘~n’ Output the list of options.

‘-0’ Only output information about object files.

‘-g’ Only output information about source files.

‘-u’ Only output information about compilation units.

‘~-files=file’

Take as arguments the files listed in text file file. Text file file may contain
empty lines that are ignored. Each nonempty line should contain the name of
an existing file. Several such switches may be specified simultaneously.

‘-a0dir’

‘-aldir’

‘-Idir’

4_I_7

‘-nostdinc’
Source path manipulation. Same meaning as the equivalent gnatmake flags (see
Section 6.2 [Switches for gnatmake|, page 112).

‘-aPdir’ Add dir at the beginning of the project search dir.

‘~—RTS=rts-path’
Specifies the default location of the runtime library. Same meaning as the
equivalent gnatmake flag (see Section 6.2 [Switches for gnatmake|, page 112).

-v Verbose mode. Output the complete source, object and project paths. Do not
use the default column layout but instead use long format giving as much as
information possible on each requested units, including special characteristics
such as:

Preelaborable
The unit is preelaborable in the Ada sense.

No_Elab_Code
No elaboration code has been produced by the compiler for this
unit.

Chapter 16: The GNAT Library Browser gnatls 241

Pure The unit is pure in the Ada sense.

Elaborate_Body
The unit contains a pragma Elaborate_Body.

Remote_Types
The unit contains a pragma Remote_Types.

Shared_Passive
The unit contains a pragma Shared_Passive.

Predefined
This unit is part of the predefined environment and cannot be mod-
ified by the user.

Remote_Call_Interface
The unit contains a pragma Remote_Call_Interface.

16.3 Example of gnatls Usage

Example of using the verbose switch. Note how the source and object paths are affected by
the -1 switch.
$ gnatls -v -I.. demol.o

GNATLS 5.03w (20041123-34)
Copyright 1997-2004 Free Software Foundation, Inc.

Source Search Path:
<Current_Directory>
./

/home/comar/local/adainclude/

Object Search Path:

<Current_Directory>

i
/home/comar/local/lib/gcc-1ib/x86-1inux/3.4.3/adalib/

Project Search Path:
<Current_Directory>
/home/comar/local/lib/gnat/

./demol.0
Unit =>
Name => demol
Kind => subprogram body
Flags => No_Elab_Code
Source => demol.adb modified

The following is an example of use of the dependency list. Note the use of the -s switch
which gives a straight list of source files. This can be useful for building specialized scripts.

$ gnatls -d demo2.0
./demo2.0 demo2 0K demo2.adb
0K gen_list.ads
0K gen_list.adb
OK instr.ads
OK instr-child.ads

242

$ gnatls -d -s -a demol.o
demo1l.adb
/home/comar/local/adainclude/ada.ads

/home/comar/local/adainclude/a-finali.
/home/comar/local/adainclude/a-filico.
/home/comar/local/adainclude/a-stream.

ads
ads
ads

/home/comar/local/adainclude/a-tags.ads

gen_list.ads

gen_list.adb
/home/comar/local/adainclude/gnat.ads
/home/comar/local/adainclude/g-io.ads
instr.ads

/home/comar/local/adainclude/system.ads

/home/comar/local/adainclude/s-exctab.
/home/comar/local/adainclude/s-finimp.
/home/comar/local/adainclude/s-finroo.
/home/comar/local/adainclude/s-secsta.
/home/comar/local/adainclude/s-stalib.
/home/comar/local/adainclude/s-stoele.
/home/comar/local/adainclude/s-stratt.
/home/comar/local/adainclude/s-tasoli.
/home/comar/local/adainclude/s-unstyp.
/home/comar/local/adainclude/unchconv.

ads
ads
ads
ads
ads
ads
ads
ads
ads
ads

GNAT User’s Guide

Chapter 17: Cleaning Up with gnatclean 243

17 Cleaning Up with gnatclean

gnatclean is a tool that allows the deletion of files produced by the compiler, binder and
linker, including ALI files, object files, tree files, expanded source files, library files, interface
copy source files, binder generated files and executable files.

17.1 Running gnatclean
