
ltx-talk – A class for typesetting presentations∗

Joseph Wright†

Released 2026-02-10

Contents

I ltx-talk – Overall set up 1

1 ltx-talk implementation 1
1.1 Set up . 1
1.2 Additions for expl3 . 2
1.3 Extra variants . 3
1.4 Scratch space . 3
1.5 Option handling . 4
1.6 Setting up . 5
1.7 Math support . 6
1.8 Font selection . 6
1.9 Hyperlinks . 6
1.10 Tagging . 7

II ltx-talk-color – Color definitions 8

1 ltx-talk-color implementation 8
1.1 Existing definitions . 8
1.2 Document (and interface) commands 8
1.3 Color definition . 10
1.4 Semantic colors . 10

III ltx-talk-decode – Decoding overlay specs 11

1 ltx-talk-decode implementation 11

IV ltx-talk-frame – The structure of frames 18
∗This file describes v0.4.4, last revised 2026-02-10.
†E-mail: joseph@texdev.net

i

mailto:joseph@texdev.net

1 ltx-talk-frame implementation 18
1.1 Slides in frames . 18
1.2 Counters . 21
1.3 Frame options . 22
1.4 Tagging for headers . 22
1.5 Wallpaper . 23
1.6 The frame environment . 27

V ltx-talk-frame – The structure of frames 30

1 ltx-talk-frame-structure implementation 30
1.1 Columns . 30
1.2 Floats . 32
1.3 Footnotes . 34

VI ltx-talk-mode – Modes 36

1 ltx-talk-mode implementation 36

VII ltx-talk-overlay – Overlays 37

1 ltx-talk-overlay implementation 37
1.1 Utilities . 37
1.2 Opacity utilities . 38
1.3 Action commands and environments . 38
1.4 Non-action commands and environments 42
1.5 Fixed-size areas . 43
1.6 Adding overlays to existing commands 45

VIII ltx-talk-required – “Required” definitions 48

1 ltx-talk-required implementation 48
1.1 Standard design settings . 48
1.2 List support . 49

IX ltx-talk-structure – Structural commands 50

1 ltx-talk-structure implementation 50
1.1 Frame title . 50
1.2 Sectioning . 51
1.3 Table of contents . 53
1.4 Block environments . 56
1.5 Lists . 56
1.6 Theorems, etc. 60

ii

X ltx-talk-title – Title pages 61

1 ltx-talk-title implementation 61

Index 65

iii

Part I

ltx-talk – Overall set up
1 ltx-talk implementation
Start the DocStrip guards.

1 〈∗class〉
Identify the internal prefix.

2 〈@@=talk〉

1.1 Set up
Identify the package and give the over all version information.

3 \ProvidesExplClass {ltx-talk} {2026-02-10} {0.4.4}
4 {A class for typesetting presentations}

Get the right type of message.
5 \prop_gput:Nnn \g_msg_module_name_prop { talk } { ltx-talk }
6 \prop_gput:Nnn \g_msg_module_type_prop { talk } { Class }

Require the latest LATEX structures.
7 \IfFormatAtLeastF { 2025-11-01 }
8 {
9 \msg_new:nnnn { ltx-talk } { kernel-too-old }

10 { The~ltx-talk~class~requires~LaTeX~2025-11-01~or~later. }
11 {
12 You~have~tried~to~use~the~ltx-talk~class~with~a~LaTeX~kernel~release~
13 prior~to~2025-11-01;~the~required~functionality~is~missing.
14 }
15 \msg_fatal:nn { ltx-talk } { kernel-too-old }
16 }
17 \NeedsDocumentMetadata

Warn if not an engine that is tested.
18 \bool_lazy_or:nnF
19 { \sys_if_engine_luatex_p: }
20 { \sys_if_engine_pdftex_p: }
21 {
22 \msg_new:nnn { ltx-talk } { unsupported-engine }
23 {
24 The~engine~"\c_sys_engine_str"~
25 is~not~supported~by~the~ltx-talk~class.
26 }
27 \msg_warning:nn { ltx-talk } { unsupported-engine }
28 }

1

1.2 Additions for expl3
Like \vcoffin_set:Nnn, so should be an easy enough addition.

29 \cs_gset_protected:Npn \vbox_set_to_wd:Nnn #1#2#3
30 {
31 \tex_setbox:D #1 \tex_vbox:D
32 {
33 \tex_hsize:D __box_dim_eval:n {#2}
34 \color_group_begin: #3 \par \color_group_end:
35 }
36 \box_dp:N #1 __box_dim_eval:n {#2}
37 }
38 \cs_gset_protected:Npn \vbox_set_to_wd:Nnw #1#2
39 {
40 \cs_set_protected:Npn __box_set_to_wd:
41 { \box_wd:N #1 __box_dim_eval:n {#2} }
42 \tex_setbox:D #1 \tex_vbox:D
43 \c_group_begin_token
44 \tex_hsize:D __box_dim_eval:n {#2}
45 \group_insert_after:N __box_set_to_wd:
46 \color_group_begin:
47 }

Some things from xbox that would be useful.
48 \cs_gset_protected:Npn \rule:nnn #1#2#3
49 {
50 \tex_vrule:D
51 height \dim_eval:n {#2} \exp_stop_f:
52 depth \dim_eval:n {#3} \exp_stop_f:
53 width \dim_eval:n {#1} \exp_stop_f:
54 \scan_stop:
55 }

Some extensions are needed to opacity support: this should only be here for a short
period.

56 \cs_gset_protected:Npn \opacity_begin:n #1
57 { __opacity_select:nN {#1} __opacity_backend_begin:n }
58 \cs_gset_protected:Npn \opacity_end:
59 { __opacity_backend_end: }
60 \AddToHook { begindocument }
61 {
62 \cs_gset_protected:Npe __opacity_backend_begin:n #1
63 {
64 \bool_lazy_any:nTF
65 {
66 { \sys_if_engine_pdftex_p: }
67 { \sys_if_engine_luatex_p: }
68 { \sys_if_engine_xetex_p: }
69 }
70 {
71 \tl_set:Nn \exp_not:N \l__opacity_backend_fill_tl {#1}
72 \tl_set:Nn \exp_not:N \l__opacity_backend_stroke_tl {#1}
73 \pdfmanagement_add:nnn { Page / Resources / ExtGState }
74 { opacity #1 }
75 { << /ca ~ #1 /CA ~ #1 >> }

2

76 \sys_if_engine_xetex:TF
77 { __kernel_backend_literal_pdf:n }
78 {
79 __kernel_color_backend_stack_push:nn
80 \exp_not:N \c__opacity_backend_stack_int
81 }
82 { /opacity #1 ~ gs }
83 }
84 {
85 __opacity_backend:nnn {#1} { fill } { ca }
86 __opacity_backend:nnn {#1} { stroke } { ca }
87 }
88 }
89 \cs_gset_protected:Npe __opacity_backend_end:
90 {
91 \bool_lazy_any:nTF
92 {
93 { \sys_if_engine_pdftex_p: }
94 { \sys_if_engine_luatex_p: }
95 { \sys_if_engine_xetex_p: }
96 }
97 { __opacity_backend_reset: }
98 {
99 __opacity_backend_reset_fill:

100 __opacity_backend_reset_stroke:
101 }
102 }
103 }

1.3 Extra variants
104 \cs_generate_variant:Nn \clist_set:Nn { cv }
105 \cs_generate_variant:Nn \hook_gput_code:nnn { nne }
106 \exp_args_generate:n { nVv }
107 \cs_generate_variant:Nn \color_select:n { V }
108 \cs_generate_variant:Nn \dim_compare:nNnTF { v }
109 \cs_generate_variant:Nn \dim_compare_p:nNn { vNv }
110 \cs_generate_variant:Nn \dim_max:nn { v }
111 \cs_generate_variant:Nn \str_replace_all:Nnn { NnV }
112 \cs_generate_variant:Nn \text_purify:n { v }
113 \cs_generate_variant:Nn \vbox_to_ht:nn { v }

1.4 Scratch space
__talk_tmp:w For one-off processing.

114 \cs_new_protected:Npn __talk_tmp:w { }

(End of definition for __talk_tmp:w.)

\l__talk_tmp_box

115 \box_new:N \l__talk_tmp_box

(End of definition for \l__talk_tmp_box.)

3

\l__talk_tmp_tl

116 \tl_new:N \l__talk_tmp_tl

(End of definition for \l__talk_tmp_tl.)

1.5 Option handling
\l__talk_aspect_ratio_str

\l__talk_fontsize_dim
\l__talk_frame_title_bool

\l__talk_mode_str

117 \keys_define:nn { talk }
118 {
119 aspect-ratio .str_set:N =
120 \l__talk_aspect_ratio_str ,
121 font-size .dim_set:N =
122 \l__talk_fontsize_dim ,
123 frame-title-arg .bool_set:N =
124 \l__talk_frame_title_bool ,
125 handout .code:n =
126 { \str_set:Nn \l__talk_mode_str { handout } } ,
127 handout .value_forbidden:n = true ,
128 mode .choices:nn =
129 { handout , projector }
130 { \str_set:NV \l__talk_mode_str \l_keys_choice_tl }
131 }

(End of definition for \l__talk_aspect_ratio_str and others.)
Scope for options.

132 \keys_define:nn { talk }
133 {
134 aspect-ratio .usage:n = load ,
135 font-size .usage:n = load ,
136 frame-title-arg .usage:n = load ,
137 mode .usage:n = load
138 }

Compatibility keys for classical font size setting.
139 \clist_map_inline:nn { 10pt , 11pt , 12pt }
140 {
141 \keys_define:nn { talk }
142 {
143 #1 .meta:n = { font-size = #1 } ,
144 #1 .value_forbidden:n = true ,
145 #1. usage:n = load
146 }
147 }

Initial values.
148 \keys_set:nn { talk }
149 {
150 aspect-ratio = 16:9 ,
151 font-size = 11pt ,
152 frame-title-arg = false ,
153 mode = projector
154 }

155 \ProcessKeyOptions [talk]

4

1.6 Setting up
Load the font size setup if available, otherwise fall back on scaling.
156 \file_if_exist_input:nF { size \dim_to_decimal:n \l__talk_fontsize_dim .clo }
157 {
158 \file_input:n { size10.clo }
159 \RequirePackage { relsize }
160 \hook_gput_code:nne { begindocument } { talk }
161 { \exp_not:N \relsize { \fp_eval:n { \l__talk_fontsize_dim / 10pt } } }
162 }

\c__talk_paper_height_dim
\c__talk_paper_width_dim

As geometry is being used to set the paper size with no previous value, we have to use
the optional argument rather than waiting to apply \geometry.
163 \dim_const:Nn \c__talk_paper_height_dim { 100mm }
164 \use:e
165 {
166 \cs_set_protected:Npn \exp_not:N __talk_tmp:w
167 #1 \tl_to_str:n { : } #2 \tl_to_str:n { : } #3 \exp_not:N \q_stop
168 {
169 \dim_const:Nn \exp_not:N \c__talk_paper_width_dim
170 {
171 \exp_not:N \fp_to_dim:n
172 { (#1 / #2) * \exp_not:N \c__talk_paper_height_dim }
173 }
174 }
175 \exp_not:N __talk_tmp:w \l__talk_aspect_ratio_str
176 \tl_to_str:n { : } 100 \exp_not:N \q_stop
177 }
178 \use:e
179 {
180 \exp_not:N \RequirePackage
181 [
182 papersize =
183 {
184 \dim_use:N \c__talk_paper_width_dim ,
185 \dim_use:N \c__talk_paper_height_dim
186 } ,
187 tmargin = 10mm ,
188 bmargin = 8mm ,
189 lmargin = 10mm ,
190 rmargin = 10mm ,
191 headheight = 10mm ,
192 headsep = 2mm ,
193 footskip = 6mm
194]
195 { geometry }
196 }

(End of definition for \c__talk_paper_height_dim and \c__talk_paper_width_dim.)
Turn off justification

197 \raggedright

5

1.7 Math support
We always require amsmath: this is forced anyway by unicode-math for LuaTEX.
198 \RequirePackage { amsmath }

1.8 Font selection
The aim here is to minimize change from the standard font setup but at the same time
provide a sans-serif default. Since beamer was released, better sans-serif math mode fonts
have become available. For OpenType engines,requiring (lua-)unicode-math is the most
sensible approach; we also load mathtools as that has to be before unicode-math. The
New Computer Modern font provides a reasonable initial set of glyphs. It comes with
a wrapper package, but that does various other things: if the user wants these, they
can choose to load themselves. For 8-bit engines, switching the text font to be sans-serif
is easy. For math mode, the sansmathfonts package does a good job: here, using the
package rather than adjusting directly is the sensible option.
199 \sys_if_engine_opentype:TF
200 {
201 \RequirePackage { fontspec }
202 \RequirePackage { mathtools }
203 \sys_if_engine_luatex:TF
204 {
205 \RequirePackage { lua-unicode-math }
206 \tagpdfsetup { math / mathml / luamml / load = true }
207 }
208 { \RequirePackage { unicode-math } }
209 \setmainfont { NewCMSans10-Regular.otf }
210 \setsansfont { NewCMSans10-Regular.otf }
211 \setmathfont { NewCMSansMath-Regular.otf }
212 }
213 {
214 \RequirePackage { sansmathfonts }
215 \RequirePackage [nomath] { lmodern }
216 \cs_set_eq:NN \rmdefault \sfdefault
217 }

To ensure that math mode fonts are always initialized, force loading at the start
of the document. This is left as late as possible: just before typesetting starts. This is
needed to set up math dimensions for vertical centering.
218 \AddToHook { begindocument / end } { \check@mathfonts }

1.9 Hyperlinks
\thepage We define \thepage here: this is checked for by hyperref so has to come early.

219 \cs_new:Npn \thepage { \@arabic \c@page }

(End of definition for \thepage. This variable is documented on page ??.)
A requirement.

220 \RequirePackage { hyperref }
221 \hypersetup { hidelinks }

6

1.10 Tagging
We need to extend the standard tagging model to work with slides and so on.
222 \tagpdfsetup
223 {
224 role / user-NS = ltx-talk ,
225 role / new-tag = frame / Sect ,
226 role / new-tag = frametitle / H4
227 }

228 〈/class〉

7

Part II

ltx-talk-color – Color definitions
1 ltx-talk-color implementation
Start the DocStrip guards.

1 〈∗class〉
Identify the internal prefix.

2 〈@@=talk〉
The aim here is to test how well l3color can support the range of color functions that

are needed for a presentation. As such, this is very much experimental, but deliberately
so. In particular, there is an important question about the need for global colors: used
throughout beamer but otherwise not widely encountered. At the same time, there is a
need to work with packages that expect color to be managed in a predictable way: pgf
in particular makes use of xcolor internal as part of color management.

Currently, colors defined using xcolor will be passed on to l3color provided \DocumentMetadata
is active. As that is a requirement in any case for ltx-talk, some of the setup is relatively
easy to do.

1.1 Existing definitions
3 \RequirePackage { xcolor }

\stdcolor
\stdmathcolor
\stdtextcolor

Save the document commands.
4 \NewCommandCopy \stdcolor \color
5 \NewCommandCopy \stdmathcolor \mathcolor
6 \NewCommandCopy \stdtextcolor \textcolor

(End of definition for \stdcolor , \stdmathcolor , and \stdtextcolor. These functions are documented
on page ??.)

1.2 Document (and interface) commands
7 \cs_generate_variant:Nn \color_select:n { e }
8 \cs_generate_variant:Nn \color_select:nn { ne }
9 \cs_generate_variant:Nn \color_math:nn { e }

10 \cs_generate_variant:Nn \color_math:nnn { ne }

\color
\mathcolor
\textcolor

Add the overlay specification and use l3color.
11 \RenewDocumentCommand \color { D <> { all } o m }
12 {
13 __talk_if_overlay:nT {#1}
14 {
15 \IfNoValueTF {#2}
16 { \color_select:e {#3} }
17 { \color_select:ne {#2} {#3} }
18 }
19 \ignorespaces
20 }
21 \RenewDocumentCommand \mathcolor { D <> { all } o m +m }
22 {

8

23 __talk_if_overlay:nT {#1}
24 {
25 \IfNoValueTF {#2}
26 { \color_math:en {#3} {#4} }
27 { \color_math:nen {#2} {#3} {#4} }
28 }
29 }
30 \RenewDocumentCommand \textcolor { D <> { all } o m +m }
31 {
32 __talk_if_overlay:nT {#1}
33 {
34 \mode_leave_vertical:
35 \group_begin:
36 \IfNoValueTF {#2}
37 { \color_select:e {#3} }
38 { \color_select:ne {#2} {#3} }
39 #4
40 \group_end:
41 }
42 }

(End of definition for \color , \mathcolor , and \textcolor. These functions are documented on page
??.)

\pagecolor
__talk_pagecolor:n

Here, the definition is different: we directly use the shipout hook.
43 \RenewDocumentCommand \pagecolor { D <> { all } o m }
44 {
45 __talk_if_overlay:nT {#1}
46 {
47 \IfNoValueTF {#2}
48 { __talk_pagecolor:n { {#3} } }
49 { __talk_pagecolor:n { [{#2}] {#3} } }
50 }
51 }
52 \cs_new_protected:Npn __talk_pagecolor:n #1
53 {
54 \AddToHook { shipout / background }
55 {
56 \color #1
57 \put (0cm, -\paperheight)
58 { \rule { \paperwidth } { \paperheight } }
59 }
60 }

(End of definition for \pagecolor and __talk_pagecolor:n. This function is documented on page ??.)

\stdset@color
\stdreset@color 61 \cs_set_eq:NN \stdset@color \set@color

62 \cs_set_eq:NN \stdreset@color \reset@color

(End of definition for \stdset@color and \stdreset@color. These functions are documented on page
??.)

\set@color
\reset@color

Part of code-level interface for color: simply use the expl3 version of the same idea.
63 \cs_set_eq:NN \set@color \color_ensure_current:
64 \cs_set_eq:NN \reset@color __color_backend_reset:

9

(End of definition for \set@color and \reset@color. These functions are documented on page ??.)

1.3 Color definition
\DeclareColor Provide a single interface here: as the data will be passed to l3color in any case, there is

not too much to do.
65 \NewDocumentCommand \DeclareColor { m o m }
66 {
67 \IfNoValueTF {#2}
68 { \colorlet {#1} {#3} }
69 { \definecolor {#1} {#2} {#3} }
70 }

(End of definition for \DeclareColor. This function is documented on page ??.)

1.4 Semantic colors
Pick up the standard colors from beamer.

71 \DeclareColor { alert } [RGB] { 200 , 0 , 0 }
72 \DeclareColor { example } { green!50!black }
73 \DeclareColor { structure } [rgb] { 0.2 , 0.2 , 0.7 }

74 〈/class〉

10

Part III

ltx-talk-decode – Decoding overlay
specs
1 ltx-talk-decode implementation
Start the DocStrip guards.

1 〈∗class〉
Identify the internal prefix.

2 〈@@=talk〉

\l__talk_decode_overlays_bool The result from decoding: are we on the current slide. This may well be better handled
by moving to a TF signature: to be explored.

3 \bool_new:N \l__talk_decode_overlays_bool

(End of definition for \l__talk_decode_overlays_bool.)

\g__talk_pauses_int
\c@pauses
\thepauses

The automatically-incremented value for the relative overlay value.
4 \int_new:N \g__talk_pauses_int
5 \cs_new_eq:NN \c@pauses \g__talk_pauses_int
6 \cs_new:Npn \thepauses { \@arabic \g__talk_pauses_int }

(End of definition for \g__talk_pauses_int , \c@pauses , and \thepauses. These variables are docu-
mented on page ??.)

\l__talk_decode_pure_bool Tracks whether only mode specifications were given.
7 \bool_new:N \l__talk_decode_pure_bool

(End of definition for \l__talk_decode_pure_bool.)

\l__talk_decode_step_bool Tracks whether to step \g__talk_pauses_int.
8 \bool_new:N \l__talk_decode_step_bool

(End of definition for \l__talk_decode_step_bool.)

\l__talk_decode_arg_str For error usage.
9 \str_new:N \l__talk_decode_arg_str

(End of definition for \l__talk_decode_arg_str.)

\l__talk_decode_overlays_clist
\l__talk_decode_overlays_str

The decoded overlay specification: will have only absolute slide numbers present, poten-
tially along with ranges.

10 \clist_new:N \l__talk_decode_overlays_clist
11 \str_new:N \l__talk_decode_overlays_str

(End of definition for \l__talk_decode_overlays_clist and \l__talk_decode_overlays_str.)

\l__talk_decode_action_str The action which is active, if any.
12 \str_new:N \l__talk_decode_action_str

(End of definition for \l__talk_decode_action_str.)

11

\l__talk_decode_actions_bool
\l__talk_decode_actions_clist

\l__talk_decode_actions_str

For the actions versions of overlay tracking.
13 \bool_new:N \l__talk_decode_actions_bool
14 \clist_new:N \l__talk_decode_actions_clist
15 \str_new:N \l__talk_decode_actions_str

(End of definition for \l__talk_decode_actions_bool , \l__talk_decode_actions_clist , and \l__-
talk_decode_actions_str.)

__talk_decode_parse:n
__talk_decode_parse_auxi:n
__talk_decode_parse_auxii:n

__talk_decode_parse:w

First a simple check for an entirely blank argument: if that’s the case, there is no addi-
tional overlay to consider. Then deal with any category code issues before looping over
blocks divided by | tokens.

16 \cs_new_protected:Npn __talk_decode_parse:n #1
17 { \exp_args:Ne __talk_decode_parse_auxi:n {#1} }
18 \cs_new_protected:Npn __talk_decode_parse_auxi:n #1
19 {
20 \str_clear:N \l__talk_decode_action_str
21 \bool_lazy_or:nnTF
22 { \tl_if_blank_p:n {#1} }
23 { \str_if_eq_p:nn {#1} { all } }
24 { \bool_set_true:N \l__talk_decode_overlays_bool }
25 {
26 \str_set:Nn \l__talk_decode_arg_str {#1}
27 \bool_set_false:N \l__talk_decode_actions_bool
28 \bool_set_false:N \l__talk_decode_overlays_bool
29 \bool_set_true:N \l__talk_decode_pure_bool
30 \str_clear:N \l__talk_decode_overlays_str
31 \str_clear:N \l__talk_decode_actions_str
32 \exp_args:No __talk_decode_parse_auxii:n { \l__talk_decode_arg_str }
33 }
34 }

Stepping the value assigned to + is done in the outer loop, as within one overlay expression
it always takes the same value. If the amsmath \ifmeasuring@ flag is on, the overlay
counter is not advanced.

35 \cs_new_protected:Npn __talk_decode_parse_auxii:n #1
36 {
37 \bool_set_false:N \l__talk_decode_step_bool
38 __talk_decode_parse:w #1 | \q_recursion_tail | \q_recursion_stop
39 \bool_if:NT \l__talk_decode_step_bool
40 {
41 \legacy_if:nF { measuring@ }
42 { \int_gincr:N \g__talk_pauses_int }
43 }
44 }

The end-of-loop test here covers the case where the active mode is not mentioned at all
in the specification.

45 \cs_new_protected:Npn __talk_decode_parse:w #1 |
46 {
47 \quark_if_recursion_tail_stop_do:nn {#1}
48 {
49 \bool_lazy_and:nnT
50 { \str_if_empty_p:N \l__talk_decode_overlays_str }
51 { ! \l__talk_decode_pure_bool }

12

52 { \bool_set_true:N \l__talk_decode_overlays_bool }
53 }
54 \exp_args:Ne __talk_decode_mode:n
55 { \tl_trim_spaces:n {#1} }
56 __talk_decode_parse:w
57 }

(End of definition for __talk_decode_parse:n and others.)

\c__talk_modes_clist The possible modes: detokenized as that is applied up-front in decoding.
58 \clist_const:Ne \c__talk_modes_clist
59 {
60 \tl_to_str:n { handout } ,
61 \tl_to_str:n { projector }
62 }

(End of definition for \c__talk_modes_clist.)

__talk_decode_mode:n
__talk_decode_mode:w

__talk_decode_mode_aux:n

Check if the mode is known and current. If we find an action but have no overlay details,
they are filled in with a *.

63 \cs_new_protected:Npe __talk_decode_mode:n #1
64 {
65 \clist_if_in:NnTF \exp_not:N \c__talk_modes_clist {#1}
66 {
67 \exp_not:N \str_if_eq:VnT
68 \exp_not:N \l__talk_mode_str {#1}
69 { \bool_set_true:N \exp_not:N \l__talk_decode_overlays_bool }
70 }
71 {
72 \exp_not:N __talk_decode_mode:w #1 \tl_to_str:n { : : }
73 \exp_not:N \q_stop
74 }
75 }
76 \use:e
77 {
78 \cs_new_protected:Npe \exp_not:N __talk_decode_mode:w
79 #1 \token_to_str:N :
80 #2 \token_to_str:N :
81 #3 \exp_not:N \q_stop
82 }
83 {
84 \exp_not:N \tl_if_blank:nTF {#2}
85 {
86 \exp_not:N __talk_decode_mode:nn
87 { \tl_to_str:n { projector } } {#1}
88 }
89 { \exp_not:N __talk_decode_mode:nn {#1} {#2} }
90 }
91 \cs_new_protected:Npn __talk_decode_mode:nn #1#2
92 {
93 \str_if_eq:VnTF \l__talk_mode_str {#1}
94 {
95 __talk_decode_action:n {#2}
96 \str_if_empty:NT \l__talk_decode_overlays_str

13

97 { __talk_decode_overlays:nn { overlays } { * } }
98 }
99 {

100 \tl_if_blank:nF {#2}
101 { \bool_set_false:N \l__talk_decode_pure_bool }
102 }
103 }

(End of definition for __talk_decode_mode:n , __talk_decode_mode:w , and __talk_decode_mode_-
aux:n.)

__talk_decode_action:n
__talk_decode_action:w

Here, we have two valid possibilities: no action specification at all, or from the known
list. If we don’t find one of those outcomes, we can issue an error.
104 \cs_new_protected:Npe __talk_decode_action:n #1
105 {
106 \exp_not:N __talk_decode_action:w
107 #1 \tl_to_str:n { @ @ } \exp_not:N \q_stop
108 }
109 \use:e
110 {
111 \cs_new_protected:Npn \exp_not:N __talk_decode_action:w
112 #1 \tl_to_str:n { @ } #2 \tl_to_str:n { @ } #3 \exp_not:N \q_stop
113 }
114 {
115 \tl_if_blank:nTF {#2}
116 { __talk_decode_overlays:nn { overlays } {#1} }
117 {
118 \cs_if_exist:cTF { __talk_action_ #1 :N }
119 {
120 \bool_set_false:N \l__talk_decode_pure_bool
121 \str_set:Nn \l__talk_decode_action_str {#1}
122 \tl_if_blank:nF {#2}
123 { __talk_decode_overlays:nn { actions } {#2} }
124 }
125 {
126 \msg_error:nnV { talk } { bad-action-spec }
127 \l__talk_decode_arg_str
128 }
129 }
130 }

(End of definition for __talk_decode_action:n and __talk_decode_action:w.)

__talk_decode_overlays:nn
__talk_decode_overlays:nN

\@_decode_overlay_+:nw
__talk_decode_overlay_.:nw

__talk_decode_overlay_aux:nNN
__talk_decode_overlay_offset:nNnN
__talk_decode_overlay_offset:nNn

The loop here needs to replace all + and . characters by the current automatic value,
allowing for any offsets. Stepping the value assigned here is done in the outer loop (see
above).
131 \cs_new_protected:Npn __talk_decode_overlays:nn #1#2
132 {
133 __talk_decode_overlays:nN {#1} #2 \q_recursion_tail \q_recursion_stop
134 __talk_decode_check:n {#1}
135 }
136 \cs_new_protected:Npn __talk_decode_overlays:nN #1#2
137 {
138 \quark_if_recursion_tail_stop:N #2

14

139 \cs_if_exist_use:cF { __talk_decode_overlay_ #2 :nw }
140 {
141 \str_put_right:cn { l__talk_decode_ #1 _str } {#2}
142 __talk_decode_overlays:nN
143 }
144 {#1}
145 }
146 \cs_new_protected:cpn { __talk_decode_overlay_+:nw } #1
147 {
148 \bool_set_true:N \l__talk_decode_step_bool
149 __talk_decode_overlay_aux:nNN {#1} 1
150 }
151 \cs_new_protected:cpn { __talk_decode_overlay_.:nw } #1
152 { __talk_decode_overlay_aux:nNN {#1} 0 }

The look-ahead for an offset to a relative specification. If the end-of-loop is reached,
the value still needs to be inserted: to share auxiliaries, that is done by using the same
function as elsewhere, so the end-of-loop markers are re-inserted. Otherwise, there is a
check to see if the next token is a (.
153 \cs_new_protected:Npn __talk_decode_overlay_aux:nNN #1#2#3
154 {
155 \quark_if_recursion_tail_stop_do:Nn #3
156 {
157 __talk_decode_overlay_offset:nNn {#1} #2 { 0 }
158 \q_recursion_tail \q_recursion_stop
159 }
160 \token_if_eq_meaning:NNTF #3 (%)
161 { __talk_decode_overlay_offset:nNnN {#1} #2 { } }
162 { __talk_decode_overlay_offset:nNn {#1} #2 { 0 } #3 }
163 }

For the end of an offset, any valid overlay specification must have a closing), so this time
the end-of-loop case is an error. Otherwise simply collect up tokens until the closing) is
found.
164 \cs_new_protected:Npn __talk_decode_overlay_offset:nNnN #1#2#3#4
165 {
166 \quark_if_recursion_tail_stop_do:Nn #4
167 {
168 \msg_error:nnV { talk } { bad-action-spec }
169 \l__talk_decode_arg_str
170 } % (
171 \token_if_eq_meaning:NNTF #4)
172 { __talk_decode_overlay_offset:nNn {#1} #2 {#3} }
173 { __talk_decode_overlay_offset:nNnN {#1} #2 {#3#4} }
174 }

Overlay values can never be negative: this is enforced here.
175 \cs_new_protected:Npn __talk_decode_overlay_offset:nNn #1#2#3
176 {
177 \str_put_right:ce { l__talk_decode_ #1 _str }
178 { \int_max:nn { 0 } { #3 + \g__talk_pauses_int + #2 } }
179 __talk_decode_overlays:nN {#1}
180 }

(End of definition for __talk_decode_overlays:nn and others. This function is documented on page
??.)

15

__talk_decode_check:n
__talk_decode_check:nw

__talk_decode_check_single:nn
__talk_decode_check_range:nnn

At this stage we have a fully “written out” overlay specification, and need to work out if
the current slide is included. We need to look at each entry in the comma-separated list
to sort this out. First we filter out the case of a *, then it’s a question of working out
whether each entry is a single number or a range, and if the latter, whether it’s open at
either the start or the end.
181 \cs_new_protected:Npn __talk_decode_check:n #1
182 {
183 \clist_set:cv { l__talk_decode_ #1 _clist } { l__talk_decode_ #1 _str }
184 \clist_if_in:cnTF { l__talk_decode_ #1 _clist } { * }
185 { \bool_set_true:c { l__talk_decode_ #1 _bool } }
186 {
187 \clist_map_inline:cn { l__talk_decode_ #1 _clist }
188 { __talk_decode_check:nw {#1} 0 ##1 - - \q_stop }
189 }
190 }

If #4 is empty, both of the “filler” - tokens were consumed: we have a single value.
Otherwise there is a range: the setup above ensures that there will be a starting value in
all cases due to the leading 0, but there may not be an end one.
191 \cs_new_protected:Npn __talk_decode_check:nw #1#2 - #3 - #4 \q_stop
192 {
193 \tl_if_empty:nTF {#4}
194 { __talk_decode_check_single:nn {#1} {#2} }
195 {
196 \tl_if_blank:nTF {#3}
197 { __talk_decode_check_range:nnn {#1} {#2} { \c_max_int } }
198 { __talk_decode_check_range:nnn {#1} {#2} {#3} }
199 }
200 }
201 \cs_new_protected:Npn __talk_decode_check_single:nn #1#2
202 {
203 \int_compare:nNnTF \g__talk_slide_int = {#2}
204 { \bool_set_true:c { l__talk_decode_ #1 _bool } }
205 {
206 \int_compare:nNnT {#2} > \g__talk_slide_int
207 { \bool_gset_true:N \g__talk_slide_continue_bool }
208 }
209 }

TODO: In the following we might want to add a check whether the range was given with
#2 being smaller than #3, to be decided upon.
210 \cs_set_protected:Npn __talk_decode_check_range:nnn #1#2#3
211 {
212 \int_compare:nNnF \g__talk_slide_int > {#3}
213 {
214 \int_compare:nNnTF \g__talk_slide_int < {#2}
215 { \bool_gset_true:N \g__talk_slide_continue_bool }
216 {
217 \bool_set_true:c { l__talk_decode_ #1 _bool }
218 \bool_lazy_and:nnT
219 { \int_compare_p:nNn \g__talk_slide_int < {#3} }
220 { \int_compare_p:nNn {#3} < \c_max_int }
221 { \bool_gset_true:N \g__talk_slide_continue_bool }
222 \clist_map_break:

16

223 }
224 }
225 }

(End of definition for __talk_decode_check:n and others.)

226 \msg_new:nnnn { talk } { bad-action-spec }
227 { Bad~overlay~specification~"#1". }
228 {
229 The~overlay~specification~given~doesn't~follow~the~pattern~described~in~
230 the~ltx-talk~manual:~it~has~been~ignored.
231 }

232 〈/class〉

17

Part IV

ltx-talk-frame – The structure of
frames
1 ltx-talk-frame implementation
Start the DocStrip guards.

1 〈∗class〉
Identify the internal prefix.

2 〈@@=talk〉

1.1 Slides in frames
Currently, each slide in a frame will produce a separate page in the output (unless the
slide is suppressed entirely). Material is then hidden on some pages by using opacity. An
alternative approach would be to use Optional Content Groups to have a similar effect on
one page per frame. However, whilst that would be relatively clear for appear/disappear
effects, it would be much less straight-forward for partial transparency, etc., plus would
depend more heavily on viewer support. At a future stage we may wish to revisit this.

\g__talk_slide_continue_bool Tracks whether the frame continues after the current slide.
3 \bool_new:N \g__talk_slide_continue_bool

(End of definition for \g__talk_slide_continue_bool.)

\l__talk_slide_box

4 \box_new:N \l__talk_slide_box

(End of definition for \l__talk_slide_box.)

\g__talk_slide_int
\c@slide

\theslide

The slide number inside the current frame: needed to know which overlays are active.
We also provide LATEX counter-style access.

5 \int_new:N \g__talk_slide_int
6 \cs_new_eq:NN \c@slide \g__talk_slide_int
7 \cs_new:Npn \theslide { \@arabic \c@slide }

(End of definition for \g__talk_slide_int , \c@slide , and \theslide. These variables are documented
on page ??.)

Required to know which is the last slide in a frame for tagging.
8 \property_new:nnnn { slides } { now } { 1 } { \int_use:N \g__talk_slide_int }

__talk_slide:nn
__talk_slide_aux:n

Each slide is parsed inside simple set up, the only complexity being if we are handling
fragile frames. There, all \obeyedline in the grabbed tokens need to be turned back into
^^M before rescanning: this ensures that any verbatim grabbing in the frame still works.
The strange business with setting the continuation boolean is needed as otherwise we get
an infinite loop if there is an overlay specification for the frame itself. Tagging should
not of itself force slide continuation, so the global boolean is reset for the tagged slide.

9 \cs_new_protected:Npn __talk_slide:nn #1#2
10 {

18

11 \group_begin:
12 \tl_set:Ne \l__talk_tmp_tl
13 {
14 \property_ref:ee { frame . \int_use:N \g__talk_frame_int }
15 { slides }
16 }
17 \str_if_eq:VnTF \l__talk_frame_tagging_str { n }
18 { \str_set:NV \l__talk_frame_tagging_str \l__talk_tmp_tl }
19 {
20 \str_replace_all:NnV \l__talk_frame_tagging_str { ,n }
21 \l__talk_tmp_tl
22 \str_replace_all:NnV \l__talk_frame_tagging_str { ,~n }
23 \l__talk_tmp_tl
24 }
25 \int_gzero:N \g__talk_slide_int
26 \RenewCommandCopy \frame __talk_latexe_frame:n
27 \bool_do_while:Nn \g__talk_slide_continue_bool
28 {
29 \int_gincr:N \g__talk_slide_int
30 \bool_gset_false:N \g__talk_slide_continue_bool
31 __talk_if_overlay:nT {#1}
32 {
33 __talk_slide_begin:
34 __talk_if_overlay:VTF \l__talk_frame_tagging_str
35 {
36 \bool_gset_false:N \g__talk_slide_continue_bool
37 __talk_frame_tag:n
38 }
39 {
40 \bool_gset_false:N \g__talk_slide_continue_bool
41 __talk_frame_notag:n
42 }
43 {
44 \bool_if:NTF \l__talk_frame_verb_bool
45 { __talk_slide_aux:n }
46 { \use:n }
47 {#2}
48 }
49 __talk_slide_end:
50 }
51 }
52 \property_record:ee { frame . \int_use:N \g__talk_frame_int }
53 { slides }
54 \group_end:
55 }
56 \cs_new_protected:Npn __talk_slide_aux:n #1
57 {
58 \group_begin:
59 \cs_set:Npn \obeyedline { ^^J }
60 \use:e
61 {
62 \group_end:
63 \tl_retokenize:n {#1}
64 }

19

65 }

(End of definition for __talk_slide:nn and __talk_slide_aux:n.)
The very last frame will not be recorded by the above, so we have to add to the hook

at the very end of the run.
66 \AddToHook { enddocument / afterlastpage }
67 {
68 \property_record:ee { frame . \int_use:N \g__talk_frame_int }
69 { slides }
70 }

\g__talk_frame_struct_int The tagging structure number for the slide: needed by the content placed outside of the
current box (for example the frame title).

71 \int_new:N \g__talk_frame_struct_int

(End of definition for \g__talk_frame_struct_int.)

__talk_slide_begin:
__talk_slide_end: 72 \cs_new_protected:Npn __talk_slide_begin:

73 {
74 \int_gzero:N \g__talk_pauses_int
75 \tl_gclear:N \g__talk_frame_title_tl
76 \tl_gclear:N \g__talk_frame_subtitle_tl
77 \box_gclear:N \g__talk_footnote_box
78 __talk_cnt_save:
79 \vbox_set:Nw \l__talk_slide_box
80 \tl_gclear:N \g__talk_onslide_tl
81 }
82 \cs_new_protected:Npn __talk_slide_end:
83 {
84 \tl_use:N \g__talk_onslide_tl
85 \vbox_set_end:
86 \bool_if:NT \g__talk_slide_continue_bool
87 { __talk_cnt_restore: }
88 \vbox_to_ht:nn { \textheight }
89 {
90 \use:c { __talk_slide_align_ \l__talk_frame_alignment_tl :n }
91 { \vbox_unpack_drop:N \l__talk_slide_box }
92 \box_if_empty:NF \g__talk_footnote_box
93 {
94 \footnoterule
95 \vbox_unpack_drop:N \g__talk_footnote_box
96 }
97 }
98 \clearpage
99 }

(End of definition for __talk_slide_begin: and __talk_slide_end:.)

__talk_slide_align_bottom:n
__talk_slide_align_center:n

__talk_slide_align_stretch:n
__talk_slide_align_top:n

A pretty standard abstraction: we make sure there are always two skips.
100 \cs_new_protected:Npn __talk_slide_align_bottom:n #1
101 {
102 \skip_vertical:n { 0pt~plus~1fil }
103 #1

20

104 \skip_vertical:n { 0pt }
105 }
106 \cs_new_protected:Npn __talk_slide_align_center:n #1
107 {
108 \skip_vertical:n { 0pt~plus~0.5fil }
109 #1
110 \skip_vertical:n { 0pt~plus~0.5fil }
111 }
112 \cs_new_protected:Npn __talk_slide_align_stretch:n #1
113 {
114 \skip_vertical:n { 0pt }
115 #1
116 \skip_vertical:n { 0pt }
117 }
118 \cs_new_protected:Npn __talk_slide_align_top:n #1
119 {
120 \skip_vertical:n { 0pt }
121 #1
122 \skip_vertical:n { 0pt~plus~1fil }
123 }

(End of definition for __talk_slide_align_bottom:n and others.)

1.2 Counters
\l__talk_cnt_reset_seq As \stepcounter, etc., will increment at each overlay, there is a need to save and reset.

The list will be finalized at the end of the preamble, so the data storage is created at that
point. The starting point is counters created before the class is loaded (other than those
for lists, which reset “naturally”). Other cases are handled by adding to \newcounter.
124 \seq_new:N \l__talk_cnt_reset_seq
125 \seq_set_from_clist:Nn \l__talk_cnt_reset_seq
126 {
127 equation ,
128 footnote ,
129 mpfootnote ,
130 parentequation
131 }
132 \seq_map_inline:Nn \l__talk_cnt_reset_seq
133 {
134 \int_new:c { g__talk_saved_ #1 _int }
135 \int_gset_eq:cc { g__talk_saved_ #1 _int } { c@ #1 }
136 }

(End of definition for \l__talk_cnt_reset_seq.)

__talk_cnt_save:
__talk_cnt_restore:

A simple save-and-restore pair.
137 \cs_new_protected:Npn __talk_cnt_save:
138 {
139 \seq_map_inline:Nn \l__talk_cnt_reset_seq
140 { \int_gset_eq:cc { g__talk_saved_ ##1 _int } { c@ ##1 } }
141 }
142 \cs_new_protected:Npn __talk_cnt_restore:
143 {
144 \seq_map_inline:Nn \l__talk_cnt_reset_seq

21

145 { \int_gset_eq:cc { c@ ##1 } { g__talk_saved_ ##1 _int } }
146 }

(End of definition for __talk_cnt_save: and __talk_cnt_restore:.)

\@definecounter
\std@definecounter

Track all counters for resetting.
147 \cs_new_eq:NN \std@definecounter \@definecounter
148 \cs_gset_protected:Npn \@definecounter #1
149 {
150 \std@definecounter {#1}
151 \int_new:c { g__talk_saved_ #1 _int }
152 \seq_gput_right:Nn \l__talk_cnt_reset_seq {#1}
153 }

(End of definition for \@definecounter and \std@definecounter. These functions are documented on
page ??.)

1.3 Frame options
\l__talk_frame_alignment_tl

154 \tl_new:N \l__talk_frame_alignment_tl

(End of definition for \l__talk_frame_alignment_tl.)

\l__talk_action_spec_str
\l__talk_frame_tagging_str 155 \keys_define:nn { talk / frame }

156 {
157 action-spec .str_set:N
158 = \l__talk_action_spec_str ,
159 tag-slides .str_set:N
160 = \l__talk_frame_tagging_str ,
161 vertical-alignment .choices:nn =
162 { bottom , center , stretch , top }
163 {
164 \tl_set_eq:NN \l__talk_frame_alignment_tl
165 \l_keys_value_tl
166 }
167 }
168 \keys_set:nn { talk / frame }
169 {
170 action-spec = ,
171 tag-slides = n ,
172 vertical-alignment = center
173 }

(End of definition for \l__talk_action_spec_str and \l__talk_frame_tagging_str.)

1.4 Tagging for headers
__talk_header_tag_begin:n
__talk_header_tag_begin:e

__talk_header_tag_end:

Generalized control for inserting material into the header area (which is otherwise outside
of tagging).
174 \cs_new_protected:Npn __talk_header_tag_begin:n #1
175 {
176 \tag_resume:n { header }

22

177 \tag_mc_end:
178 \tag_struct_begin:n {#1}
179 \tag_mc_begin:n { }
180 }
181 \cs_generate_variant:Nn __talk_header_tag_begin:n { e }
182 \cs_new_protected:Npn __talk_header_tag_end:
183 {
184 \tag_mc_end:
185 \tag_struct_end:
186 \tag_mc_begin:n { artifact }
187 \tag_suspend:n { header }
188 }

(End of definition for __talk_header_tag_begin:n and __talk_header_tag_end:.)

1.5 Wallpaper
\l__talk_footelem_left_skip
\l__talk_footelem_right_skip
\l__talk_footelem_color_tl
\l__talk_footelem_font_tl

189 \NewTemplateType { footer-element } { 1 }
190 \DeclareTemplateInterface { footer-element } { talk } { 1 }
191 {
192 color : tokenlist ,
193 font : tokenlist = ,
194 left-hspace : length = 0em ,
195 right-hspace : length = 0em
196 }
197 \DeclareTemplateCode { footer-element } { talk } { 1 }
198 {
199 color = \l__talk_footelem_color_tl ,
200 font = \l__talk_footelem_font_tl ,
201 left-hspace = \l__talk_footelem_left_skip ,
202 right-hspace = \l__talk_footelem_right_skip
203 }
204 {
205 \tl_if_empty:nF {#1}
206 {
207 \hspace { \l__talk_footelem_left_skip }
208 \group_begin:
209 \tl_if_empty:NF \l__talk_footelem_color_tl
210 { \color_select:V \l__talk_footelem_color_tl }
211 \l__talk_footelem_font_tl
212 #1
213 \group_end:
214 \hspace { \l__talk_footelem_right_skip }
215 }
216 }
217 \DeclareInstance { footer-element } { date } { talk } { }
218 \DeclareInstance { footer-element } { author } { talk } { }
219 \DeclareInstance { footer-element } { title } { talk } { }
220 \DeclareInstance { footer-element } { subtitle } { talk } { }
221 \DeclareInstance { footer-element } { institute } { talk } { }
222 \DeclareInstance { footer-element } { framenumber } { talk } { }
223 \DeclareInstance { footer-element } { totalframes } { talk } { }

(End of definition for \l__talk_footelem_left_skip and others.)

23

\l__talk_header_bg_tl
\l__talk_header_fg_tl

\l__talk_header_font_tl
\l__talk_header_ht_dim

\l__talk_header_left_skip
\l__talk_header_frametitle_bool

\l__talk_header_right_skip

Templates for the header area. The background always covers the full width, but the text
area may be narrower. The setup here aims to avoid repeated kerns but also dealing with
complex conditionals, hence we always move to the edge of the paper first then adjust as
required.
224 \NewTemplateType { header } { 0 }
225 \DeclareTemplateInterface { header } { talk } { 0 }
226 {
227 background-color : tokenlist,
228 color : tokenlist = structure ,
229 font : tokenlist = \normalfont ,
230 height : length = \Gm@tmargin + \headsep ,
231 left-hspace : skip = \Gm@lmargin ,
232 print-frame-title : boolean = true ,
233 right-hspace : skip = \Gm@rmargin
234 }
235 \DeclareTemplateCode { header } { talk } { 0 }
236 {
237 background-color = \l__talk_header_bg_tl ,
238 color = \l__talk_header_fg_tl ,
239 font = \l__talk_header_font_tl ,
240 height = \l__talk_header_ht_dim ,
241 left-hspace = \l__talk_header_left_skip ,
242 print-frame-title = \l__talk_header_frametitle_bool ,
243 right-hspace = \l__talk_header_right_skip
244 }
245 {
246 \noindent
247 __talk_wallpaper_hrule:Nnn
248 \l__talk_header_bg_tl
249 { \l__talk_header_ht_dim - \headsep }
250 { \headsep }
251 \skip_horizontal:n { \l__talk_header_left_skip }
252 \group_begin:
253 \tl_if_empty:NF \l__talk_header_fg_tl
254 { \color_select:V \l__talk_header_fg_tl }
255 \l__talk_header_font_tl
256 \bool_if:NT \l__talk_header_frametitle_bool
257 {
258 \ExpandArgs { nnV }
259 \UseInstance { frametitle } { header }
260 \g__talk_frame_title_tl
261 }
262 \group_end:
263 }
264 \DeclareInstance { header } { std } { talk } { }
265 \AddToHook { begindocument }
266 {
267 \DeclareInstanceCopy { header } { wallpaper } { std }
268 \EditInstance { header } { wallpaper }
269 { print-frame-title = false }
270 }

(End of definition for \l__talk_header_bg_tl and others.)

24

\l__talk_footer_bg_tl
\l__talk_footer_fg_tl

\l__talk_footer_font_tl
\l__talk_footer_order_clist

\l__talk_footer_sep_tl
\l__talk_footer_left_skip

\l__talk_footer_right_skip

Templates for the footer area. Again the margins are handled in stages: here we do have
a box for the content so the right skip is used, and we avoid an overfull box by including
consideration of the right margin of the page layout.
271 \NewTemplateType { footer } { 0 }
272 \DeclareTemplateInterface { footer } { talk } { 0 }
273 {
274 background-color : tokenlist ,
275 color : tokenlist ,
276 element-order : commalist ,
277 font : tokenlist = \tiny ,
278 left-hspace : length = \Gm@lmargin ,
279 right-hspace : length = \Gm@rmargin ,
280 separator : tokenlist = \hfil
281 }
282 \DeclareTemplateCode { footer } { talk } { 0 }
283 {
284 background-color = \l__talk_footer_bg_tl ,
285 color = \l__talk_footer_fg_tl ,
286 element-order = \l__talk_footer_order_clist ,
287 font = \l__talk_footer_font_tl ,
288 left-hspace = \l__talk_footer_left_skip ,
289 right-hspace = \l__talk_footer_right_skip ,
290 separator = \l__talk_footer_sep_tl
291 }
292 {
293 \noindent
294 __talk_wallpaper_hrule:Nnn
295 \l__talk_footer_bg_tl
296 { \footskip }
297 { \Gm@bmargin - \footskip }
298 \skip_horizontal:n { \l__talk_footer_left_skip }
299 \vbox_set_to_wd:Nnn \l__talk_tmp_box
300 {
301 \paperwidth
302 - \l__talk_footer_left_skip
303 - \l__talk_footer_right_skip
304 }
305 {
306 \tl_if_empty:NF \l__talk_footer_fg_tl
307 { \color_select:V \l__talk_footer_fg_tl }
308 \l__talk_footer_font_tl
309 \clist_pop:NNT \l__talk_footer_order_clist \l__talk_tmp_tl
310 {
311 \ExpandArgs { nVv } \UseInstance { footer-element } \l__talk_tmp_tl
312 { @ __talk_metadata_name:n { \l__talk_tmp_tl } }
313 \clist_map_inline:Nn \l__talk_footer_order_clist
314 {
315 \tl_if_empty:cF { @ __talk_metadata_name:n { ##1 } }
316 {
317 \l__talk_footer_sep_tl
318 \ExpandArgs { nnv }
319 \UseInstance { footer-element } {##1}
320 { @ __talk_metadata_name:n { ##1 } }
321 }

25

322 }
323 }
324 \hfil
325 }
326 \box_use_drop:N \l__talk_tmp_box
327 \skip_horizontal:n { \l__talk_footer_right_skip - \Gm@rmargin }
328 }
329 \DeclareInstance { footer } { std } { talk } { }
330 \AddToHook { begindocument }
331 {
332 \DeclareInstanceCopy { footer } { wallpaper } { std }
333 \EditInstance { footer } { wallpaper }
334 { element-order = }
335 }

(End of definition for \l__talk_footer_bg_tl and others.)

__talk_metadata_name:n A simple auxiliary to shorten metadata names if appropriate. Full expansion is applied
as this avoids any issue with stored names.
336 \cs_new:Npn __talk_metadata_name:n #1
337 {
338 \tl_if_exist:cTF { @ short #1 }
339 { short #1 }
340 {#1}
341 }

(End of definition for __talk_metadata_name:n.)

__talk_wallpaper_hrule:Nnn A simple abstraction for the top and bottom rules on the page.
342 \cs_new_protected:Npn __talk_wallpaper_hrule:Nnn #1#2#3
343 {
344 \skip_horizontal:n { -\Gm@lmargin }
345 \tl_if_empty:NF #1
346 {
347 \group_begin:
348 \color_select:V #1
349 \rule:nnn { \paperwidth } {#2} {#3}
350 \skip_horizontal:n { -\paperwidth }
351 \group_end:
352 }
353 }

(End of definition for __talk_wallpaper_hrule:Nnn.)

\ps@plain
\ps@wallpaper

\ps@talk

Install a standard header and footer template, and redefine the plain one as this will be
used for frames without “wallpaper” which still need core links, etc. We also provide a
version that only shows the visual elements: this is deliberately using the same settings
as the main templates.
354 \cs_set_nopar:Npn \ps@plain
355 {
356 \cs_set_nopar:Npn \@oddhead
357 {
358 \hfil
359 }

26

360 \cs_set_nopar:Npn \@oddfoot { }
361 \cs_set_eq:NN \@evenhead \@oddhead
362 \cs_set_eq:NN \@evenfoot \@oddfoot
363 }
364 \cs_set_nopar:Npn \ps@wallpaper
365 {
366 \cs_set_nopar:Npn \@oddhead
367 {
368 \UseInstance { header } { wallpaper }
369 \hfil
370 }
371 \cs_set_nopar:Npn \@oddfoot
372 {
373 \UseInstance { footer } { wallpaper }
374 \hfil
375 }
376 \cs_set_eq:NN \@evenhead \@oddhead
377 \cs_set_eq:NN \@evenfoot \@oddfoot
378 }
379 \cs_new_nopar:Npn \ps@talk
380 {
381 \cs_set_nopar:Npn \@oddhead
382 {
383 \UseInstance { header } { std }
384 \hfil
385 }
386 \cs_set_nopar:Npn \@oddfoot { \UseInstance { footer } { std } }
387 \cs_set_eq:NN \@evenhead \@oddhead
388 \cs_set_eq:NN \@evenfoot \@oddfoot
389 }
390 \pagestyle { talk }

(End of definition for \ps@plain , \ps@wallpaper , and \ps@talk. These functions are documented on
page ??.)

1.6 The frame environment
\l__talk_frame_bool To track whether we are inside a frame or not.

391 \bool_new:N \l__talk_frame_bool

(End of definition for \l__talk_frame_bool.)

\g__talk_frame_tag_bool To track when a frame is being tagged: mainly needed for the header (and as a result
global).
392 \bool_new:N \g__talk_frame_tag_bool

(End of definition for \g__talk_frame_tag_bool.)

\l__talk_frame_verb_bool Indicates that material was collected verbatim (and thus needs rescanning).
393 \bool_new:N \l__talk_frame_verb_bool

(End of definition for \l__talk_frame_verb_bool.)

27

\g__talk_frame_int
\c@frame

\theframe
\@framenumber

The overall frame number, including LATEX counter-like access.
394 \int_new:N \g__talk_frame_int
395 \cs_new_eq:NN \c@frame \g__talk_frame_int
396 \cs_new:Npn \theframe { \@arabic \c@frame }
397 \cs_new:Npn \@framenumber { \arabic { frame } }

(End of definition for \g__talk_frame_int and others. These variables are documented on page ??.)

\@totalframes The total frames can be handled using the kernel properties.
398 \property_new:nnnn { totalframes } { shipout } { -1 }
399 { \int_use:N \g__talk_frame_int }
400 \AddToHook { enddocument / afterlastpage }
401 { \property_record:nn { lastpage } { totalframes } }
402 \cs_new:Npn \@totalframes { \property_ref:nn { lastpage } { totalframes } }

(End of definition for \@totalframes. This variable is documented on page ??.)

__talk_latexe_frame:n As we will need to re-define \frame but have it available inside frames, a copy is made
here.
403 \NewCommandCopy __talk_latexe_frame:n \frame

(End of definition for __talk_latexe_frame:n.)

__talk_frame_process:nn Here, the frame content is received as the argument.
404 \cs_new_protected:Npn __talk_frame_process:nn #1#2
405 {
406 \int_gincr:N \g__talk_frame_int
407 \bool_set_true:N \l__talk_frame_bool
408 __talk_slide:nn {#1} {#2}
409 }

(End of definition for __talk_frame_process:nn.)

__talk_frame_tag:n Wraps some content in tagging for a frame: we may have multiple of these in one logical
frame, but that is non-standard.
410 \cs_new_protected:Npn __talk_frame_tag:n #1
411 {
412 \tag_struct_begin:n { tag = frame }
413 \int_gset:Nn \g__talk_frame_struct_int { \tag_get:n { struct_num } }
414 \bool_gset_true:N \g__talk_frame_tag_bool
415 #1
416 \tag_struct_end:
417 }

(End of definition for __talk_frame_tag:n.)

__talk_frame_notag:n The alternative: turn off tagging and suppress the function that would tag the frame
title.
418 \cs_new_protected:Npn __talk_frame_notag:n #1
419 {
420 \tag_mc_begin:n { artifact }
421 \tag_suspend:n { frame }
422 \bool_gset_false:N \g__talk_frame_tag_bool
423 #1
424 \par

28

425 \tag_resume:n { frame }
426 \tag_mc_end:
427 }

(End of definition for __talk_frame_notag:n.)

frame
frame*

The definition for the frame and frame* environments: the exact interface at both the
document and code levels is still open.
428 \bool_if:NTF \l__talk_frame_title_bool
429 {
430 \RenewDocumentEnvironment { frame }
431 { D <> { all } = { action-spec } O { } +m +b }
432 {
433 \keys_set:nn { talk / frame } {#2}
434 \bool_set_false:N \l__talk_frame_verb_bool
435 __talk_frame_process:nn {#1} { \frametitle {#3} #4 }
436 }
437 { }
438 \NewDocumentEnvironment { frame* }
439 { D <> { all } = { action-spec } O { } +m c }
440 {
441 \keys_set:nn { talk / frame } {#2}
442 \bool_set_true:N \l__talk_frame_verb_bool
443 \tl_gset:Nn \g__talk_frame_title_tl {#3}
444 \exp_args:Nne __talk_frame_process:nn {#1}
445 { \tl_to_str:n { \frametitle } \exp_not:n { {#3} #4 } }
446 }
447 { }
448 }
449 {
450 \RenewDocumentEnvironment { frame }
451 { !D <> { all } = { action-spec } !O { } +b }
452 {
453 \keys_set:nn { talk / frame } {#2}
454 \bool_set_false:N \l__talk_frame_verb_bool
455 __talk_frame_process:nn {#1} {#3}
456 }
457 { }
458 \NewDocumentEnvironment { frame* }
459 { !D <> { all } = { action-spec } !O { } c }
460 {
461 \keys_set:nn { talk / frame } {#2}
462 \bool_set_true:N \l__talk_frame_verb_bool
463 __talk_frame_process:nn {#1} {#3}
464 }
465 { }
466 }

(End of definition for frame and frame*. These functions are documented on page ??.)

467 〈/class〉

29

Part V

ltx-talk-frame – The structure of
frames
1 ltx-talk-frame-structure implementation
Start the DocStrip guards.

1 〈∗class〉
Identify the internal prefix.

2 〈@@=talk〉

1.1 Columns
3 \keys_define:nn { talk }
4 { columns .inherit:n = talk / column }

\l__talk_columns_wd_tl We store the requested width for columns in a tl as this means that the key value will
make sense even if it depends on the current \textwidth.

5 \keys_define:nn { talk / columns }
6 { width .tl_set:N = \l__talk_columns_wd_tl }
7 \keys_set:nn { talk / columns }
8 { width = \textwidth }

(End of definition for \l__talk_columns_wd_tl.)

\l__talk_column_int
\g__talk_column_int

For tracking which column we are in, and allowing for nesting.
9 \int_new:N \l__talk_column_int

10 \int_new:N \g__talk_column_int

(End of definition for \l__talk_column_int and \g__talk_column_int.)

columns (env.) Columns are block-like environments so we start and end with a \par to ensure correct
tagging.

11 \NewDocumentEnvironment { columns } { D <> { all } O { } }
12 {
13 __talk_action_begin:n {#1}
14 \par
15 \int_set_eq:NN \l__talk_column_int \g__talk_column_int
16 \int_gzero:N \g__talk_column_int
17 \keys_set:nn { talk / columns } {#2}
18 \hbox_set_to_wd:Nnw \l__talk_tmp_box { \l__talk_columns_wd_tl }
19 \dim_set:Nn \textwidth { \l__talk_columns_wd_tl }
20 \dim_set_eq:NN \columnwidth \textwidth
21 \ignorespaces
22 }
23 {
24 \unskip
25 \hbox_set_end:
26 \box_use_drop:N \l__talk_tmp_box
27 \int_gset_eq:NN \g__talk_column_int \l__talk_column_int

30

28 \par
29 __talk_action_end:
30 }

\l__talk_column_alignment_tl

31 \keys_define:nn { talk / column }
32 {
33 b .meta:n =
34 { vertical-alignment = bottom } ,
35 b .value_forbidden:n = true ,
36 c .meta:n =
37 { vertical-alignment = center } ,
38 c .value_forbidden:n = true ,
39 t .meta:n =
40 { vertical-alignment = top } ,
41 t .value_forbidden:n = true ,
42 vertical-alignment .choices:nn =
43 { bottom , center , top }
44 {
45 \tl_set_eq:NN \l__talk_column_alignment_tl
46 \l_keys_value_tl
47 }
48 }
49 \keys_set:nn { talk / column }
50 {
51 vertical-alignment = center
52 }

(End of definition for \l__talk_column_alignment_tl.)

__talk_column_align_bottom:n
__talk_column_align_center:n

__talk_column_align_top:n

Based on ideas in the highly experimental xbox.
53 \cs_new_protected:Npn __talk_column_align_bottom:n #1
54 { \vbox:n {#1} }
55 \cs_new_protected:Npn __talk_column_align_center:n #1
56 {
57 \vbox:n
58 {
59 \hbox:n
60 {
61 \box_move_down:nn
62 {
63 0.5 \box_ht:N \l__talk_tmp_box
64 - \tex_fontdimen:D 22 ~ \tex_textfont:D 2 ~
65 }
66 { \vbox:n {#1} }
67 }
68 }
69 }
70 \cs_new_protected:Npn __talk_column_align_top:n #1
71 { \vbox_top:n {#1} }

(End of definition for __talk_column_align_bottom:n , __talk_column_align_center:n , and __-
talk_column_align_top:n.)

31

column (env.) A cut-down version of a minipage: we want to be clear on the semantic meaning. the
action is applied inside the box after starting horizontal mode to avoid spacing issues
when switching whatsits in and out.

72 \NewDocumentEnvironment { column } { D <> { all } O { } m }
73 {
74 \par
75 \int_gincr:N \g__talk_column_int
76 \int_compare:nNnF \g__talk_column_int = 1
77 { \hfil }
78 \keys_set:nn { talk / column } {#2}
79 \vbox_set_to_wd:Nnw \l__talk_tmp_box {#3}
80 \dim_set:Nn \textwidth {#3}
81 \dim_set_eq:NN \columnwidth \textwidth
82 \@parboxrestore
83 \leavevmode
84 \raggedright
85 __talk_action_begin:n {#1}
86 \ignorespaces
87 }

The \@ignore here means that any spaces after \end{column} are suppressed by a
\ignorespaces inserted by the kernel. The \par before __talk_action_end: is needed
as the group formed for actions would otherwise trap for example alignment changes.

88 {
89 \par
90 __talk_action_end:
91 \vbox_set_end:
92 \use:c { __talk_column_align_ \l__talk_column_alignment_tl :n }
93 { \vbox_unpack_drop:N \l__talk_tmp_box }
94 \par
95 \@ignoretrue
96 }

1.2 Floats
Well really “not floats at all” but the idea is clear.

\l__talk_float_alignment_tl We only worry about horizontal alignment here.
97 \tl_new:N \l__talk_float_alignment_tl

(End of definition for \l__talk_float_alignment_tl.)
A bit similar to the current approach to lists: we need a template at the start but

a common function at the end. The float-placement key is at present just there to
allow mopping up of any argument that is given by accident, hence maps to a temporary
variable.

98 \NewTemplateType { floatenv } { 2 }
99 \DeclareTemplateInterface { floatenv } { talk } { 2 }

100 {
101 float-placement : tokenlist ,
102 horizontal-alignment : choice { left , center , right } = left
103 }
104 \DeclareTemplateCode { floatenv } { talk } { 2 }
105 {

32

106 float-placement = \l__talk_tmp_tl ,
107 horizontal-alignment =
108 {
109 left = \tl_set:Nn \l__talk_float_alignment_tl { flushleft } ,
110 center = \tl_set:Nn \l__talk_float_alignment_tl { center } ,
111 right = \tl_set:Nn \l__talk_float_alignment_tl { flushright }
112 }
113 }
114 {
115 \SetTemplateKeys { floatenv } { talk } {#1}
116 \begin { minipage } { \columnwidth }
117 \begin { \l__talk_float_alignment_tl }
118 \cs_set_nopar:Npn \@captype {#2}
119 }
120 \DeclareInstance { floatenv } { std } { talk } { horizontal-alignment = left }

\endfloatenv And the common end function.
121 \cs_new_protected:Npn \endfloatenv
122 {
123 \end { \l__talk_float_alignment_tl }
124 \end { minipage }
125 }

(End of definition for \endfloatenv. This function is documented on page ??.)

figure (env.)
table (env.)

Unlike beamer, we allow for overlays for the environments as a whole.
126 \clist_map_inline:nn { figure , table }
127 {
128 \NewDocumentEnvironment {#1} { D <> { all } = { float-placement } O { } }
129 {
130 __talk_action_begin:n {##1}
131 \UseInstance { floatenv } { std } {##2} {#1}
132 }
133 {
134 \endfloatenv
135 __talk_action_end:
136 }

\c@figure
\thefigure

\c@table
\thetable

\figurename
\tableename

\fnum@figure
\fnum@table

The standard variables needed to make captions work (nothing for list of floats, as at
present those are not offered).
137 \newcounter {#1}
138 \tl_new:c { #1 name }
139 \tl_set:ce { #1 name } { \text_titlecase_first:n {#1} }
140 \tl_new:c { fnum@ #1 }
141 \tl_set:ce { fnum@ #1 }
142 { \exp_not:c { #1 name } \exp_not:N \nobreakspace \exp_not:c { the #1 } }
143 }

(End of definition for \c@figure and others. These variables are documented on page ??.)
The spacing values needed for the standard function.

144 \newlength \abovecaptionskip
145 \newlength \belowcaptionskip
146 \setlength \abovecaptionskip { 7pt }
147 \setlength \belowcaptionskip { 7pt }

33

\@caption This is a copy of the kernel version of the function, but with writing to the list of whatever
file removed. It is very likely this needs to be reworked as a template, but that will likely
come from the kernel.
148 \cs_set_protected:Npn \@caption #1 [#2] #3
149 {
150 \par
151 \begingroup
152 \@parboxrestore
153 \if@minipage \@setminipage \fi
154 \normalsize
155 \@makecaption { \csname fnum@ #1 \endcsname } { \ignorespaces #3 }
156 \par
157 \endgroup
158 }

(End of definition for \@caption. This function is documented on page ??.)

1.3 Footnotes
\g__talk_footnote_box Holds footnotes as they are constructed.

159 \box_new:N \g__talk_footnote_box

(End of definition for \g__talk_footnote_box.)

\g__talk_footnote_overlay_seq For tracking the overlays to apply.
160 \seq_new:N \g__talk_footnote_overlay_seq

(End of definition for \g__talk_footnote_overlay_seq.)

\stdfootnote

161 \NewCommandCopy \stdfootnote \footnote

(End of definition for \stdfootnote. This function is documented on page ??.)

\footnote Sort-of overlay aware!
162 \RenewDocumentCommand \footnote { D <> { all } o +m }
163 {
164 \seq_gpush:Nn \g__talk_footnote_overlay_seq {#1}
165 \IfNoValueTF {#2}
166 { \stdfootnote {#3} }
167 { \stdfootnote [{#2}] {#3} }
168 }

(End of definition for \footnote. This function is documented on page ??.)
This socket receives all of the footnote content: in the standard setup it would be an

insert. Hence this is the best place to grab the entire content. Notice that the footnote
rule is only inserted when the box is used, if it turns out it’s needed. The overlay code is
added here as it needs to be inside the box used to collect the footnotes but around all
of the content: currently there’s not a “tighter” place to target.
169 \NewSocketPlug { fntext / process } { talk }
170 {
171 \vbox_gset:Nn \g__talk_footnote_box
172 {
173 \vbox_unpack:N \g__talk_footnote_box

34

174 \seq_gpop_left:NN \g__talk_footnote_overlay_seq
175 \l__talk_tmp_tl
176 \exp_args:NV __talk_decode_parse:n \l__talk_tmp_tl
177 __talk_action_uncover:N \l__talk_decode_overlays_bool
178 #1
179 __talk_action_uncover_end:N \l__talk_decode_overlays_bool
180 }
181 }
182 \AssignSocketPlug { fntext / process } { talk }

\@makefntext Use a copy of the standard setup.
183 \cs_new_eq:NN \@makefntext \fnote_makefntext:n

(End of definition for \@makefntext. This function is documented on page ??.)

184 〈/class〉

35

Part VI

ltx-talk-mode – Modes
1 ltx-talk-mode implementation
Start the DocStrip guards.

1 〈∗class〉
Identify the internal prefix.

2 〈@@=talk〉

__talk_mode:nT A simplified version of \mode: only deal with the argument form, only check the entire
overlay spec as a string.

3 \prg_new_protected_conditional:Npnn __talk_mode:n #1 { T }
4 {
5 \bool_lazy_or:nnTF
6 { \str_if_eq_p:nn {#1} { all } }
7 { \str_if_eq_p:Vn \l__talk_mode_str {#1} }
8 \prg_return_true:
9 \prg_return_false:

10 }

(End of definition for __talk_mode:nT.)

\mode

11 \NewDocumentCommand \mode { D <> { all } +m }
12 { __talk_mode:nT {#1} {#2} }

(End of definition for \mode. This function is documented on page ??.)

13 〈/class〉

36

Part VII

ltx-talk-overlay – Overlays
1 ltx-talk-overlay implementation
Start the DocStrip guards.

1 〈∗class〉
Identify the internal prefix.

2 〈@@=talk〉

1.1 Utilities
__talk_if_overlay:nTF
__talk_if_overlay:VTF
__talk_overlay_arg:n

3 \prg_new_protected_conditional:Npnn __talk_if_overlay:n #1 { T , F , TF }
4 {
5 __talk_decode_parse:n {#1}
6 \bool_if:NTF \l__talk_decode_overlays_bool
7 \prg_return_true:
8 \prg_return_false:
9 }

10 \prg_generate_conditional_variant:Nnn __talk_if_overlay:n { V } { T , F , TF }

A macro processor variant of the check that always results in an N-type bool.
11 \cs_new_protected:Npn __talk_overlay_arg:n #1
12 {
13 __talk_if_overlay:nTF {#1}
14 { \cs_set:Npn \ProcessedArgument { \c_true_bool } }
15 { \cs_set:Npn \ProcessedArgument { \c_false_bool } }
16 }

(End of definition for __talk_if_overlay:nTF and __talk_overlay_arg:n.)

\l__talk_shuffle_skip For tracking.
17 \skip_new:N \l__talk_shuffle_skip

(End of definition for \l__talk_shuffle_skip.)

__talk_shuffle_skip:n As opacity uses whatsits at present, we need to make sure that any spaces come after
them. This is done by “shuffling” the last skip past the opacity.

18 \cs_new_protected:Npn __talk_shuffle_skip:n #1
19 {
20 \skip_set_eq:NN \l__talk_shuffle_skip \tex_lastskip:D
21 \bool_lazy_and:nnTF
22 { ! \skip_if_eq_p:nn \l__talk_shuffle_skip { 0pt } }
23 {
24 \bool_lazy_or_p:nn
25 { \mode_if_horizontal_p: }
26 { \mode_if_vertical_p: }
27 }
28 {
29 \tex_unskip:D

37

30 #1
31 \mode_if_horizontal:TF
32 { \skip_horizontal:n }
33 { \skip_vertical:n }
34 \l__talk_shuffle_skip
35 }
36 {#1}
37 }

(End of definition for __talk_shuffle_skip:n.)

1.2 Opacity utilities
Currently, opacity is applies using whatsits at a low level. That means that to preserve
spacing, we need to insert no-op versions in various places. To do that and get correct
overlays, we need to track the current opacity. At present, this seems very ltx-talk-specific,
so is handled here with a few auxiliaries.

__talk_opacity_begin:n
__talk_opacity_end:

Simply tracking wrappers.
38 \cs_new_protected:Npn __talk_opacity_begin:n #1
39 { __talk_shuffle_skip:n { \opacity_begin:n {#1} } }
40 \cs_new_protected:Npn __talk_opacity_end:
41 { __talk_shuffle_skip:n { \opacity_end: } }

(End of definition for __talk_opacity_begin:n and __talk_opacity_end:.)

1.3 Action commands and environments
Commands that can be used as actions all have a common form (with one exception).
The common internal structure is used to enable them to be used as actions by looking
for the name __talk_action_〈name〉:N.

__talk_action_alert:N At present a color selection.
42 \cs_new_protected:Npn __talk_action_alert:N #1
43 {
44 \bool_if:NTF #1
45 { \color_select:n { alert } }
46 { \color_select:n { . } }
47 }

(End of definition for __talk_action_alert:N.)

__talk_action_invisible:N
__talk_action_invisible_end:N

__talk_action_visible:N
__talk_action_visible_end:N

Simply (un)hide unconditionally, overwriting any previous opacity.
48 \cs_new_protected:Npn __talk_action_invisible:N #1
49 {
50 \bool_if:NTF #1
51 { __talk_opacity_begin:n { 0 } }
52 { __talk_opacity_begin:n { 1 } }
53 }
54 \cs_new_protected:Npn __talk_action_invisible_end:N #1
55 { __talk_opacity_end: }
56 \cs_new_protected:Npn __talk_action_visible:N #1
57 {
58 \bool_if:NTF #1

38

59 { __talk_opacity_begin:n { 1 } }
60 { __talk_opacity_begin:n { 0 } }
61 }
62 \cs_new_protected:Npn __talk_action_visible_end:N #1
63 { __talk_opacity_end: }

(End of definition for __talk_action_invisible:N and others.)

__talk_action_only:N
__talk_action_only_end:N

Here, we simply throw away the content we do not want: this is done by typesetting in
a disposable box.

64 \cs_new_protected:Npn __talk_action_only:N #1
65 {
66 \bool_if:NF #1
67 { \vbox_set:Nw \l__talk_tmp_box }
68 }
69 \cs_new_protected:Npn __talk_action_only_end:N #1
70 {
71 \bool_if:NF #1
72 { \vbox_set_end: }
73 }

(End of definition for __talk_action_only:N and __talk_action_only_end:N.)

\l__talk_uncover_hidden_fp Currently just an on-off, but that will change.
74 \NewTemplateType { hidden } { 0 }
75 \DeclareTemplateInterface { hidden } { talk } { 0 }
76 { opacity : real = 0 }
77 \DeclareTemplateCode { hidden } { talk } { 0 }
78 { opacity = \l__talk_uncover_hidden_fp }
79 { __talk_opacity_begin:n { \l__talk_uncover_hidden_fp } }
80 \DeclareInstance { hidden } { std } { talk } { }

(End of definition for \l__talk_uncover_hidden_fp.)

__talk_action_uncover:N
__talk_action_uncover_end:N

Use the template: we may need to extend that to deal with the end-of-template case
later.

81 \cs_new_protected:Npn __talk_action_uncover:N #1
82 {
83 \bool_if:NTF #1
84 { __talk_opacity_begin:n { 1 } }
85 { \UseInstance { hidden } { std } }
86 }
87 \cs_new_protected:Npn __talk_action_uncover_end:N #1
88 { __talk_opacity_end: }

(End of definition for __talk_action_uncover:N and __talk_action_uncover_end:N.)

\invisible
\uncover
\visible

All generated automatically using the above implementations.
89 \clist_map_inline:nn { invisible , uncover , visible }
90 {
91 \ExpandArgs { cne } \NewDocumentCommand {#1}
92 { > { __talk_overlay_arg:n } D <> { all } +m }
93 {
94 \exp_not:c { __talk_action_ #1 :N } ##1
95 ##2

39

96 \exp_not:c { __talk_action_ #1 _end:N } ##1
97 }

(End of definition for \invisible , \uncover , and \visible. These functions are documented on page
??.)

invisibleenv (env.)
uncoverenv (env.)
visibleenv (env.)

And the environment versions.
98 \ExpandArgs { nnee } \NewDocumentEnvironment { #1 env }
99 { > { __talk_overlay_arg:n } D <> { all } }

100 { \exp_not:c { __talk_action_ #1 :N } ##1 }
101 { \exp_not:c { __talk_action_ #1 _end:N } ##1 }
102 }

\alert The \alert command requires a group to contain color, so is done separately even though
it still uses basically the same mechanism.
103 \NewDocumentCommand \alert { > { __talk_overlay_arg:n } D <> { all } +m }
104 {
105 \group_begin:
106 __talk_action_alert:N #1
107 #2
108 \group_end:
109 }

(End of definition for \alert. This function is documented on page ??.)

alertenv (env.) As does the environment.
110 \NewDocumentEnvironment { alertenv } { > { __talk_overlay_arg:n } D <> { all } }
111 { __talk_action_alert:N #1 }
112 { }

\only This code needs to be done manually as for the command version the content must be
entirely discarded. That can’t work for the environment version, which has to deal with
for example single items in a list (and so cannot be collected up verbatim and must use
a box).
113 \NewDocumentCommand \only { D <> { all } +m }
114 {
115 __talk_if_overlay:nT {#1}
116 {#2}
117 }

(End of definition for \only. This function is documented on page ??.)

onlyenv (env.) The environment version could be done above, but it is clearer to keep this code entirely
separate from the rest.
118 \NewDocumentEnvironment { onlyenv } { > { __talk_overlay_arg:n } D <> { all } }
119 { __talk_action_only:N #1 }
120 { __talk_action_only_end:N #1 }

\l__talk_saved_overlays_bool
\l__talk_saved_action_str

\l__talk_saved_actions_bool
121 \bool_new:N \l__talk_saved_overlays_bool
122 \str_new:N \l__talk_saved_action_str
123 \bool_new:N \l__talk_saved_actions_bool

(End of definition for \l__talk_saved_overlays_bool , \l__talk_saved_action_str , and \l__talk_-
saved_actions_bool.)

40

\l__talk_overlay_all_bool

124 \bool_new:N \l__talk_overlay_all_bool

(End of definition for \l__talk_overlay_all_bool.)

\actionactionenv (env.)
__talk_action_begin:n

__talk_action_begin_aux:n
__talk_action_end:

As we need data on not just overlays but also actions at the end of the environment, this
has to be done manually. To allow working with environments but also items, the code
needs to save data for the end function. The group is needed for cases where we are not
in a LATEX environment group. When an \onslide/\pause is active, it takes priority:
sorted by applying up-front. Actions can be skipped entirely if the overlay spec is simply
all, as there will never be any spacing issues, etc.
125 \NewDocumentCommand \action { D <> { all } +m }
126 {
127 \group_begin:
128 __talk_action_begin:n {#1}
129 #2
130 __talk_action_end:
131 \group_end:
132 }
133 \NewDocumentEnvironment { actionenv } { D <> { all } }
134 { __talk_action_begin:n {#1} }
135 { __talk_action_end: }
136 \cs_new_protected:Npn __talk_action_begin:n #1
137 {
138 \group_begin:
139 \str_if_eq:nnTF {#1} { all }
140 { \bool_set_true:N \l__talk_overlay_all_bool }
141 {
142 \bool_set_false:N \l__talk_overlay_all_bool
143 __talk_action_begin_aux:n {#1}
144 }
145 }
146 \cs_new_protected:Npn __talk_action_begin_aux:n #1
147 {
148 __talk_decode_parse:n {#1}
149 \bool_set_eq:NN \l__talk_saved_overlays_bool
150 \l__talk_decode_overlays_bool
151 \str_set_eq:NN \l__talk_saved_action_str
152 \l__talk_decode_action_str
153 \bool_set_eq:NN \l__talk_saved_actions_bool
154 \l__talk_decode_actions_bool
155 \tl_if_empty:NTF \g__talk_onslide_tl
156 {
157 \bool_if:NTF \l__talk_decode_overlays_bool
158 {
159 \cs_if_exist_use:cF
160 { __talk_action_ \l__talk_decode_action_str :N }
161 { \use_none:n }
162 \l__talk_decode_actions_bool
163 }
164 { \UseInstance { hidden } { std } }
165 }
166 { __talk_action_invisible:N \c_true_bool }
167 }

41

168 \cs_new_protected:Npn __talk_action_end:
169 {
170 \bool_if:NF \l__talk_overlay_all_bool
171 {
172 \bool_if:NTF \l__talk_saved_overlays_bool
173 {
174 \cs_if_exist_use:cF
175 { __talk_action_ \l__talk_saved_action_str _end:N }
176 { \use_none:n }
177 \l__talk_saved_actions_bool
178 }
179 { __talk_opacity_end: }
180 }
181 \group_end:
182 }

(End of definition for \action and others. This function is documented on page ??.)

1.4 Non-action commands and environments
This section contains commands and environments that do not need to be made available
as actions.

\alt Simple wrappers around the internal switch.
183 \NewDocumentCommand \alt { D <> { all } +m +m }
184 {
185 __talk_if_overlay:nTF {#1}
186 {#2}
187 {#3}
188 }

(End of definition for \alt. This function is documented on page ??.)

\onslide
__talk_onslide:n

Simply make transparent: this is done without grouping so we can work for example in
tabular cells.
189 \NewDocumentCommand \onslide { D <> { all } }
190 {
191 __talk_onslide:n {#1}
192 \ignorespaces
193 }
194 \cs_new_protected:Npn __talk_onslide:n #1
195 {
196 \tl_use:N \g__talk_onslide_tl
197 \tl_gclear:N \g__talk_onslide_tl
198 __talk_if_overlay:nF {#1}
199 {
200 __talk_opacity_begin:n { 0 }
201 \tl_gput_right:Nn \g__talk_onslide_tl
202 { __talk_opacity_end: }
203 }
204 }

(End of definition for \onslide and __talk_onslide:n. This function is documented on page ??.)

42

\g__talk_onslide_tl

205 \tl_new:N \g__talk_onslide_tl

(End of definition for \g__talk_onslide_tl.)

\temporal A tricky one: to separate the not-on-current-slide cases, the flag to continue is used.
206 \NewDocumentCommand \temporal { D <> { all } +m +m +m }
207 {
208 __talk_if_overlay:nTF {#1}
209 {#3}
210 {
211 \bool_if:NTF \g__talk_slide_continue_bool
212 {#4}
213 {#2}
214 }
215 }

(End of definition for \temporal. This function is documented on page ??.)

\pause A thin wrapper.
216 \NewDocumentCommand \pause { o }
217 {
218 \legacy_if:nF { measuring@ }
219 {
220 \IfNoValueTF {#1}
221 { \int_gincr:N \g__talk_pauses_int }
222 { \int_gset:Nn \g__talk_pauses_int {#1} }
223 \exp_args:Ne __talk_onslide:n { \int_eval:n { \g__talk_pauses_int + 1 } - }
224 }
225 }

(End of definition for \pause. This function is documented on page ??.)

1.5 Fixed-size areas
__talk_overprint_begin:n A common auxiliary for overprinting, which starts off much the same for both

overlayarea and overprint.
226 \cs_new_protected:Npn __talk_overprint_begin:n #1
227 {
228 \par
229 \vbox_set_to_wd:Nnw \l__talk_tmp_box {#1}
230 \raggedright
231 \ignorespaces
232 }

(End of definition for __talk_overprint_begin:n.)

overlayarea (env.) An initial approach: quite similar to a column.
233 \NewDocumentEnvironment { overlayarea } { m m }
234 { __talk_overprint_begin:n {#1} }
235 {
236 \vbox_set_end:
237 \vbox_to_ht:nn {#2}
238 {

43

239 \box_use_drop:N \l__talk_tmp_box
240 \vfil
241 }
242 \par
243 }

\l__talk_overprint_int Track the overprints on a slide: as the slide forms a group, we do not need to worry about
resetting.
244 \int_new:N \l__talk_overprint_int

(End of definition for \l__talk_overprint_int.)

__talk_frame_overprint: To refer to the current overprint environment within the document: needed in the .aux
so avoids using non-letters.
245 \cs_new:Npn __talk_frame_overprint:
246 {
247 \int_to_Roman:n \g__talk_frame_int
248 \int_to_roman:n \l__talk_overprint_int
249 }

(End of definition for __talk_frame_overprint:.)

overprint (env.)__talk_overprint_save_ht:
__talk_overprint_check_ht:n

For overprinting, in contrast to beamer we use a two-pass approach to save the size at
the end of the run: this means you can use \only for example in overprinting.
250 \NewDocumentEnvironment { overprint } { O { \textwidth } }
251 { __talk_overprint_begin:n {#1} }
252 {
253 \vbox_set_end:
254 \int_incr:N \l__talk_overprint_int
255 __talk_overprint_save_ht:
256 \cs_if_exist:cTF
257 { overprint@ __talk_frame_overprint: }
258 {
259 \dim_compare:vNnTF
260 { overprint@ __talk_frame_overprint: }
261 > { \box_ht:N \l__talk_tmp_box }
262 {
263 \vbox_to_ht:vn
264 { overprint@ __talk_frame_overprint: }
265 {
266 \box_use_drop:N \l__talk_tmp_box
267 \vfil
268 }
269 }
270 { \box_use_drop:N \l__talk_tmp_box }
271 }
272 { \box_use_drop:N \l__talk_tmp_box }
273 \par
274 }

As there is no clear end-point for overprinting, we need to be careful to keep the current
width separate from the saved one. The rest is then about saving to the .aux file and
helping out the user.
275 \cs_new_protected:Npn __talk_overprint_save_ht:

44

276 {
277 \tl_if_exist:cF { g__talk_overprint_ __talk_frame_overprint: _tl }
278 {
279 \tl_new:c { g__talk_overprint_ __talk_frame_overprint: _tl }
280 \tl_gset:cn { g__talk_overprint_ __talk_frame_overprint: _tl }
281 { 0pt }
282 }
283 \tl_gset:ce { g__talk_overprint_ __talk_frame_overprint: _tl }
284 {
285 \dim_max:vn { g__talk_overprint_ __talk_frame_overprint: _tl }
286 { \box_ht:N \l__talk_tmp_box }
287 }
288 \legacy_if:nT { @filesw }
289 {
290 \iow_now:Ne \@auxout
291 {
292 \gdef \exp_not:c { overprint@ __talk_frame_overprint: }
293 {
294 \exp_not:v { g__talk_overprint_ __talk_frame_overprint: _tl }
295 }
296 }
297 }
298 \hook_gput_code:nne { enddocument / afterlastpage } { talk }
299 { __talk_overprint_check_ht:n { __talk_frame_overprint: } }
300 }
301 \cs_new_protected:Npn __talk_overprint_check_ht:n #1
302 {
303 \bool_lazy_and:nnF
304 { \exp_not:N \cs_if_exist_p:c { overprint@ #1 } }
305 {
306 \dim_compare_p:vNv { overprint@ #1 } = { g__talk_overprint_ #1 _tl }
307 }
308 {
309 \msg_warning:nn { talk } { overprint-ht }
310 \cs_gset_protected:Npn __talk_overprint_check_ht:n ##1 { }
311 }
312 }
313 \msg_new:nnn { talk } { overprint-ht }
314 {
315 Overprint~area~height~has~changed:\\
316 rerun~LaTeX.
317 }
(End of definition for __talk_overprint_save_ht: and __talk_overprint_check_ht:n.)

1.6 Adding overlays to existing commands
\textbf
\textit
\textmd

\textnormal
\textrm
\textsc
\textsf
\textsl
\texttt
\textup

\emph
\stdtextbf
\stdtextit
\stdtextmd

\stdtextnormal
\stdtextrm
\stdtextsc
\stdtextsf
\stdtextsl
\stdtexttt
\stdtextup

\stdemph
__talk_textcmd_eqiv:n

Make the standard text commands overlay-aware. To keep the spacing unchanged when
the command is not active, we use the same approach as the kernel does for inserting the
right grouping.
318 \tl_map_inline:nn
319 {
320 \textbf
321 \textit

45

322 \textmd
323 \textnormal
324 \textrm
325 \textsc
326 \textsf
327 \textsl
328 \texttt
329 \textup
330 \emph
331 }
332 {
333 \ExpandArgs { c } \NewCommandCopy { std \cs_to_str:N #1 } #1
334 \ExpandArgs { Nne } \RenewDocumentCommand #1
335 { D <> { all } +m }
336 {
337 \exp_not:N __talk_if_overlay:nTF {##1}
338 { \exp_not:c { std \cs_to_str:N #1 } }
339 { \exp_not:N __talk_textcmd_eqiv:n }
340 {##2}
341 }
342 }
343 \cs_new_protected:Npn __talk_textcmd_eqiv:n #1
344 {
345 \mode_if_math:TF
346 { { \mbox {#1} } }
347 {
348 \mode_leave_vertical:
349 {#1}
350 }
351 }

(End of definition for \textbf and others. These functions are documented on page ??.)

\includegraphics
\stdincludegraphics

Just wrap up the args and forward if appropriate. The star is #1 here as that matches
the documented behavior of starred commands generally.
352 \RequirePackage { graphicx }
353 \NewCommandCopy \stdincludegraphics \includegraphics
354 \RenewDocumentCommand \includegraphics { s D <> { all } o o m }
355 {
356 __talk_if_overlay:nT {#2}
357 {
358 \use:e
359 {
360 \exp_not:N \stdincludegraphics
361 \IfBooleanT #1 { * }
362 \IfNoValueF {#3} { [\exp_not:n { {#3} }] }
363 \IfNoValueF {#4} { [\exp_not:n { {#4} }] }
364 }
365 {#5}
366 }
367 }

(End of definition for \includegraphics and \stdincludegraphics. These functions are documented
on page ??.)

46

\label
__talk_label:n

Here, we can’t wrap the existing command up as we need the space hack, so it has to
be declared from scratch. There is also a non-standard overlay default. At present, no
special tricks as seen in beamer.
368 \RenewDocumentCommand \label { D <> { 1 } m }
369 {
370 \@bsphack
371 __talk_if_overlay:nT {#1}
372 { __talk_label:n {#2} }
373 \@esphack
374 }
375 \cs_new_protected:Npn __talk_label:n #1
376 {
377 \begingroup
378 \UseHookWithArguments { label } { 1 } {#1}
379 \protected@write \@auxout { }
380 {
381 \string \newlabel {#1}
382 {
383 { \@currentlabel }
384 { \thepage }
385 { \@currentlabelname }
386 { \@currentHref }
387 { \@kernel@reserved@label@data }
388 }
389 }
390 \endgroup
391 }

(End of definition for \label and __talk_label:n. This function is documented on page ??.)

392 〈/class〉

47

Part VIII

ltx-talk-required – “Required”
definitions
1 ltx-talk-required implementation
Start the DocStrip guards.

1 〈∗class〉
Identify the internal prefix.

2 〈@@=talk〉
Here we collect up things that are more-or-less required to create a useful class but are

not defined by the LATEX kernel for historical reasons. They are therefore largely copies
from article.cls and contain “classical” definitions so that they follow the expectations
of third-party code.

\today This is the definition as done in the standard classes.
3 \cs_new_nopar:Npn \today
4 {
5 \ifcase \month \or
6 January \or
7 February \or
8 March \or
9 April \or

10 May \or
11 June \or
12 July \or
13 August \or
14 September \or
15 October \or
16 November \or
17 December
18 \fi
19 \space
20 \number \day ,
21 \space
22 \number \year
23 }

(End of definition for \today. This function is documented on page ??.)

1.1 Standard design settings
24 \setcounter { tocdepth } { 3 }
25 \setlength \arraycolsep { 5pt }
26 \setlength \tabcolsep { 6pt }
27 \setlength \arrayrulewidth { 0.4pt }
28 \setlength \doublerulesep { 2pt }
29 \setlength \tabbingsep { \labelsep }
30 \skip \@mpfootins = \skip \footins

48

31 \setlength \fboxsep { 3pt }
32 \setlength \fboxrule { 0.4pt }

1.2 List support
33 \setlength \labelsep { 0.5em }
34 \cs_new:Npn \labelenumi { \theenumi . }
35 \cs_new:Npn \labelenumii { (\theenumii) }
36 \cs_new:Npn \labelenumiii { \theenumiii . }
37 \cs_new:Npn \labelenumiv { \theenumiv . }
38 \cs_new:Npn \labelitemi { \labelitemfont \textbullet }
39 \cs_new:Npn \labelitemii { \labelitemfont \bfseries \textendash }
40 \cs_new:Npn \labelitemiii { \labelitemfont \textasteriskcentered }
41 \cs_new:Npn \labelitemiv { \labelitemfont \textperiodcentered }
42 \cs_new:Npn \labelitemfont { \normalfont }

43 \setlength \leftmargini { 2em }
44 \setlength \leftmarginii { 2em }
45 \setlength \leftmarginiii { 2em }
46 \setlength \labelsep { 0.5em }
47 \setlength \labelwidth { \leftmargini }
48 \addtolength \labelwidth { -\labelsep }
49 \cs_gset_nopar:Npn \@listi
50 {
51 \leftmargin \leftmargini
52 \topsep 3pt plus 2pt minus 2.5pt
53 \parsep 0pt
54 \itemsep 3pt plus 2pt minus 3pt
55 }
56 \cs_gset_eq:NN \@listI \@listi
57 \cs_gset_nopar:Npn \@listii
58 {
59 \leftmargin \leftmarginii
60 \topsep 2pt plus 1pt minus 2pt
61 \parsep 0pt plus 1pt
62 \itemsep \parsep
63 }
64 \cs_gset_nopar:Npn \@listiii
65 {
66 \leftmargin \leftmarginiii
67 \topsep 2pt plus 1pt minus 2pt
68 \parsep 0pt plus 1pt
69 \itemsep \parsep
70 }
71 \setlength \partopsep { 0pt }

72 〈/class〉

49

Part IX

ltx-talk-structure – Structural
commands
1 ltx-talk-structure implementation
Start the DocStrip guards.

1 〈∗class〉
Identify the internal prefix.

2 〈@@=talk〉

1.1 Frame title
\g__talk_frame_title_tl

\g__talk_frame_subtitle_tl 3 \tl_new:N \g__talk_frame_title_tl
4 \tl_new:N \g__talk_frame_subtitle_tl

(End of definition for \g__talk_frame_title_tl and \g__talk_frame_subtitle_tl.)

\frametitle Just data storage: at the present no use of the optional argument.
5 \NewDocumentCommand \frametitle { D <> { all } O {#3} m }
6 {
7 __talk_if_overlay:nT {#1}
8 { \tl_gset:Nn \g__talk_frame_title_tl {#3} }
9 }

10 \NewDocumentCommand \framesubtitle { D <> { all } O {#3} m }
11 {
12 __talk_if_overlay:nT {#1}
13 { \tl_gset:Nn \g__talk_frame_subtitle_tl {#3} }
14 }

(End of definition for \frametitle. This function is documented on page ??.)

__talk_frame_title:n
__talk_frame_title_tagged:n

Inserting the frame title requires we deal with tagging as well as appearance: if there is
a title, we need to tag just this part of the header.

15 \NewTemplateType { frametitle } { 1 }
16 \DeclareTemplateInterface { frametitle } { talk } { 1 }
17 {
18 after-vspace : skip = \bigskipamount ,
19 before-vspace : skip = 0em ,
20 color : tokenlist = ,
21 font : tokenlist = \Large \bfseries
22 }
23 \DeclareTemplateCode { frametitle } { talk } { 1 }
24 {
25 after-vspace = \l__talk_frametitle_after_skip ,
26 before-vspace = \l__talk_frametitle_before_skip ,
27 color = \l__talk_frametitle_color_tl ,
28 font = \l__talk_frametitle_font_tl
29 }

50

30 {
31 \noindent
32 \vspace { \l__talk_frametitle_before_skip }
33 \group_begin:
34 \tl_if_empty:NF \l__talk_frametitle_color_tl
35 { \color_select:V \l__talk_frametitle_color_tl }
36 \l__talk_frametitle_font_tl
37 \tl_if_blank:nF {#1}
38 { __talk_frame_title:n {#1} }
39 \par
40 \group_end:
41 \vspace { \l__talk_frametitle_after_skip }
42 }
43 \DeclareInstance { frametitle } { header } { talk } { }
44 \cs_new_protected:Npn __talk_frame_title:n #1
45 {
46 \bool_if:NTF \g__talk_frame_tag_bool
47 { __talk_frame_title_tagged:n }
48 { \use:n }
49 {#1}
50 }
51 \cs_new_protected:Npn __talk_frame_title_tagged:n #1
52 {
53 __talk_header_tag_begin:e
54 {
55 firstkid = true ,
56 parent = \int_use:N \g__talk_frame_struct_int ,
57 tag = frametitle ,
58 title = { \text_purify:n { \g__talk_frame_title_tl } } ,
59 }
60 \group_begin:
61 \tagpdfparaOff
62 #1
63 \group_end:
64 __talk_header_tag_end:
65 }

(End of definition for __talk_frame_title:n and __talk_frame_title_tagged:n.)

1.2 Sectioning
\l__talk_section_tl
\g__talk_section_tl

\l__talk_subsection_tl
\g__talk_subsection_tl

\l__talk_subsubsection_tl
\g__talk_subsubsection_tl

Two versions of the data store: one set locally (but at the top level) for general use, one
set (and more importantly cleared) globally to allow insertion in the header area just
once per name.

66 \tl_new:N \l__talk_section_tl
67 \tl_new:N \g__talk_section_tl
68 \tl_new:N \l__talk_subsection_tl
69 \tl_new:N \g__talk_subsection_tl
70 \tl_new:N \l__talk_subsubsection_tl
71 \tl_new:N \g__talk_subsubsection_tl

(End of definition for \l__talk_section_tl and others.)

\section
\subsection

\subsubsection
\thesection

\thesubsection
\thesubsubsection

Here, we need full LATEX counters, so create them using the appropriate mechanism: that
also means we can sort out counter dependency and the appearance (using the same setup

51

as in article). As (subsub)section numbers never increment inside frames, we remove these
counters from the general tracker.

72 \newcounter { section }
73 \newcounter { subsection } [section]
74 \newcounter { subsubsection } [subsection]
75 \seq_gremove_all:Nn \l__talk_cnt_reset_seq { section }
76 \seq_gremove_all:Nn \l__talk_cnt_reset_seq { subsection }
77 \seq_gremove_all:Nn \l__talk_cnt_reset_seq { subsubsection }
78 \cs_gset:Npn \thesection { \@arabic \c@section }
79 \cs_gset:Npn \thesubsection { \thesection . \@arabic \c@subsection }
80 \cs_gset:Npn \thesubsubsection { \thesubsection . \@arabic \c@subsubsection }

(End of definition for \section and others. These functions are documented on page ??.)

\section
\subsection

\subsubsection
\insertsection

\insertsubsection
\insertsubsubsection

__talk_sect_section:Nnn
__talk_sect_subsection:Nnn

__talk_sect_subsubsection:Nnn

The sectioning commands all have essentially the same form: we therefore create using a
generator with the necessary conditionals in place. As we do not typeset sections at this
stage, the code is quite different from article. This also means that the bookmark links
need to point forward to the next slide: if that doesn’t appear, the bookmarks will be
out. Using the general scratch sequence here should be OK: it really is a one-off setting.
We need a sequence to allow indexed mapping to avoid any extra setup for the depth
value.

81 \seq_set_from_clist:Nn \l_tmpa_seq
82 { section , subsection , subsubsection }
83 \seq_map_indexed_inline:Nn \l_tmpa_seq
84 {
85 \use:e
86 {
87 \NewDocumentCommand \exp_not:c { insert #2 } { }
88 {
89 \exp_not:N \tl_use:N
90 \exp_not:c { l__talk_ #2 _tl }
91 }
92 \NewDocumentCommand \exp_not:c {#2}
93 { s D <> { all } O {##4} m }
94 {
95 \exp_not:N \bool_if:NF \exp_not:N \l__talk_frame_bool
96 {
97 __talk_if_overlay:nT {##2}
98 { \exp_not:c { __talk_sect_ #1 :Nnn } ##1 {##3} {##4} }
99 }

100 }
101 \cs_new_protected:Npn \exp_not:c { __talk_sect_ #1 :Nnn } ##1##2##3
102 {
103 \exp_not:N \refstepcounter {#2}
104 \UseTaggingSocket { sec / end } { \use:c { toclevel@ #2 } }
105 \UseTaggingSocket { sec / begin }
106 {
107 { \use:c { toclevel@ #2 } }
108 {
109 tag =
110 \exp_not:N \UseStructureName
111 { sec / \use:c { toclevel@ #2 } }
112 }

52

113 }
114 \tl_set:Nn \exp_not:c { l__talk_ #2 _tl } {##3}
115 \UseTaggingSocket { talk / sec / title } {#2}
116 \str_if_eq:nnT {#2} { section }
117 { \tl_clear:N \exp_not:N \l__talk_subsection_tl }
118 \str_if_eq:nnF {#2} { subsubsection }
119 { \tl_clear:N \exp_not:N \l__talk_subsubsection_tl }
120 \exp_not:N \addcontentsline { toc } {#2}
121 {
122 \exp_not:N \int_compare:nNnF {#1} >
123 { \exp_not:N \value { secnumdepth } }
124 {
125 \exp_not:N \protect \exp_not:N \numberline
126 { \exp_not:c { the #2 } }
127 }
128 ##3
129 }
130 \hook_use:n { #2 / begin }
131 }
132 \hook_new:n { #2 / begin }
133 }
134 }

(End of definition for \section and others. These functions are documented on page ??.)

talk/sec/title
__talk_sect_tag:nn

The argument is one of section, subsection or subsubsection.
135 \NewTaggingSocket { talk / sec / title } { 1 }
136 \NewTaggingSocketPlug { talk / sec / title } { default }
137 { \exp_args:Ne __talk_sect_tag:nn { \text_purify:v { l__talk_ #1 _ tl } } {#1} }
138 \cs_new_protected:Npn __talk_sect_tag:nn #1#2
139 {
140 \tag_struct_begin:e
141 {
142 tag =
143 \UseStructureName { sec / \use:c { toclevel@ #2 } / title } ,
144 title = {#1} ,
145 actualtext = {#1} ,
146 }
147 \tag_struct_end:
148 }
149 \AssignTaggingSocketPlug { talk / sec / title } { default }

(End of definition for talk/sec/title and __talk_sect_tag:nn. This function is documented on page
??.)

1.3 Table of contents
\@starttoc The standard kernel implementation here deliberately overwrites the file as soon as it’s

read. That’s no good for us as the table of contents can be read multiple times. So we
modify the code: we start from the tagging-aware version (this may need to be revisited).
We retain the LATEX 2ε code as much as possible.
150 \cs_gset_protected:Npn \@starttoc #1
151 {
152 \begingroup

53

153 \makeatletter
154 \UseTaggingSocket { toc / starttoc / before } {#1}
155 \@input { \jobname .#1 }
156 \UseTaggingSocket { toc / starttoc / after } {#1}
157 \legacy_if:nT { @filesw }
158 {
159 \AddToHook { enddocument / afterlastpage }
160 {
161 \expandafter \newwrite \csname tf@ #1 \endcsname
162 \immediate \openout \csname tf@ #1 \endcsname \jobname .#1 \relax
163 }
164 }
165 \@nobreakfalse
166 \endgroup
167 }

(End of definition for \@starttoc. This function is documented on page ??.)

\tableofcontents For the present simply print the output.
168 \NewDocumentCommand \tableofcontents { O { } }
169 {
170 \group_begin:
171 \@starttoc { toc }
172 \group_end:
173 }

(End of definition for \tableofcontents. This function is documented on page ??.)

\l@section
\l@subsection

\l@subsubsection
__talk_toc_aux:nnnn
__talk_toc_dest:n
__talk_toc_dest:w

__talk_toc_level:nnnn

Initial hard-coded versions to be templated once we have some other effects also working.
We may need to look at this “higher up” as we will need to know the section numbers.
174 \cs_new_protected:Npn \l@section #1#2
175 { __talk_toc_aux:nnnn { 1 } { \bfseries \color { structure } } {#1} {#2} }
176 \cs_new_protected:Npn \l@subsection #1#2
177 {
178 __talk_toc_aux:nnnn
179 { 2 }
180 {
181 \skip_set:Nn \leftskip { 2em }
182 \color_ensure_current:
183 }
184 {#1} {#2}
185 }
186 \cs_new_protected:Npn \l@subsubsection #1#2
187 {
188 __talk_toc_aux:nnnn
189 { 3 }
190 {
191 \skip_set:Nn \leftskip { 4em }
192 \color_ensure_current:
193 \footnotesize
194 }
195 {#1} {#2}
196 }
197 \cs_new_protected:Npn __talk_toc_aux:nnnn #1#2#3#4

54

198 {
199 \int_compare:nNnTF { \value { section } } < 1
200 { \use:n }
201 { __talk_toc_dest:n }
202 { __talk_toc_level:nnnn {#1} {#2} {#3} {#4} }
203 }

We can extract the details for the TOC levels from \@contentsline@destination. At
present, that is quite simple-minded: if we are in the current section, show fully, else
make semi-opaque. Needs a rounded-out interface but the basic idea will be the same.
204 \cs_new_protected:Npn __talk_toc_dest:n
205 {
206 \exp_after:wN __talk_toc_dest:w \@contentsline@destination
207 . 0 . 0 . 0 . \q_stop
208 }
209 \cs_new_protected:Npn __talk_toc_dest:w #1 . #2 . #3 . #4 . #5 \q_stop #6
210 {
211 \int_compare:nNnTF { \value { section } } = {#2}
212 {#6}
213 {
214 \opacity_begin:n { 0.2 }
215 #6
216 \opacity_end:
217 }
218 }
219 \cs_new_protected:Npn __talk_toc_level:nnnn #1#2#3#4
220 {
221 \int_compare:nNnF {#1} > { \value { tocdepth } }
222 {
223 \group_begin:
224 \noindent
225 #2
226 \UseHookWithArguments { contentsline / text / before } { 4 }
227 {#1} {#3} {#4} { \@contentsline@destination }
228 #3
229 \UseHookWithArguments { contentsline / text / after } { 4 }
230 {#1} {#3} {#4} { \@contentsline@destination }
231 \UseHookWithArguments { contentsline / page / before } { 4 }
232 {#1} {#3} {#4}
233 { \@contentsline@destination }
234 \UseHookWithArguments { contentsline / page / after } { 4 }
235 {#1} {#3} {#4}
236 { \@contentsline@destination }
237 \par
238 \group_end:
239 \vfil
240 }
241 }

(End of definition for \l@section and others. These functions are documented on page ??.)

242 \setcounter { tocdepth } { 2 }

55

1.4 Block environments
description (env.)

quote (env.)
quotation (env.)

verse (env.)
stdquote (env.)

stdquotation (env.)
stdverse (env.)

Stub logical environments: needed as the tagging setup expects these to exist.
243 \NewDocumentEnvironment { description } { } { } { }
244 \NewDocumentEnvironment { quote } { } { } { }
245 \NewDocumentEnvironment { quotation } { } { } { }
246 \NewDocumentEnvironment { verse } { } { } { }
247 \AddToHook { begindocument / before }
248 {
249 \clist_map_inline:nn { quote , quotation , verse }
250 {
251 \NewEnvironmentCopy { std #1 } {#1}
252 \RenewDocumentEnvironment {#1} { D <> { all } !O { } }
253 {
254 __talk_action_begin:n {##1}
255 \begin { std #1 } [{##2}]
256 \ignorespaces
257 }
258 {
259 \end { std #1 }
260 __talk_action_end:
261 }
262 }
263 }

block (env.)
264 \NewDocumentEnvironment { block } { D <> { all } m }
265 {
266 __talk_action_begin:n {#1}
267 \par
268 \vbox_set:Nw \l__talk_tmp_box
269 \group_begin:
270 \medskip
271 \leavevmode
272 \normalfont \large \bfseries
273 \color { structure }
274 #2
275 \par
276 \medskip
277 \group_end:
278 }
279 {
280 \vbox_set_end:
281 \box_use:N \l__talk_tmp_box
282 \par
283 __talk_action_end:
284 }

1.5 Lists
\item

__talk_item_parse_spec:w
__talk_item_parse_spec:n

Again, add the additional argument: here, we have to do a little gymnastics. The test
for an overlay has to come after the standard item definition: in a list, items have to

56

close the structure before them first, so if we test too early, we’d end up covering then
uncovering straight away!
285 \AddToHook { begindocument / before }
286 {
287 \NewCommandCopy \stditem \item
288 \RenewDocumentCommand \item { d <> o }
289 {
290 \IfNoValueTF {#2}
291 { \stditem }
292 { \stditem [{#2}] }
293 \IfNoValueTF {#1}
294 {
295 \exp_after:wN __talk_item_parse_spec:w
296 \l__talk_action_spec_str < all > \q_stop
297 }
298 { __talk_item_parse_spec:n {#1} }
299 }
300 }

Parsing the spec is a separate function here as there are a couple of routes to get here. At
present we only have a false branch, but for spacing we likely will need to add something
to the true branch too. The odd stuff with \currentgrouplevel here is needed so we
only close the item at the correct nesting, allowing for the group that gets added.
301 \cs_new_protected:Npn __talk_item_parse_spec:w #1 < #2 > #3 \q_stop
302 { __talk_item_parse_spec:n {#2} }
303 \cs_new_protected:Npn __talk_item_parse_spec:n #1
304 {
305 \bool_lazy_or:nnF
306 { \tl_if_blank_p:n {#1} }
307 { \str_if_eq_p:nn {#1} { all } }
308 {
309 \tl_set:Ne \l__talk_list_end_tl
310 {
311 \exp_not:N \int_compare:nNnT \tex_currentgrouplevel:D =
312 { \int_use:N \tex_currentgrouplevel:D + 1 }
313 {
314 __talk_action_end:
315 \tl_clear:N \exp_not:N \l__talk_list_end_tl
316 }
317 }
318 __talk_action_begin:n {#1}
319 }
320 }

(End of definition for \item , __talk_item_parse_spec:w , and __talk_item_parse_spec:n. This func-
tion is documented on page ??.)

\l__talk_list_end_tl
321 \tl_new:N \l__talk_list_end_tl

(End of definition for \l__talk_list_end_tl.)

__block_inter_item:
\BlockEnvEnd
\endblockenv

There are no currently no hooks for insertion at the end of list items, so we have to do it
manually. We cannot target __block_list_item_end:/__block_list_end: as these
change definition if tagging is suspended.

57

322 \cs_gset_protected:Npn __block_inter_item:
323 {
324 \legacy_if:nT { @inlabel }
325 { \indent \par }
326 \mode_if_horizontal:T
327 {
328 __block_skip_remove_last:
329 __block_skip_remove_last:
330 \par
331 }
332 \l__talk_list_end_tl
333 __kernel_list_item_end:
334 __kernel_list_item_begin:
335 \addpenalty \@itempenalty
336 \addvspace \itemsep
337 }

A rather long block done by expansion to avoid duplication in a patch.
338 \IfFormatAtLeastTF { 2026-06-01 }
339 { \cs_gset_protected:Npe \BlockEnvEnd }
340 { \cs_gset:Npe \endblockenv }
341 {
342 \exp_not:n
343 { __block_debug_typeout:n { blockenv~common~ending \on@line } }
344 \cs_if_exist:NTF \l__block_transparent_level_bool
345 {
346 \exp_not:N \bool_if:NF
347 \exp_not:N \l__block_transparent_level_bool
348 }
349 {
350 \exp_not:N \bool_if:NT
351 \exp_not:N \l__block_level_incr_bool
352 }
353 { \int_gdecr:N \exp_not:N \g_block_nesting_depth_int }
354 \exp_not:n
355 {
356 \legacy_if:nT { @inlabel }
357 {
358 \mode_leave_vertical:
359 \legacy_if_gset_false:n { @inlabel }
360 }
361 __block_if_list:T
362 { \legacy_if:nT { @newlist } { \@noitemerr } }
363 \mode_if_horizontal:TF
364 {
365 __block_skip_remove_last:
366 __block_skip_remove_last:
367 \par
368 }
369 { \@inmatherr { \end { \@currenvir } } }
370 \l__talk_list_end_tl
371 __kernel_displayblock_end:
372 __block_if_list:T { \legacy_if_gset_false:n { @newlist } }
373 \legacy_if_gset_false:n { @nobreak }
374 \legacy_if:nF { @noparlist }

58

375 {
376 __block_skip_set_to_last:N \l_tmpa_skip
377 \dim_compare:nNnT \l_tmpa_skip > \c_zero_dim
378 {
379 \skip_vertical:n { - \l_tmpa_skip }
380 \skip_vertical:n { \l_tmpa_skip + \parskip - \@outerparskip }
381 }
382 \addpenalty \@endparpenalty
383 \addvspace \l__block_topsepadd_skip
384 }
385 \socket_use:n { block / endpe }
386 }
387 }

(End of definition for __block_inter_item: , \BlockEnvEnd , and \endblockenv. These functions are
documented on page ??.)

itemize (env.)
enumerate (env.)

description (env.)

Allow for the classical beamer syntax: currently two versions but that will only last until
the 2026-06-01 release of LATEX is out.
388 \AddToHook { begindocument / before }
389 {
390 \clist_map_inline:nn { itemize , enumerate , description }
391 {
392 \IfFormatAtLeastTF { 2026-06-01 }
393 {
394 \RenewDocumentEnvironment {#1} { = { action-spec } !O { } }
395 { \SimpleBlockEnv {#1} {##1} }
396 { \BlockEnvEnd }
397 }
398 {
399 \RenewDocumentEnvironment {#1} { = { action-spec } !o }
400 {
401 \IfNoValueTF {##1}
402 { \UseInstance { blockenv } {#1} { } }
403 { \UseInstance { blockenv } {#1} {##1} }
404 }
405 { \endblockenv }
406 }
407 }
408 }

And add the structural color to item labels.
409 \AddToHook { begindocument / before }
410 {
411 \EditInstance { item } { basic }
412 { label-format = \color { structure } #1 }
413 \EditInstance { item } { description }
414 { label-format = \normalfont \bfseries \color { structure } #1 }
415 }

\l__talk_action_spec_str Add an overlay key to the block template. Placed here, it applies before the \item starts,
so we do not have to redefine the latter to do actions up-front. This also means it can
apply to whatever we want it to within a block. Currently two versions but that will
only last until the 2026-06-01 release of LATEX is out.

59

416 \IfFormatAtLeastTF { 2026-06-01 }
417 {
418 \keys_define:nn { template / block / std }
419 { action-spec .str_set:N = \l__talk_action_spec_str }
420 }
421 {
422 \keys_define:nn { template / block / display }
423 { action-spec .str_set:N = \l__talk_action_spec_str }
424 }

(End of definition for \l__talk_action_spec_str.)

1.6 Theorems, etc.
\newtheorem

\stdnewtheorem
We need to extend the creation of theorems in two ways: add the overlay argument, and
add the counter to the list of those reset during overlay creation.
425 \NewCommandCopy \stdnewtheorem \newtheorem
426 \RenewDocumentCommand \newtheorem { m O {#1} m o }
427 {
428 \IfNoValueTF {#4}
429 { \stdnewtheorem {#1} [{#2}] {#3} }
430 { \stdnewtheorem {#1} [{#2}] {#3} [{#4}] }
431 \NewEnvironmentCopy { std #1 } {#1}
432 \RenewDocumentEnvironment {#1} { D <> { all } o }
433 {
434 __talk_action_begin:n {##1}
435 \IfNoValueTF {##2}
436 { \begin { std #1 } }
437 { \begin { std #1 } [{##2}] }
438 \ignorespaces
439 }
440 {
441 \end { std #1 }
442 __talk_action_end:
443 }
444 }

(End of definition for \newtheorem and \stdnewtheorem. These functions are documented on page ??.)

445 〈/class〉

60

Part X

ltx-talk-title – Title pages
1 ltx-talk-title implementation
Start the DocStrip guards.

1 〈∗class〉
Identify the internal prefix.

2 〈@@=talk〉

\@author
\@date

\@institute
\@subtitle

\@title
\@shortauthor

\@shortdate
\@shortinstitute
\@shortsubtitle

\@shorttitle

We create a set of keys and variables in one go. Following the classical kernel approach,
all of the underlying storage is global. The short values will always be set in the following
code so can be used automatically anywhere we might want them.

3 \clist_map_inline:nn
4 { author , date , institute , subtitle , title }
5 {
6 \keys_define:nn { talk / metadata }
7 {
8 #1 .tl_gset:c = @ #1 ,
9 short- #1 .tl_gset:c = @short #1

10 }
11 }

Allow empty values for author and title.
12 \tl_gclear:N \@author
13 \tl_gclear:N \@title

As the date has a standard value, that has to be propagated.
14 \tl_gset_eq:NN \@shortdate \@date

(End of definition for \@author and others. These variables are documented on page ??.)

\author
\date

\title

Slightly repetitive but as we need to handle the tagging aspects, this is easier than using
a loop. The main aim is to add the short metadata concept. Notice that keys are set
before the main data storage in case someone set the value as a key as well as a mandatory
argument.

15 \RenewDocumentCommand \author { = { short-author } O { {#2} } m }
16 {
17 \keys_set:nn { talk / metadata } {#1}
18 \tl_gset:Nn \@author {#2}
19 \tl_gset_eq:NN \g__tag_title_author_tl \@author
20 \keys_set_known:nn { hyp } {#1}
21 }
22 \RenewDocumentCommand \date { = { short-date } O { {#2} } m }
23 {
24 \keys_set:nn { talk / metadata } {#1}
25 \tl_gset:Nn \@date {#2}
26 }
27 \RenewDocumentCommand \title { = { short-title } O { {#2} } m }
28 {
29 \keys_set:nn { talk / metadata } {#1}

61

30 \tl_gset:Nn \@title {#2}
31 \tl_gset_eq:NN \g__tag_title_title_tl \@title
32 \keys_set_known:nn { hyp } {#1}
33 }

(End of definition for \author , \date , and \title. These functions are documented on page ??.)

\institute
\subtitle

Simple storage at present: unlike some of the kernel data, there is not a lot to do here.
34 \NewDocumentCommand \institute { = { short-institute } O { {#2} } m }
35 {
36 \keys_set:nn { talk / metadata } {#1}
37 \tl_gset:Nn \@institute {#2}
38 }
39 \NewDocumentCommand \subtitle { = { short-subtitle } O { {#2} } m }
40 {
41 \keys_set:nn { talk / metadata } {#1}
42 \tl_gset:Nn \@subtitle {#2}
43 }

(End of definition for \institute and \subtitle. These functions are documented on page ??.)

\l__talk_titlelem_after_skip
\l__talk_titlelem_before_skip

\l__talk_titlelem_color_tl
\l__talk_titlelem_font_tl

\l__talk_titlelem_tag_begin_tl
\l__talk_titlelem_tag_end_tl

As the various elements of the titlepage share certain characteristics, we use a single
template and split them as instances.

44 \NewTemplateType { titlepage-element } { 1 }
45 \DeclareTemplateInterface { titlepage-element } { talk } { 1 }
46 {
47 after-skip : length = 0em ,
48 before-skip : length = 0em ,
49 color : tokenlist = . ,
50 font : tokenlist = \normalfont ,
51 tag-begin : tokenlist = ,
52 tag-end : tokenlist =
53 }
54 \DeclareTemplateCode { titlepage-element } { talk } { 1 }
55 {
56 after-skip = \l__talk_titlelem_after_skip ,
57 before-skip = \l__talk_titlelem_before_skip ,
58 color = \l__talk_titlelem_color_tl ,
59 font = \l__talk_titlelem_font_tl ,
60 tag-begin = \l__talk_titlelem_tag_begin_tl ,
61 tag-end = \l__talk_titlelem_tag_end_tl
62 }
63 {
64 \tl_if_empty:nF {#1}
65 {
66 \vspace { \l__talk_titlelem_before_skip }
67 \group_begin:
68 \tl_if_empty:NF \l__talk_titlelem_color_tl
69 { \color_select:V \l__talk_titlelem_color_tl }
70 \l__talk_titlelem_font_tl
71 \l__talk_titlelem_tag_begin_tl
72 #1
73 \par
74 \l__talk_titlelem_tag_end_tl

62

75 \group_end:
76 \vspace { \l__talk_titlelem_after_skip }
77 }
78 }

Standard settings are taken from beamer with minor adjustments.
79 \DeclareInstance { titlepage-element } { author } { talk }
80 { before-skip = 1em }
81 \DeclareInstance { titlepage-element } { date } { talk }
82 { after-skip = 0.5em }
83 \DeclareInstance { titlepage-element } { institute } { talk }
84 { font = \scriptsize }
85 \DeclareInstance { titlepage-element } { subtitle } { talk }
86 { before-skip = 0.25em , color = structure }
87 \DeclareInstance { titlepage-element } { title } { talk }
88 {
89 color = structure ,
90 font = \Large ,
91 tag-begin = \tag_struct_begin:n { tag = Title } ,
92 tag-end = \tag_struct_end:
93 }

(End of definition for \l__talk_titlelem_after_skip and others.)

\l__talk_titlepage_order_clist
\l__talk_titlepage_alignment_tl

\l__talk_titlepage_framestyle_tl
\l__talk_frame_alignment_tl

Here, we deal with the overall style: notice that frame vertical alignment actually applies
elsewhere, which is why it doesn’t show up in the template code part. As a result, we
have a slightly repetitive key interface.

94 \NewTemplateType { titlepage } { 0 }
95 \DeclareTemplateInterface { titlepage } { talk } { 0 }
96 {
97 element-order : commalist =
98 {
99 title ,

100 subtitle ,
101 author ,
102 institute ,
103 date
104 } ,
105 framestyle : tokenlist = talk ,
106 horizontal-alignment : choice { left , center , right } = center ,
107 vertical-alignment : choice { bottom , center , stretch , top } = center
108 }
109 \DeclareTemplateCode { titlepage } { talk } { 0 }
110 {
111 element-order = \l__talk_titlepage_order_clist ,
112 framestyle = \l__talk_titlepage_framestyle_tl ,
113 horizontal-alignment =
114 {
115 left = \tl_set:Nn \l__talk_titlepage_alignment_tl { flushleft } ,
116 center = \tl_set:Nn \l__talk_titlepage_alignment_tl { center } ,
117 right = \tl_set:Nn \l__talk_titlepage_alignment_tl { flushright }
118 } ,
119 vertical-alignment =
120 {
121 bottom = \tl_set:Nn \l__talk_frame_alignment_tl { bottom } ,

63

122 center = \tl_set:Nn \l__talk_frame_alignment_tl { center } ,
123 stretch = \tl_set:Nn \l__talk_frame_alignment_tl { stretch } ,
124 top = \tl_set:Nn \l__talk_frame_alignment_tl { top }
125 }
126 }
127 {
128 \tl_if_empty:NF \l__talk_titlepage_framestyle_tl
129 { \exp_args:NV \thispagestyle \l__talk_titlepage_framestyle_tl }
130 \begin { \l__talk_titlepage_alignment_tl }
131 \cs_set_protected:Npn \and { \quad }
132 \clist_map_inline:Nn \l__talk_titlepage_order_clist
133 {
134 \ExpandArgs { nnv } \UseInstance { titlepage-element }
135 {##1} { @ ##1 }
136 }
137 \end { \l__talk_titlepage_alignment_tl }
138 }

(End of definition for \l__talk_titlepage_order_clist and others.)

\maketitle A very simple setup.
139 \NewDocumentCommand \maketitle { O {} }
140 {
141 \bool_if:NTF \l__talk_frame_bool
142 { \UseTemplate { titlepage } { talk } {#1} }
143 {
144 \begin { frame }
145 \UseTemplate { titlepage } { talk } {#1}
146 \end { frame }
147 }
148 }

(End of definition for \maketitle. This function is documented on page ??.)

149 〈/class〉

64

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
@ commands:

\@_decode_overlay_+:nw 131
\\ . 315

A
\abovecaptionskip 144, 146
\action . 125
actionenv (env.) 125
\addcontentsline 120
\addpenalty 335, 382
\AddToHook 54, 60, 66, 159,

218, 247, 265, 285, 330, 388, 400, 409
\addtolength . 48
\addvspace 336, 383
\alert . 40, 103
alertenv (env.) 110
\alt . 183
\and . 131
\arabic . 397
\arraycolsep . 25
\arrayrulewidth 27
\AssignSocketPlug 182
\AssignTaggingSocketPlug 149
\author . 15

B
\begin . . . 116, 117, 130, 144, 255, 436, 437
\begingroup 151, 152, 377
\belowcaptionskip 145, 147
\bfseries 21, 39, 175, 272, 414
\bigskipamount 18
block (env.) . 264
block commands:

\g_block_nesting_depth_int 353
block internal commands:

__block_debug_typeout:n 343
__block_if_list:TF 361, 372
__block_inter_item: 322, 322
\l__block_level_incr_bool 351
__block_list_end: 57
__block_list_item_end: 57
__block_skip_remove_last:

. 328, 329, 365, 366
__block_skip_set_to_last:N 376
\l__block_topsepadd_skip 383
\l__block_transparent_level_bool

. 344, 347

\BlockEnvEnd 322, 396
bool commands:

\bool_do_while:Nn 27
\bool_gset_false:N . . . 30, 36, 40, 422
\bool_gset_true:N . 207, 215, 221, 414
\bool_if:NTF 6, 39, 44, 44,

46, 50, 58, 66, 71, 83, 86, 95, 141,
157, 170, 172, 211, 256, 346, 350, 428

\bool_lazy_and:nnTF . . 21, 49, 218, 303
\bool_lazy_any:nTF 64, 91
\bool_lazy_or:nnTF 5, 18, 21, 305
\bool_lazy_or_p:nn 24
\bool_new:N 3,

3, 7, 8, 13, 121, 123, 124, 391, 392, 393
\bool_set_eq:NN 149, 153
\bool_set_false:N

. . . 27, 28, 37, 101, 120, 142, 434, 454
\bool_set_true:N . . 24, 29, 52, 69,

140, 148, 185, 204, 217, 407, 442, 462
\c_false_bool 15
\c_true_bool 14, 166

box commands:
\box_dp:N . 36
\box_gclear:N 77
\box_ht:N 63, 261, 286
\box_if_empty:NTF 92
\box_move_down:nn 61
\box_new:N 4, 115, 159
\box_use:N 281
\box_use_drop:N

. 26, 239, 266, 270, 272, 326
\box_wd:N . 41

box internal commands:
__box_dim_eval:n 33, 36, 41, 44
__box_set_to_wd: 40, 45

C
\clearpage . 98
clist commands:

\clist_const:Nn 58
\clist_if_in:NnTF 65, 184
\clist_map_break: 222
\clist_map_inline:Nn . . . 132, 187, 313
\clist_map_inline:nn

. 3, 89, 126, 139, 249, 390
\clist_new:N 10, 14
\clist_pop:NNTF 309
\clist_set:Nn 104, 183

65

\color 4, 11, 56, 175, 273, 412, 414
color commands:

\color_ensure_current: . . 63, 182, 192
\color_group_begin: 34, 46
\color_group_end: 34
\color_math:nn 9, 26
\color_math:nnn 10, 27
\color_select:n 7, 16, 35,

37, 45, 46, 69, 107, 210, 254, 307, 348
\color_select:nn 8, 17, 38

color internal commands:
__color_backend_reset: 64

\colorlet . 68
column (env.) . 72
columns (env.) . 11
\columnwidth 20, 81, 116
cs commands:

\cs_generate_variant:Nn
. 7, 8, 9, 10, 104, 105,
107, 108, 109, 110, 111, 112, 113, 181

\cs_gset:Npe 340
\cs_gset:Npn 78, 79, 80
\cs_gset_eq:NN 56
\cs_gset_nopar:Npn 49, 57, 64
\cs_gset_protected:Npe . . . 62, 89, 339
\cs_gset_protected:Npn

. 29, 38, 48, 56, 58, 148, 150, 310, 322
\cs_if_exist:NTF 118, 256, 344
\cs_if_exist_p:N 304
\cs_if_exist_use:NTF . . . 139, 159, 174
\cs_new:Npn 6, 7, 34, 35, 36, 37, 38, 39,

40, 41, 42, 219, 245, 336, 396, 397, 402
\cs_new_eq:NN 5, 6, 147, 183, 395
\cs_new_nopar:Npn 3, 379
\cs_new_protected:Npe 63, 78, 104
\cs_new_protected:Npn 9,

11, 16, 18, 18, 35, 38, 40, 42, 44, 45,
48, 51, 52, 53, 54, 55, 56, 56, 62, 64,
69, 70, 72, 81, 82, 87, 91, 100, 101,
106, 111, 112, 114, 118, 121, 131,
136, 136, 137, 138, 142, 146, 146,
151, 153, 164, 168, 174, 174, 175,
176, 181, 182, 186, 191, 194, 197,
201, 204, 209, 219, 226, 275, 301,
301, 303, 342, 343, 375, 404, 410, 418

\cs_set:Npn 14, 15, 59
\cs_set_eq:NN 61, 62,

63, 64, 216, 361, 362, 376, 377, 387, 388
\cs_set_nopar:Npn 118,

354, 356, 360, 364, 366, 371, 381, 386
\cs_set_protected:Npn

. 40, 131, 148, 166, 210
\cs_to_str:N 333, 338

\csname 155, 161, 162

D
\date . 15
\day . 20
\DeclareColor 65, 71, 72, 73
\DeclareInstance 43,

79, 80, 81, 83, 85, 87, 120, 217,
218, 219, 220, 221, 222, 223, 264, 329

\DeclareInstanceCopy 267, 332
\DeclareTemplateCode

. . . 23, 54, 77, 104, 109, 197, 235, 282
\DeclareTemplateInterface

. . . . 16, 45, 75, 95, 99, 190, 225, 272
\definecolor . 69
description (env.) 243, 388
dim commands:

\dim_compare:nNnTF 108, 259, 377
\dim_compare_p:nNn 109, 306
\dim_const:Nn 163, 169
\dim_eval:n 51, 52, 53
\dim_max:nn 110, 285
\dim_set:Nn 19, 80
\dim_set_eq:NN 20, 81
\dim_to_decimal:n 156
\dim_use:N 184, 185
\c_zero_dim 377

\DocumentMetadata 8
\doublerulesep 28

E
\EditInstance 268, 333, 411, 413
\emph . 318
\end 123, 124, 137, 146, 259, 369, 441
\endblockenv 322, 405
\endcsname 155, 161, 162
\endfloatenv 121, 134
\endgroup 157, 166, 390
enumerate (env.) 388
environments:

actionenv 125
alertenv . 110
block . 264
column . 72
columns . 11
description 243, 388
enumerate 388
figure . 126
invisibleenv 98
itemize . 388
onlyenv . 118
overlayarea 233
overprint 250
quotation 243
quote . 243
stdquotation 243

66

stdquote . 243
stdverse . 243
table . 126
uncoverenv 98
verse . 243
visibleenv 98

exp commands:
\exp_after:wN 206, 295
\exp_args:Ne 17, 54, 137, 223
\exp_args:Nne 444
\exp_args:No 32
\exp_args:NV 129, 176
\exp_args_generate:n 106
\exp_not:N

. . . . 65, 67, 68, 69, 71, 72, 72, 73,
78, 80, 81, 84, 86, 87, 89, 89, 90, 92,
94, 95, 96, 98, 100, 101, 101, 103,
106, 107, 110, 111, 112, 114, 117,
119, 120, 122, 123, 125, 126, 142,
161, 166, 167, 169, 171, 172, 175,
176, 180, 292, 304, 311, 315, 337,
338, 339, 346, 347, 350, 351, 353, 360

\exp_not:n 294, 342, 354, 362, 363, 445
\exp_stop_f: 51, 52, 53

\expandafter 161
\ExpandArgs .

. . 91, 98, 134, 258, 311, 318, 333, 334

F
\fboxrule . 32
\fboxsep . 31
\fi . 18, 153
figure (env.) . 126
\figurename . 137
file commands:

\file_if_exist_input:nTF 156
\file_input:n 158

fnote commands:
\fnote_makefntext:n 183

\footins . 30
\footnote 161, 162
\footnoterule . 94
\footnotesize 193
\footskip 296, 297
fp commands:

\fp_eval:n 161
\fp_to_dim:n 171

\frame . 28, 26, 403
frame . 428
frame* . 428
\framesubtitle 10
\frametitle 5, 435, 445

G
\gdef . 292
\geometry . 5
group commands:

\group_begin:
. 11, 33, 35, 58, 60, 67, 105,
127, 138, 170, 208, 223, 252, 269, 347

\c_group_begin_token 43
\group_end: 40, 40, 54, 62, 63, 75, 108,

131, 172, 181, 213, 238, 262, 277, 351
\group_insert_after:N 45

H
hbox commands:

\hbox:n . 59
\hbox_set_end: 25
\hbox_set_to_wd:Nnw 18

\headsep 230, 249, 250
\hfil 77, 280, 324, 358, 369, 374, 384
hook commands:

\hook_gput_code:nnn 105, 160, 298
\hook_new:n 132
\hook_use:n 130

\hspace . 207, 214
\hypersetup . 221

I
\IfBooleanT . 361
\ifcase . 5
\IfFormatAtLeastF 7
\IfFormatAtLeastTF 338, 392, 416
\IfNoValueF 362, 363
\IfNoValueTF 15, 25, 36,

47, 67, 165, 220, 290, 293, 401, 428, 435
\ignorespaces

. . . 19, 21, 86, 155, 192, 231, 256, 438
\immediate . 162
\includegraphics 352
\indent . 325
\insertsection 81
\insertsubsection 81
\insertsubsubsection 81
\institute . 34
int commands:

\int_compare:nNnTF 76, 122,
199, 203, 206, 211, 212, 214, 221, 311

\int_compare_p:nNn 219, 220
\int_eval:n 223
\int_gdecr:N 353
\int_gincr:N 29, 42, 75, 221, 406
\int_gset:Nn 222, 413
\int_gset_eq:NN 27, 135, 140, 145
\int_gzero:N 16, 25, 74
\int_incr:N 254

67

\int_max:nn 178
\int_new:N

. . . 4, 5, 9, 10, 71, 134, 151, 244, 394
\int_set_eq:NN 15
\int_to_Roman:n 247
\int_to_roman:n 248
\int_use:N . . 8, 14, 52, 56, 68, 312, 399
\c_max_int 197, 220

\invisible . 89
invisibleenv (env.) 98
iow commands:

\iow_now:Nn 290
\item . 59, 285
itemize (env.) 388
\itemsep 54, 62, 69, 336

J
\jobname 155, 162

K
kernel internal commands:

__kernel_backend_literal_pdf:n . 77
__kernel_color_backend_stack_-

push:nn 79
__kernel_displayblock_end: 371
__kernel_list_item_begin: 334
__kernel_list_item_end: 333

keys commands:
\l_keys_choice_tl 130
\keys_define:nn 3,

5, 6, 31, 117, 132, 141, 155, 418, 422
\keys_set:nn . . 7, 17, 17, 24, 29, 36,

41, 49, 78, 148, 168, 433, 441, 453, 461
\keys_set_known:nn 20, 32
\l_keys_value_tl 46, 165

L
\label . 368
\labelenumi . 34
\labelenumii . 35
\labelenumiii . 36
\labelenumiv . 37
\labelitemfont 38, 39, 40, 41, 42
\labelitemi . 38
\labelitemii . 39
\labelitemiii . 40
\labelitemiv . 41
\labelsep 29, 33, 46, 48
\labelwidth 47, 48
\Large . 21, 90
\large . 272
\leavevmode 83, 271
\leftmargin 51, 59, 66
\leftmargini 43, 47, 51

\leftmarginii 44, 59
\leftmarginiii 45, 66
\leftskip 181, 191
legacy commands:

\legacy_if:nTF
. 41, 157, 218, 288, 324, 356, 362, 374

\legacy_if_gset_false:n 359, 372, 373

M
\makeatletter 153
\maketitle . 139
\mathcolor . 5, 11
\mbox . 346
\medskip 270, 276
\mode . 36, 11
mode commands:

\mode_if_horizontal:TF . . 31, 326, 363
\mode_if_horizontal_p: 25
\mode_if_math:TF 345
\mode_if_vertical_p: 26
\mode_leave_vertical: . . . 34, 348, 358

\month . 5
msg commands:

\msg_error:nnn 126, 168
\msg_fatal:nn 15
\g_msg_module_name_prop 5
\g_msg_module_type_prop 6
\msg_new:nnn 22, 313
\msg_new:nnnn 9, 226
\msg_warning:nn 27, 309

N
\NeedsDocumentMetadata 17
\NewCommandCopy

. . 4, 5, 6, 161, 287, 333, 353, 403, 425
\newcounter 21, 72, 73, 74, 137
\NewDocumentCommand 5,

10, 11, 34, 39, 65, 87, 91, 92, 103,
113, 125, 139, 168, 183, 189, 206, 216

\NewDocumentEnvironment 11,
72, 98, 110, 118, 128, 133, 233,
243, 244, 245, 246, 250, 264, 438, 458

\NewEnvironmentCopy 251, 431
\newlabel . 381
\newlength 144, 145
\NewSocketPlug 169
\NewTaggingSocket 135
\NewTaggingSocketPlug 136
\NewTemplateType

. . . . 15, 44, 74, 94, 98, 189, 224, 271
\newtheorem . 425
\newwrite . 161
\nobreakspace 142
\noindent 31, 224, 246, 293

68

\normalfont 42, 50, 229, 272, 414
\normalsize . 154
\number . 20, 22
\numberline . 125

O
\obeyedline 18, 59
\only . 44, 113
onlyenv (env.) 118
\onslide . 41, 189
opacity commands:

\opacity_begin:n 39, 56, 214
\opacity_end: 41, 58, 216

opacity internal commands:
__opacity_backend:nnn 85, 86
__opacity_backend_begin:n . . 57, 62
__opacity_backend_end: 59, 89
\l__opacity_backend_fill_tl 71
__opacity_backend_reset: 97
__opacity_backend_reset_fill: . . 99
__opacity_backend_reset_stroke: 100
\c__opacity_backend_stack_int . . . 80
\l__opacity_backend_stroke_tl . . . 72
__opacity_select:nN 57

\openout . 162
\or . . 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
overlayarea (env.) 233
overprint (env.) 250

P
\pagecolor . 43
\pagestyle . 390
\paperheight 57, 58
\paperwidth 58, 301, 349, 350
\par 30, 32, 14, 28, 34, 39, 73,

74, 89, 94, 150, 156, 228, 237, 242,
267, 273, 275, 282, 325, 330, 367, 424

\parsep 53, 61, 62, 68, 69
\parskip . 380
\partopsep . 71
\pause . 41, 216
pdfmanagement commands:

\pdfmanagement_add:nnn 73
prg commands:

\prg_generate_conditional_-
variant:Nnn 10

\prg_new_protected_conditional:Npnn
. 3, 3

\prg_return_false: 8, 9
\prg_return_true: 7, 8

\ProcessedArgument 14, 15
\ProcessKeyOptions 155
prop commands:

\prop_gput:Nnn 5, 6

property commands:
\property_new:nnnn 8, 398
\property_record:nn 52, 68, 401
\property_ref:nn 14, 402

\protect . 125
\ProvidesExplClass 3
\put . 57

Q
\quad . 131
quark commands:

\quark_if_recursion_tail_stop:N 138
\quark_if_recursion_tail_stop_-

do:Nn 155, 166
\quark_if_recursion_tail_stop_-

do:nn . 47
\q_recursion_stop 38, 133, 158
\q_recursion_tail 38, 133, 158
\q_stop 73, 81, 107, 112,

167, 176, 188, 191, 207, 209, 296, 301
quotation (env.) 243
quote (env.) . 243

R
\raggedright 84, 197, 230
\refstepcounter 103
\relax . 162
\relsize . 161
\RenewCommandCopy 26
\RenewDocumentCommand . 11, 15, 21, 22,

27, 30, 43, 162, 288, 334, 354, 368, 426
\RenewDocumentEnvironment

. 252, 394, 399, 430, 432, 450
\RequirePackage 3, 159, 180, 198,

201, 202, 205, 208, 214, 215, 220, 352
\rmdefault . 216
\rule . 58
rule commands:

\rule:nnn 48, 349

S
scan commands:

\scan_stop: 54
\scriptsize . 84
\section . 72, 81
seq commands:

\seq_gpop_left:NN 174
\seq_gpush:Nn 164
\seq_gput_right:Nn 152
\seq_gremove_all:Nn 75, 76, 77
\seq_map_indexed_inline:Nn 83
\seq_map_inline:Nn 132, 139, 144
\seq_new:N 124, 160
\seq_set_from_clist:Nn 81, 125

69

\l_tmpa_seq 81, 83
\setcounter 24, 242
\setlength 25, 26, 27, 28, 29, 31,

32, 33, 43, 44, 45, 46, 47, 71, 146, 147
\setmainfont 209
\setmathfont 211
\setsansfont 210
\SetTemplateKeys 115
\sfdefault . 216
\SimpleBlockEnv 395
\skip . 30
skip commands:

\skip_horizontal:n
. 32, 251, 298, 327, 344, 350

\skip_if_eq_p:nn 22
\skip_new:N 17
\skip_set:Nn 181, 191
\skip_set_eq:NN 20
\skip_vertical:n . . . 33, 102, 104,

108, 110, 114, 116, 120, 122, 379, 380
\l_tmpa_skip 376, 377, 379, 380

socket commands:
\socket_use:n 385

\space . 19, 21
\stdcolor . 4
\stdemph . 318
\stdfootnote 161, 166, 167
\stdincludegraphics 352
\stditem 287, 291, 292
\stdmathcolor . 4
\stdnewtheorem 425
stdquotation (env.) 243
stdquote (env.) 243
\stdtextbf . 318
\stdtextcolor . 4
\stdtextit . 318
\stdtextmd . 318
\stdtextnormal 318
\stdtextrm . 318
\stdtextsc . 318
\stdtextsf . 318
\stdtextsl . 318
\stdtexttt . 318
\stdtextup . 318
stdverse (env.) 243
\stepcounter . 21
str commands:

\str_clear:N 20, 30, 31
\str_if_empty:NTF 96
\str_if_empty_p:N 50
\str_if_eq:nnTF 17, 67, 93, 116, 118, 139
\str_if_eq_p:nn 6, 7, 23, 307
\str_new:N 9, 11, 12, 15, 122
\str_put_right:Nn 141, 177

\str_replace_all:Nnn 20, 22, 111
\str_set:Nn 18, 26, 121, 126, 130
\str_set_eq:NN 151

\string . 381
\subsection 72, 81
\subsubsection 72, 81
\subtitle . 34
sys commands:

\c_sys_engine_str 24
\sys_if_engine_luatex:TF 203
\sys_if_engine_luatex_p: . 19, 67, 94
\sys_if_engine_opentype:TF 199
\sys_if_engine_pdftex_p: . 20, 66, 93
\sys_if_engine_xetex:TF 76
\sys_if_engine_xetex_p: 68, 95

T
\tabbingsep . 29
\tabcolsep . 26
table (env.) . 126
\tableename . 137
\tableofcontents 168
tag commands:

\tag_get:n 413
\tag_mc_begin:n 179, 186, 420
\tag_mc_end: 177, 184, 426
\tag_resume:n 176, 425
\tag_struct_begin:n . 91, 140, 178, 412
\tag_struct_end: . . . 92, 147, 185, 416
\tag_suspend:n 187, 421

tag internal commands:
\g__tag_title_author_tl 19
\g__tag_title_title_tl 31

\tagpdfparaOff 61
\tagpdfsetup 206, 222
talk internal commands:

__talk_action_alert:N 42, 42, 106, 111
__talk_action_begin:n 13, 85, 125,

128, 130, 134, 136, 254, 266, 318, 434
__talk_action_begin_aux:n

. 125, 143, 146
__talk_action_end: 32, 29, 90, 125,

130, 135, 135, 168, 260, 283, 314, 442
__talk_action_invisible:N 48, 48, 166
__talk_action_invisible_end:N .

. 48, 54
__talk_action_only:N 64, 64, 119
__talk_action_only_end:N 64, 69, 120
\l__talk_action_spec_str 155, 296, 416
__talk_action_uncover:N . 81, 81, 177
__talk_action_uncover_end:N . . .

. 81, 87, 179
__talk_action_visible:N 48, 56
__talk_action_visible_end:N . 48, 62

70

\l__talk_aspect_ratio_str . 117, 175
\l__talk_cnt_reset_seq

. 75, 76, 77, 124, 139, 144, 152
__talk_cnt_restore: 87, 137, 142
__talk_cnt_save: 78, 137, 137
__talk_column_align_bottom:n 53, 53
__talk_column_align_center:n 53, 55
__talk_column_align_top:n . . 53, 70
\l__talk_column_alignment_tl . 31, 92
\g__talk_column_int 9, 15, 16, 27, 75, 76
\l__talk_column_int 9, 15, 27
\l__talk_columns_wd_tl 5, 18, 19
__talk_decode_action:n . 95, 104, 104
__talk_decode_action:w 104, 106, 111
\l__talk_decode_action_str

. 12, 20, 121, 152, 160
\l__talk_decode_actions_bool . . .

. 13, 27, 154, 162
\l__talk_decode_actions_clist . . . 13
\l__talk_decode_actions_str . . 13, 31
\l__talk_decode_arg_str

. 9, 26, 32, 127, 169
__talk_decode_check:n . 134, 181, 181
__talk_decode_check:nw 181, 188, 191
__talk_decode_check_range:nnn .

. 181, 197, 198, 210
__talk_decode_check_single:nn .

. 181, 194, 201
__talk_decode_mode:n 54, 63, 63
__talk_decode_mode:nn . . . 86, 89, 91
__talk_decode_mode:w 63, 72, 78
__talk_decode_mode_aux:n 63
__talk_decode_overlay_.:nw 131
__talk_decode_overlay_aux:nNN .

. 131, 149, 152, 153
__talk_decode_overlay_offset:nNn

. 131, 157, 162, 172, 175
__talk_decode_overlay_offset:nNnN

. 131, 161, 164, 173
__talk_decode_overlays:nN

. 131, 133, 136, 142, 179
__talk_decode_overlays:nn

. 97, 116, 123, 131, 131
\l__talk_decode_overlays_bool . 3,

6, 24, 28, 52, 69, 150, 157, 177, 179
\l__talk_decode_overlays_clist . . 10
\l__talk_decode_overlays_str . . .

. 10, 30, 50, 96
__talk_decode_parse:n

. 5, 16, 16, 148, 176
__talk_decode_parse:w . 16, 38, 45, 56
__talk_decode_parse_auxi:n

. 16, 17, 18

__talk_decode_parse_auxii:n . . .
. 16, 32, 35

\l__talk_decode_pure_bool
. 7, 29, 51, 101, 120

\l__talk_decode_step_bool
. 8, 37, 39, 148

\l__talk_float_alignment_tl
. 97, 109, 110, 111, 117, 123

\l__talk_fontsize_dim . . 117, 156, 161
\l__talk_footelem_color_tl 189
\l__talk_footelem_font_tl 189
\l__talk_footelem_left_skip 189
\l__talk_footelem_right_skip . . . 189
\l__talk_footer_bg_tl 271
\l__talk_footer_fg_tl 271
\l__talk_footer_font_tl 271
\l__talk_footer_left_skip 271
\l__talk_footer_order_clist 271
\l__talk_footer_right_skip 271
\l__talk_footer_sep_tl 271
\g__talk_footnote_box

. 77, 92, 95, 159, 171, 173
\g__talk_footnote_overlay_seq . .

. 160, 164, 174
\l__talk_frame_alignment_tl

. 90, 94, 154, 164
\l__talk_frame_bool . 95, 141, 391, 407
\g__talk_frame_int

. 14, 52, 68, 247, 394, 399, 406
__talk_frame_notag:n . . . 41, 418, 418
__talk_frame_overprint:

. 245, 245, 257, 260, 264,
277, 279, 280, 283, 285, 292, 294, 299

__talk_frame_process:nn
. 404, 404, 435, 444, 455, 463

\g__talk_frame_struct_int 56, 71, 413
\g__talk_frame_subtitle_tl 3, 13, 76
__talk_frame_tag:n 37, 410, 410
\g__talk_frame_tag_bool

. 46, 392, 414, 422
\l__talk_frame_tagging_str

. 17, 18, 20, 22, 34, 155
__talk_frame_title:n 15, 38, 44
\l__talk_frame_title_bool . 117, 428
__talk_frame_title_tagged:n . . .

. 15, 47, 51
\g__talk_frame_title_tl

. 3, 8, 58, 75, 260, 443
\l__talk_frame_verb_bool

. 44, 393, 434, 442, 454, 462
\l__talk_frametitle_after_skip .

. 25, 41
\l__talk_frametitle_before_skip

. 26, 32

71

\l__talk_frametitle_color_tl . . .
. 27, 34, 35

\l__talk_frametitle_font_tl . . 28, 36
\l__talk_header_bg_tl 224
\l__talk_header_fg_tl 224
\l__talk_header_font_tl 224
\l__talk_header_frametitle_bool 224
\l__talk_header_ht_dim 224
\l__talk_header_left_skip 224
\l__talk_header_right_skip 224
__talk_header_tag_begin:n

. 53, 174, 174, 181
__talk_header_tag_end: . 64, 174, 182
__talk_if_overlay:n 3, 10
__talk_if_overlay:nTF 3,

7, 12, 13, 13, 23, 31, 32, 34, 45,
97, 115, 185, 198, 208, 337, 356, 371

__talk_item_parse_spec:n
. 285, 298, 302, 303

__talk_item_parse_spec:w
. 285, 295, 301

__talk_label:n 368, 372, 375
__talk_latexe_frame:n . . 26, 403, 403
\l__talk_list_end_tl

. 309, 315, 321, 332, 370
__talk_metadata_name:n

. 312, 315, 320, 336, 336
__talk_mode:n 3
__talk_mode:nTF 3, 12
\l__talk_mode_str 7, 68, 93, 117
\c__talk_modes_clist 58, 65
__talk_onslide:n . 189, 191, 194, 223
\g__talk_onslide_tl

. 80, 84, 155, 196, 197, 201, 205
__talk_opacity_begin:n

. . . 38, 38, 51, 52, 59, 60, 79, 84, 200
__talk_opacity_end:

. 38, 40, 55, 63, 88, 179, 202
\l__talk_overlay_all_bool

. 124, 140, 142, 170
__talk_overlay_arg:n

. 3, 11, 92, 99, 103, 110, 118
__talk_overprint_begin:n

. 226, 226, 234, 251
__talk_overprint_check_ht:n . . .

. 250, 299, 301, 310
\l__talk_overprint_int . 244, 248, 254
__talk_overprint_save_ht:

. 250, 255, 275
__talk_pagecolor:n 43, 48, 49, 52
\c__talk_paper_height_dim 163
\c__talk_paper_width_dim 163
\g__talk_pauses_int

. . . . 11, 4, 42, 74, 178, 221, 222, 223

\l__talk_saved_action_str
. 121, 151, 175

\l__talk_saved_actions_bool
. 121, 153, 177

\l__talk_saved_overlays_bool . . .
. 121, 149, 172

__talk_sect_section:Nnn 81
__talk_sect_subsection:Nnn 81
__talk_sect_subsubsection:Nnn . . 81
__talk_sect_tag:nn 135, 137, 138
\g__talk_section_tl 66
\l__talk_section_tl 66
\l__talk_shuffle_skip . . 17, 20, 22, 34
__talk_shuffle_skip:n . 18, 18, 39, 41
__talk_slide:nn 9, 9, 408
__talk_slide_align_bottom:n 100, 100
__talk_slide_align_center:n 100, 106
__talk_slide_align_stretch:n . .

. 100, 112
__talk_slide_align_top:n . 100, 118
__talk_slide_aux:n 9, 45, 56
__talk_slide_begin: 33, 72, 72
\l__talk_slide_box 4, 79, 91
\g__talk_slide_continue_bool . . 3,

27, 30, 36, 40, 86, 207, 211, 215, 221
__talk_slide_end: 49, 72, 82
\g__talk_slide_int

. . 5, 8, 25, 29, 203, 206, 212, 214, 219
\g__talk_subsection_tl 66
\l__talk_subsection_tl 66, 117
\g__talk_subsubsection_tl 66
\l__talk_subsubsection_tl . . 66, 119
__talk_textcmd_eqiv:n . 318, 339, 343
\l__talk_titlelem_after_skip 44
\l__talk_titlelem_before_skip . . . 44
\l__talk_titlelem_color_tl 44
\l__talk_titlelem_font_tl 44
\l__talk_titlelem_tag_begin_tl . . 44
\l__talk_titlelem_tag_end_tl 44
\l__talk_titlepage_alignment_tl . 94
\l__talk_titlepage_framestyle_tl 94
\l__talk_titlepage_order_clist . . 94
__talk_tmp:w 114, 114, 166, 175
\l__talk_tmp_box 18, 26,

63, 67, 79, 93, 115, 229, 239, 261,
266, 268, 270, 272, 281, 286, 299, 326

\l__talk_tmp_tl 12, 18,
21, 23, 106, 116, 175, 176, 309, 311, 312

__talk_toc_aux:nnnn
. 174, 175, 178, 188, 197

__talk_toc_dest:n 174, 201, 204
__talk_toc_dest:w 174, 206, 209
__talk_toc_level:nnnn . 174, 202, 219
\l__talk_uncover_hidden_fp 74

72

__talk_wallpaper_hrule:Nnn
. 247, 294, 342, 342

talk/sec/title 135
\temporal . 206
TEX and LATEX 2ε commands:

\@arabic 6, 7, 78, 79, 80, 219, 396
\@author 3, 18, 19
\@auxout 290, 379
\@bsphack 370
\@caption 148
\@captype 118
\@contentsline@destination

. 55, 206, 227, 230, 233, 236
\@currentHref 386
\@currentlabel 383
\@currentlabelname 385
\@currenvir 369
\@date . 3, 25
\@definecounter 147
\@endparpenalty 382
\@esphack 373
\@evenfoot 362, 377, 388
\@evenhead 361, 376, 387
\@framenumber 394
\@ignore . 32
\@ignoretrue 95
\@inmatherr 369
\@input . 155
\@institute 3, 37
\@itempenalty 335
\@kernel@reserved@label@data . . . 387
\@listI . 56
\@listi 49, 56
\@listii . 57
\@listiii . 64
\@makecaption 155
\@makefntext 183
\@mpfootins 30
\@nobreakfalse 165
\@noitemerr 362
\@oddfoot . 360, 362, 371, 377, 386, 388
\@oddhead . 356, 361, 366, 376, 381, 387
\@outerparskip 380
\@parboxrestore 82, 152
\@setminipage 153
\@shortauthor 3
\@shortdate . 3
\@shortinstitute 3
\@shortsubtitle 3
\@shorttitle 3
\@starttoc 150, 171
\@subtitle 3, 42
\@title 3, 30, 31
\@totalframes 398

\c@figure 137
\c@frame . 394
\c@page . 219
\c@pauses . 4
\c@section 78
\c@slide . 5
\c@subsection 79
\c@subsubsection 80
\c@table . 137
\check@mathfonts 218
\currentgrouplevel 57
\fnum@figure 137
\fnum@table 137
\Gm@bmargin 297
\Gm@lmargin 231, 278, 344
\Gm@rmargin 233, 279, 327
\Gm@tmargin 230
\if@minipage 153
\ifmeasuring@ 12
\ignorespaces 32
\l@section 174
\l@subsection 174
\l@subsubsection 174
\on@line . 343
\protected@write 379
\ps@plain 354
\ps@talk . 354
\ps@wallpaper 354
\reset@color 62, 63
\set@color 61, 63
\std@definecounter 147
\stdreset@color 61
\stdset@color 61

tex commands:
\tex_currentgrouplevel:D . . 311, 312
\tex_fontdimen:D 64
\tex_hsize:D 33, 44
\tex_lastskip:D 20
\tex_setbox:D 31, 42
\tex_textfont:D 64
\tex_unskip:D 29
\tex_vbox:D 31, 42
\tex_vrule:D 50

text commands:
\text_purify:n 58, 112, 137
\text_titlecase_first:n 139

\textasteriskcentered 40
\textbf . 318
\textbullet . 38
\textcolor . 6, 11
\textendash . 39
\textheight . 88
\textit . 318
\textmd . 318

73

\textnormal . 318
\textperiodcentered 41
\textrm . 318
\textsc . 318
\textsf . 318
\textsl . 318
\texttt . 318
\textup . 318
\textwidth 30, 8, 19, 20, 80, 81, 250
\theenumi . 34
\theenumii . 35
\theenumiii . 36
\theenumiv . 37
\thefigure . 137
\theframe . 394
\thepage 6, 219, 384
\thepauses . 4
\thesection . 72
\theslide . 5
\thesubsection 72
\thesubsubsection 72
\thetable . 137
\thispagestyle 129
\tiny . 277
\title . 15
tl commands:

\tl_clear:N 117, 119, 315
\tl_gclear:N . . . 12, 13, 75, 76, 80, 197
\tl_gput_right:Nn 201
\tl_gset:Nn 8,

13, 18, 25, 30, 37, 42, 280, 283, 443
\tl_gset_eq:NN 14, 19, 31
\tl_if_blank:nTF

. 37, 84, 100, 115, 122, 196
\tl_if_blank_p:n 22, 306
\tl_if_empty:NTF 34,

68, 128, 155, 209, 253, 306, 315, 345
\tl_if_empty:nTF 64, 193, 205
\tl_if_exist:NTF 277, 338
\tl_map_inline:nn 318
\tl_new:N . . 3, 4, 66, 67, 68, 69, 70,

71, 97, 116, 138, 140, 154, 205, 279, 321
\tl_retokenize:n 63
\tl_set:Nn 12,

71, 72, 109, 110, 111, 114, 115, 116,
117, 121, 122, 123, 124, 139, 141, 309

\tl_set_eq:NN 45, 164
\tl_to_str:n 60,

61, 72, 87, 107, 112, 167, 176, 445

\tl_trim_spaces:n 55
\tl_use:N 84, 89, 196

\today . 3
token commands:

\token_if_eq_meaning:NNTF . 160, 171
\token_to_str:N 79, 80

\topsep 52, 60, 67

U
\uncover . 89
uncoverenv (env.) 98
\unskip . 24
use commands:

\use:N 90, 92, 104, 107, 111, 143
\use:n . 46,

48, 60, 76, 85, 109, 164, 178, 200, 358
\use_none:n 161, 176

\UseHookWithArguments
. 226, 229, 231, 234, 378

\UseInstance . . 85, 131, 134, 164, 259,
311, 319, 368, 373, 383, 386, 402, 403

\UseStructureName 110, 143
\UseTaggingSocket . 104, 105, 115, 154, 156
\UseTemplate 142, 145

V
\value 123, 199, 211, 221
vbox commands:

\vbox:n 54, 57, 66
\vbox_gset:Nn 171
\vbox_set:Nw 67, 79, 268
\vbox_set_end: 72, 85, 91, 236, 253, 280
\vbox_set_to_wd:Nnn 29, 299
\vbox_set_to_wd:Nnw 38, 79, 229
\vbox_to_ht:nn 88, 113, 237, 263
\vbox_top:n 71
\vbox_unpack:N 173
\vbox_unpack_drop:N 91, 93, 95

vcoffin commands:
\vcoffin_set:Nnn 2

verse (env.) . 243
\vfil 239, 240, 267
\visible . 89
visibleenv (env.) 98
\vspace 32, 41, 66, 76

Y
\year . 22

74

	Contents
	I ltx-talk – Overall set up
	1 ltx-talk implementation
	1.1 Set up
	1.2 Additions for expl3
	1.3 Extra variants
	1.4 Scratch space
	1.5 Option handling
	1.6 Setting up
	1.7 Math support
	1.8 Font selection
	1.9 Hyperlinks
	1.10 Tagging

	II ltx-talk-color – Color definitions
	1 ltx-talk-color implementation
	1.1 Existing definitions
	1.2 Document (and interface) commands
	1.3 Color definition
	1.4 Semantic colors

	III ltx-talk-decode – Decoding overlay specs
	1 ltx-talk-decode implementation

	IV ltx-talk-frame – The structure of frames
	1 ltx-talk-frame implementation
	1.1 Slides in frames
	1.2 Counters
	1.3 Frame options
	1.4 Tagging for headers
	1.5 Wallpaper
	1.6 The frame environment

	V ltx-talk-frame – The structure of frames
	1 ltx-talk-frame-structure implementation
	1.1 Columns
	1.2 Floats
	1.3 Footnotes

	VI ltx-talk-mode – Modes
	1 ltx-talk-mode implementation

	VII ltx-talk-overlay – Overlays
	1 ltx-talk-overlay implementation
	1.1 Utilities
	1.2 Opacity utilities
	1.3 Action commands and environments
	1.4 Non-action commands and environments
	1.5 Fixed-size areas
	1.6 Adding overlays to existing commands

	VIII ltx-talk-required – "Required" definitions
	1 ltx-talk-required implementation
	1.1 Standard design settings
	1.2 List support

	IX ltx-talk-structure – Structural commands
	1 ltx-talk-structure implementation
	1.1 Frame title
	1.2 Sectioning
	1.3 Table of contents
	1.4 Block environments
	1.5 Lists
	1.6 Theorems, etc.

	X ltx-talk-title – Title pages
	1 ltx-talk-title implementation

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	Y

