Topological data analytic methods in machine learning rely on
    vectorizations of the persistence diagrams that encode persistent
    homology, as surveyed by Ali &al (2000)
    <doi:10.48550/arXiv.2212.09703>.  Persistent homology can be computed
    using 'TDA' and 'ripserr' and vectorized using 'TDAvec'.  The
    Tidymodels package collection modularizes machine learning in R for
    straightforward extensibility; see Kuhn & Silge (2022,
    ISBN:978-1-4920-9644-3).  These 'recipe' steps and 'dials' tuners make
    efficient algorithms for computing and vectorizing persistence
    diagrams available for Tidymodels workflows.
| Version: | 
0.2.0 | 
| Depends: | 
R (≥ 3.5.0), recipes (≥ 0.1.17), dials | 
| Imports: | 
rlang (≥ 1.1.0), vctrs (≥ 0.5.0), scales, tibble, purrr (≥
1.0.0), tidyr, magrittr | 
| Suggests: | 
ripserr (≥ 0.1.1), TDA, TDAvec (≥ 0.1.4), testthat (≥
3.0.0), modeldata, tdaunif, knitr (≥ 1.20), rmarkdown (≥
1.10), tidymodels, ranger | 
| Published: | 
2025-06-20 | 
| DOI: | 
10.32614/CRAN.package.tdarec | 
| Author: | 
Jason Cory Brunson [cre, aut] | 
| Maintainer: | 
Jason Cory Brunson  <cornelioid at gmail.com> | 
| BugReports: | 
https://github.com/tdaverse/tdarec/issues | 
| License: | 
GPL (≥ 3) | 
| URL: | 
https://github.com/tdaverse/tdarec | 
| NeedsCompilation: | 
no | 
| Materials: | 
README, NEWS  | 
| CRAN checks: | 
tdarec results |