gapply
gapply.RdGroups the SparkDataFrame using the specified columns and applies the R function to each group.
Usage
gapply(x, ...)
# S4 method for class 'GroupedData'
gapply(x, func, schema)
# S4 method for class 'SparkDataFrame'
gapply(x, cols, func, schema)Arguments
- x
a SparkDataFrame or GroupedData.
- ...
additional argument(s) passed to the method.
- func
a function to be applied to each group partition specified by grouping column of the SparkDataFrame. See Details.
- schema
the schema of the resulting SparkDataFrame after the function is applied. The schema must match to output of
func. It has to be defined for each output column with preferred output column name and corresponding data type. Since Spark 2.3, the DDL-formatted string is also supported for the schema.- cols
grouping columns.
Details
func is a function of two arguments. The first, usually named key
(though this is not enforced) corresponds to the grouping key, will be an
unnamed list of length(cols) length-one objects corresponding
to the grouping columns' values for the current group.
The second, herein x, will be a local data.frame with the
columns of the input not in cols for the rows corresponding to key.
The output of func must be a data.frame matching schema –
in particular this means the names of the output data.frame are irrelevant
See also
Other SparkDataFrame functions:
SparkDataFrame-class,
agg(),
alias(),
arrange(),
as.data.frame(),
attach,SparkDataFrame-method,
broadcast(),
cache(),
checkpoint(),
coalesce(),
collect(),
colnames(),
coltypes(),
createOrReplaceTempView(),
crossJoin(),
cube(),
dapply(),
dapplyCollect(),
describe(),
dim(),
distinct(),
drop(),
dropDuplicates(),
dropna(),
dtypes(),
except(),
exceptAll(),
explain(),
filter(),
first(),
gapplyCollect(),
getNumPartitions(),
group_by(),
head(),
hint(),
histogram(),
insertInto(),
intersect(),
intersectAll(),
isLocal(),
isStreaming(),
join(),
limit(),
localCheckpoint(),
merge(),
mutate(),
ncol(),
nrow(),
persist(),
printSchema(),
randomSplit(),
rbind(),
rename(),
repartition(),
repartitionByRange(),
rollup(),
sample(),
saveAsTable(),
schema(),
select(),
selectExpr(),
show(),
showDF(),
storageLevel(),
str(),
subset(),
summary(),
take(),
toJSON(),
union(),
unionAll(),
unionByName(),
unpersist(),
unpivot(),
with(),
withColumn(),
withWatermark(),
write.df(),
write.jdbc(),
write.json(),
write.orc(),
write.parquet(),
write.stream(),
write.text()
Examples
if (FALSE) { # \dontrun{
# Computes the arithmetic mean of the second column by grouping
# on the first and third columns. Output the grouping values and the average.
df <- createDataFrame (
list(list(1L, 1, "1", 0.1), list(1L, 2, "1", 0.2), list(3L, 3, "3", 0.3)),
c("a", "b", "c", "d"))
# Here our output contains three columns, the key which is a combination of two
# columns with data types integer and string and the mean which is a double.
schema <- structType(structField("a", "integer"), structField("c", "string"),
structField("avg", "double"))
result <- gapply(
df,
c("a", "c"),
function(key, x) {
# key will either be list(1L, '1') (for the group where a=1L,c='1') or
# list(3L, '3') (for the group where a=3L,c='3')
y <- data.frame(key, mean(x$b), stringsAsFactors = FALSE)
}, schema)
# The schema also can be specified in a DDL-formatted string.
schema <- "a INT, c STRING, avg DOUBLE"
result <- gapply(
df,
c("a", "c"),
function(key, x) {
y <- data.frame(key, mean(x$b), stringsAsFactors = FALSE)
}, schema)
# We can also group the data and afterwards call gapply on GroupedData.
# For example:
gdf <- group_by(df, "a", "c")
result <- gapply(
gdf,
function(key, x) {
y <- data.frame(key, mean(x$b), stringsAsFactors = FALSE)
}, schema)
collect(result)
# Result
# ------
# a c avg
# 3 3 3.0
# 1 1 1.5
# Fits linear models on iris dataset by grouping on the 'Species' column and
# using 'Sepal_Length' as a target variable, 'Sepal_Width', 'Petal_Length'
# and 'Petal_Width' as training features.
df <- createDataFrame (iris)
schema <- structType(structField("(Intercept)", "double"),
structField("Sepal_Width", "double"),structField("Petal_Length", "double"),
structField("Petal_Width", "double"))
df1 <- gapply(
df,
df$"Species",
function(key, x) {
m <- suppressWarnings(lm(Sepal_Length ~
Sepal_Width + Petal_Length + Petal_Width, x))
data.frame(t(coef(m)))
}, schema)
collect(df1)
# Result
# ---------
# Model (Intercept) Sepal_Width Petal_Length Petal_Width
# 1 0.699883 0.3303370 0.9455356 -0.1697527
# 2 1.895540 0.3868576 0.9083370 -0.6792238
# 3 2.351890 0.6548350 0.2375602 0.2521257
} # }