We obtained our results on 2025-05-XX using R version 4.5.0 (2025-04-11, “How About a Twenty-Six”) running on a Dell Latitude 5440 laptop with a 13th Gen Intel(R) Core(TM) i7-1365U processor (1800 Mhz), 16 GB RAM, and the operating system Microsoft Windows 10 Enterprise. The total computation time was around XXX hours (excluding data download, without parallel computing).
This vignette includes code chunks with a long computation time
(e.g., analysing simulated and experimental data) and code chunks with a
short computation time (e.g., generating figures and tables). The
logical options sim.app
and fig.tab
determine
whether the chunks for (i) running the simulation and application or
(ii) generating figures and tables are evaluated, respectively. Running
this vignette with sim.app=FALSE
and
fig.tab=TRUE
means that figures and tables will be
generated from previously obtained results. Running this vignette with
sim.app=TRUE
and fig.tab=TRUE
and means that
all results will be reproduced (including data download and data
processing). It is also possible to execute individual chunks (e.g., for
reproducing a specific figure or table), but then it is important to
provide the required inputs (e.g., “Requires: file X in folder Y,
execution of chunk Z”).
knitr::opts_chunk$set(echo=TRUE,eval=FALSE)
sim.app <- FALSE # reproduce simulation and application?
fig.tab <- FALSE # reproduce figures and tables?
This chunk verifies the working environment. The working directory,
specified by the object path
, must contain the R functions
in “package/R/functions.R” as well as the folders “results” and
“manuscript”. Alternatively, the R functions can be loaded from the R
package sparselink
. This chunk also installs missing R
packages from CRAN or Bioconductor.
path <- "C:/Users/arauschenberger/Desktop/sparselink" # LIH (Windows)
#path <- "/Users/armin.rauschenberger/Desktop/LIH/sparselink" # LCSB (Mac)
dir <- c("results","manuscript","package/R/functions.R")
for(i in seq_along(dir)){
if(!dir.exists(file.path(path,dir[i]))&!file.exists(file.path(path,dir[i]))){
stop(paste0("Require folder/file'",dir[i],"'."))
}
}
source(file.path(path,"package/R/functions.R")) # Or load 'sparselink' package.
inst <- rownames(utils::installed.packages())
pkgs <- c("knitr","rmarkdown","glmnet","BiocManager","mvtnorm","glmtrans","spls","xrnet")
for(i in seq_along(pkgs)){
if(!pkgs[i]%in%inst){
utils::install.packages(pkgs[i])
}
}
pkgs <- c("recount3","edgeR")
for(i in seq_along(pkgs)){
if(!pkgs[i]%in%inst){
BiocManager::install(pkgs[i])
}
}
blue <- "blue"; red <- "red"
if(exists("sim.app")&exists("fig.tab")){
if(!sim.app&fig.tab){
files <- c("simulation_multiple.RData","simulation_transfer.RData","recount3_data.RData","explore_data.RData","application.RData")
for(i in seq_along(files)){
if(!file.exists(file.path(path,"results",files[i]))){
stop("File",files[i],"is missing.")
}
}
}
}
This chunk generates the figure for the methods section.
Requires: execution of chunk setup
Execution time: \(1\) second
Ensures: file fig_flow.eps
in folder
manuscript
#<<setup>>
grDevices::postscript(file=file.path(path,"manuscript","fig_flow.eps"),width=6,height=2.5,horizontal=FALSE,onefile=FALSE,paper="special")
graphics::par(mfrow=c(1,1),mar=c(0,0,0,0))
graphics::plot.new()
graphics::plot.window(xlim=c(-0.2,1.0),ylim=c(0.0,1.0))
cex <- 0.8
pos <- data.frame(left=0.2,right=0.8,top=0.8,centre=0.45,bottom=0.1)
mar <- data.frame(vertical=0.08,horizontal=0.08,dist=0.04)
graphics::text(labels=paste("problem",1:2),x=c(pos$left,pos$right),y=pos$top+2*mar$vertical,font=2,col=c(blue,red),cex=cex)
graphics::text(labels=expression(hat(beta)["j,1"]^{init}),x=pos$left,y=pos$top,col=blue)
graphics::text(labels=expression(hat(beta)["j,2"]^{init}),x=pos$right,y=pos$top,col=red)
graphics::arrows(x0=rep(c(pos$left,pos$right),each=2),x1=rep(c(pos$left,pos$right),times=2)+c(-mar$horizontal,-mar$horizontal,mar$horizontal,mar$horizontal),y0=pos$top-mar$vertical,y1=pos$centre+mar$vertical,length=0.1,col=rep(c(blue,red),each=2),lwd=2)
graphics::text(labels=expression(w["j,1"]^{int}),x=pos$left-mar$horizontal-mar$dist,y=pos$centre,col=blue)
graphics::text(labels=expression(w["p+j,1"]^{int}),x=pos$left-mar$horizontal+mar$dist,y=pos$centre,col=blue)
graphics::text(labels=expression(w["j,1"]^{ext}),x=pos$left+mar$horizontal-mar$dist,y=pos$centre,col=red)
graphics::text(labels=expression(w["p+j,1"]^{ext}),x=pos$left+mar$horizontal+mar$dist,y=pos$centre,col=red)
graphics::text(labels=expression(w["j,2"]^{ext}),x=pos$right-mar$horizontal-mar$dist,y=pos$centre,col=blue)
graphics::text(labels=expression(w["p+j,2"]^{ext}),x=pos$right-mar$horizontal+mar$dist,y=pos$centre,col=blue)
graphics::text(labels=expression(w["j,2"]^{int}),x=pos$right+mar$horizontal-mar$dist,y=pos$centre,col=red)
graphics::text(labels=expression(w["p+j,2"]^{int}),x=pos$right+mar$horizontal+mar$dist,y=pos$centre,col=red)
graphics::arrows(x0=c(pos$left,pos$right),y0=pos$centre-mar$vertical,y1=pos$bottom+mar$vertical,col=c(blue,red),length=0.1,lwd=2)
graphics::text(labels=expression(hat(beta)["j,1"]^{final}==hat(gamma)["j,1"]-hat(gamma)["p+j,1"]),x=pos$left,y=pos$bottom,col=blue)
graphics::text(labels=expression(hat(beta)["j,2"]^{final}==hat(gamma)["j,2"]-hat(gamma)["p+j,2"]),x=pos$right,y=pos$bottom,col=red)
graphics::text(x=-0.1,y=c(pos$top,pos$bottom),labels=paste("stage",1:2),font=2,cex=cex)
grDevices::dev.off()
This chunk performs the simulation.
Requires: execution of chunk setup
Execution time: 0.5 hours
Ensures: files simulation_transfer.RData
(transfer
learning), simulation_multiple.RData
(multi-task learning)
and info_sim.txt
(session information) in folder
results
#<<setup>>
repetitions <- 10
for(mode in c("transfer","multiple")){
grid <- expand.grid(prob.separate=c(0.0,0.025,0.05),prob.common=c(0.0,0.025,0.05),family="gaussian")
grid <- grid[rep(seq_len(nrow(grid)),each=repetitions),] #
grid$seed <- seq_len(nrow(grid))
grid$family <- as.character(grid$family)
deviance <- auc <- time <- mse.coef <- mse.zero <- mse.nzero <- sel.num <- sel.coef <- sel.count <- hyperpar <- list()
for(i in seq(from=1,to=nrow(grid))){
set.seed(seed=grid$seed[i])
cat("i=",i,"\n")
if(mode=="transfer"){
data <- sim_data_trans(prob.common=grid$prob.common[i],prob.separate=grid$prob.separate[i],family=grid$family[i])
method <- c("wrap_separate","wrap_glmtrans","sparselink","wrap_xrnet")
} else if(mode=="multiple"){
#--- multi-task learning ---
data <- sim_data_multi(prob.common=grid$prob.common[i],prob.separate=grid$prob.separate[i],family=grid$family[i])
method <- c("wrap_separate","wrap_mgaussian","sparselink","wrap_spls")
}
result <- traintest(y_train=data$y_train,X_train=data$X_train,y_test=data$y_test,X_test=data$X_test,family=grid$family[i],method=method)
hyperpar[[i]] <- result$hyperpar
time[[i]] <- result$time
auc[[i]] <- result$auc
deviance[[i]] <- result$deviance
sel.num[[i]] <- t(sapply(result$coef,function(x) colSums(x!=0)))
sel.count[[i]] <- t(sapply(result$coef,function(x) rowMeans(count_matrix(truth=sign(data$beta),estim=sign(x))))) # Add na.rm=TRUE?
sel.coef[[i]] <- t(sapply(result$coef,function(x) colMeans(sign(x)!=sign(data$beta))))
# CONTINUE HERE: consider sparsity, true positives, false negatives, signs
mse.coef[[i]] <- t(sapply(result$coef,function(x) colMeans((data$beta-x)^2)))
mse.zero[[i]] <- t(sapply(result$coef,function(x) colMeans(((data$beta==0)*(data$beta-x))^2)))
mse.nzero[[i]] <- t(sapply(result$coef,function(x) colMeans(((data$beta!=0)*(data$beta-x))^2)))
}
save(grid,deviance,auc,sel.num,sel.count,sel.coef,mse.coef,mse.zero,mse.nzero,time,file=file.path(path,"results",paste0("simulation_",mode,".RData")))
}
writeLines(text=capture.output(utils::sessionInfo(),cat("\n"), sessioninfo::session_info()),con=paste0(path,"/results/info_sim.txt"))
The following chunk generate the figures for the simulation study.
Requires: execution of chunk setup
, files
simulation_transfer.RData
and
simulation_multiple.RData
in folder results
(generated by chunk simulation
)
execution time: \(1\) second
Ensures: files fig_sim_multiple.eps
and
fig_sim_transfer.eps
in folder
manuscript
#<<setup>>
caption <- paste(c("\\textbf{Multi-task learning.}","\\textbf{Transfer learning.}"),"Comparison of different measures (rows) between an available method (red) and the proposed method (blue) in different simulation settings (columns), based on the average of three problems",c("(tasks)","(datasets)"),"for each repetition out of ten. Measures: performance metric (mean squared error on hold-out data, as a fraction of the one from standard lasso regression; a point below the dashed line means that",c("multi-task","transfer"),"learning improves predictions), sparsity (number of non-zero coefficients), precision (number of coefficients with correct signs divided by number of non-zero coefficients). The arrows point in the direction of improvement. Settings: percentage of features with a common effect for all problems ($\\pi_\\theta$), percentage of features with a specific effect for each problem ($\\pi_\\delta$).",c("\\label{fig_sim_multiple}","\\label{fig_sim_transfer}"))
figure_change <- function(model0,model1="sparselink",model2){
mode <- paste0(100*grid$prob.common,"%\n",100*grid$prob.separate,"%")
graphics::par(mfrow=c(3,1),mar=c(3,3,1,1))
label <- function(){
cex <- 0.5
at <- 0.3
graphics::mtext(text=expression(pi[theta]==phantom(.)),side=1,line=0.2,at=at,cex=cex)
graphics::mtext(text=expression(pi[delta]==phantom(.)),side=1,line=1.2,at=at,cex=cex)
}
#--- predictive performance ---
means <- t(sapply(X=deviance,FUN=rowMeans))
means <- means/means[,"wrap_separate"]
plot_change(x=mode,y0=means[,model0],y1=means[,model1],y2=means[,model2],main="metric",increase=FALSE)
graphics::abline(h=1,lty=2,col="grey")
label()
#--- sparsity ---
nzero <- sapply(X=sel.num,FUN=rowMeans)
plot_change(x=mode,y0=nzero[model0,],y1=nzero[model1,],y2=nzero[model2,],main="sparsity",increase=FALSE)
graphics::abline(h=0,lty=2,col="grey")
label()
#--- precision ---
precision <- sapply(X=sel.count,FUN=function(x) x[,"precision"])
precision[is.na(precision)] <- 0
plot_change(x=mode,y0=precision[model0,],y1=precision[model1,],y2=precision[model2,],main="precision",increase=TRUE)
graphics::abline(h=0,lty=2,col="grey")
label()
}
grDevices::postscript(file=file.path(path,"manuscript","fig_sim_multiple.eps"),width=6.5,height=6,horizontal=FALSE,onefile=FALSE,paper="special")
load(file.path(path,paste0("results/simulation_multiple.RData")),verbose=TRUE)
#model.ref <- "wrap_mgaussian"
#model.own <- "sparselink"
figure_change(model0="wrap_mgaussian",model1="sparselink",model2="wrap_spls")
rowMeans(sapply(deviance,function(x) rank(rowMeans(x))))
rowMeans(sapply(deviance,function(x) colMeans(t(x)/x["wrap_separate",])))
runtime <- rowSums(sapply(time,function(x) x))
round(runtime/runtime["wrap_separate"],digits=2)
grDevices::dev.off()
grDevices::postscript(file=file.path(path,"manuscript","fig_sim_transfer.eps"),width=6.5,height=6,horizontal=FALSE,onefile=FALSE,paper="special")
load(file.path(path,paste0("results/simulation_transfer.RData")))
#model.ref <- "wrap_glmtrans"
#model.own <- "sparselink"
figure_change(model0="wrap_glmtrans",model1="sparselink",model2="wrap_xrnet")
rowMeans(sapply(deviance,function(x) rank(rowMeans(x))))
rowMeans(sapply(deviance,function(x) colMeans(t(x)/x["wrap_separate",])))
runtime <- rowSums(sapply(time,function(x) x))
round(runtime/runtime["wrap_separate"],digits=2)
grDevices::dev.off()
# Effect of sample size in source or target dataset (TL), effect of sample size (MTL).
#<<setup>>
repetitions <- 50
grid <- metric <- list()
for(mode in c("MTL-size","TL-source","TL-target")){ #,"TL-prop","MTL-prop"
metric[[mode]] <- list()
cand <- c(20,40,60,80,100)
if(mode=="MTL-size"){
grid[[mode]] <- expand.grid(prob.common=0.05,prob.separate=0.025,family="gaussian",n0=cand)
} else if(mode=="TL-source"){
grid[[mode]] <- expand.grid(prob.common=0.05,prob.separate=0.025,family="gaussian",n_source=cand,n_target=50)
} else if(mode=="TL-target"){
grid[[mode]] <- expand.grid(prob.common=0.05,prob.separate=0.025,family="gaussian",n_source=50,n_target=cand)
} else if(mode %in% c("TL-prop","MTL-prop")){
cand <- c(0.025,0.05,0.10,0.15,0.20)
grid[[mode]] <- expand.grid(prob.common=cand,prob.separate=NA,family="gaussian",n_source=50,n_target=50,n0=50)
} else {
stop("Wrong mode.")
}
grid[[mode]] <- grid[[mode]][rep(seq_len(nrow(grid[[mode]])),each=repetitions),]
#grid[[mode]]$seed <- seq_len(nrow(grid[[mode]]))
grid[[mode]]$seed <- rep(x=seq_len(repetitions),times=length(cand))
grid[[mode]]$family <- as.character(grid[[mode]]$family)
cond <- is.na(grid[[mode]]$prob.separate)
grid[[mode]]$prob.separate[cond] <- 0.5*grid[[mode]]$prob.common[cond]
for(i in seq(from=1,to=nrow(grid[[mode]]))){
set.seed(seed=grid$seed[i])
cat("i=",i,"\n")
if(mode %in% c("TL-source","TL-target","TL-prop")){
n0 <- rep(c(grid[[mode]]$n_source[i],grid[[mode]]$n_target[i]),times=c(2,1))
data <- sim_data_trans(prob.common=grid[[mode]]$prob.common[i],prob.separate=grid[[mode]]$prob.separate[i],family=grid[[mode]]$family[i],n0=n0)
method <- c("wrap_separate","wrap_glmtrans","sparselink","wrap_xrnet")
} else if(mode %in% c("MTL-size","MTL-prop")){
data <- sim_data_multi(prob.common=grid[[mode]]$prob.common[i],prob.separate=grid[[mode]]$prob.separate[i],family=grid[[mode]]$family[i],n0=grid[[mode]]$n0[i])
method <- c("wrap_separate","wrap_mgaussian","sparselink","wrap_spls")
} else {
stop("Wrong mode.")
}
result <- traintest(y_train=data$y_train,X_train=data$X_train,y_test=data$y_test,X_test=data$X_test,family=grid[[mode]]$family[i],method=method)
metric[[mode]][[i]] <- result$deviance
}
}
save(grid,metric,file=file.path(path,"results","simulation_devel.RData"))
writeLines(text=capture.output(utils::sessionInfo(),cat("\n"), sessioninfo::session_info()),con=paste0(path,"/results/info_sim_extra.txt"))
#<<setup>>
load(file.path(path,"results","simulation_devel.RData"))
grDevices::postscript(file=file.path(path,"manuscript","fig_sim_extra.eps"),width=6.5,height=3,horizontal=FALSE,onefile=FALSE,paper="special")
cex <- 0.8
graphics::par(mfrow=c(1,3),mar=c(4.5,4.5,1.5,1),oma=c(0,0,0,0))
#graphics::layout(mat=matrix(data=c(1,1,2,2,3,3,0,4,4,0,5,5),ncol=2))
for(mode in c("MTL-size","TL-source","TL-target")){
#for(mode in c("MTL-prop","TL-prop")){
if(mode %in% c("MTL-size","MTL-prop","TL-prop")){
mse <- sapply(metric[[mode]],function(x) rowMeans(x))
} else if(mode %in% c("TL-source","TL-target")){
mse <- sapply(metric[[mode]],function(x) x[,3])
}
if(mode %in% c("TL-source","TL-target","TL-prop")){
col <- c("wrap_separate"="black","wrap_glmtrans"="red","wrap_xrnet"="orange","sparselink"="blue")
lty <- c("wrap_separate"=3,"wrap_glmtrans"=2,"wrap_xrnet"=2,"sparselink"=1)
} else if(mode %in% c("MTL-size","MTL-prop")) {
col <- c("wrap_separate"="black","wrap_mgaussian"="red","wrap_spls"="orange","sparselink"="blue")
lty <- c("wrap_separate"=3,"wrap_mgaussian"=2,"wrap_spls"=2,"sparselink"=1)
}
if(mode=="TL-source"){
params <- grid[[mode]]$n_source
} else if(mode=="TL-target"){
params <- grid[[mode]]$n_target
} else if(mode=="MTL-size"){
params <- grid[[mode]]$n0
} else if(mode %in% c("TL-prop","MTL-prop")){
params <- grid[[mode]]$prob.common
}
unique <- unique(params)
graphics::plot.new()
graphics::plot.window(xlim=range(params),ylim=range(log(mse)))
graphics::box()
if(mode=="MTL-size"){
main <- "MTL - varying sample size"
xlab <- bquote("sample size ("~n[1]~"="~n[2]~"="~n[3]~")")
legend <- ""
} else if(mode=="TL-source"){
main <- "TL - varying source sample size"
xlab <- bquote("source sample size ("~n[1]~"="~n[2]~")")
legend <- bquote("target sample size:"~n[3]==.(unique(grid[[mode]]$n_target)))
} else if(mode=="TL-target"){
main <- "TL - varying target sample size"
xlab <- bquote("target sample size ("~n[3]~")")
legend <- bquote("source sample size:"~n[1]~"="~n[2]==.(unique(grid[[mode]]$n_source)))
} else if(mode=="MTL-prop"){
xlab <- "blabla"
main <- "MTL - effect proportion"
legend <- ""
} else if(mode=="TL-prop"){
xlab <- "blabla"
main <- "TL - effect proportion"
legend <- ""
}
graphics::title(main=main,cex.main=cex)
graphics::title(ylab="log MSE",line=2.5,xlab=xlab,cex.lab=cex)
graphics::legend(x="topleft",legend=legend,bty="n",cex=cex)
if(mode %in% c("TL-prop","MTL-prop")){
graphics::axis(side=1,at=unique,labels=paste0(100*unique,"%"),cex.axis=cex)
} else {
graphics::axis(side=1,at=unique,cex.axis=cex)
}
graphics::axis(side=2,cex.axis=cex)
for(i in names(col)){
val <- tapply(X=mse[i,],INDEX=params,FUN=function(x) mean(x))
graphics::lines(x=unique,y=log(val),col=col[i],type="o",pch=16,lty=lty[i])
}
}
grDevices::dev.off()
This chunk defines the references and the project identifiers for the application.
Requires: nothing
Execution time: \(1\) second
Ensures: list project
in working
environment
project <- list()
project$IBD <- c("Tew (2016)"="SRP063496",
"Haberman (2019)"="SRP129004",
"Verstockt (2019)"="ERP113396",
"Verstockt (2020)"="ERP114636",
"Boyd (2018)"="SRP100787")
project$RA <- c("Baker (2019)"="SRP169062",
"Moncrieffe (2017)"="SRP074736",
"Goldberg (2018)"="SRP155483")
extra <- c("Lewis (2019)"="ERP104864") # https://doi.org/10.1016/j.celrep.2019.07.091
This chunk downloads the data for the application.
Requires: execution of chunks setup
and
define_projects
Execution time: depends on internet speed and cached files
Ensures: files recount3_data.RData
(data sets) and
info_data.txt
(system information) in folder
results
#<<setup>>
#<<define_projects>>
data <- list()
for(i in c(unlist(project),extra)){
data[[i]] <- recount3::create_rse_manual(
project=i,
project_home="data_sources/sra",
organism="human",
annotation = "gencode_v26",
type="gene")
}
save(data,file=file.path(path,"results/recount3_data.RData"))
writeLines(text=capture.output(utils::sessionInfo(),cat("\n"),
sessioninfo::session_info()),con=paste0(path,"/results/info_data.txt"))
This chunk preprocesses the data.
Requires: execution of chunks setup
and
define_projects
, file recount3_data.RData
(generated by chunk download_data
)
Execution time: \(5\) seconds
Ensures: lists y
(targets) and x
(features) in working environment
#<<setup>>
#<<define_projects>>
load(file.path(path,"results/recount3_data.RData"))
#- - - - - - - - - - - - - - -
#- - - extract features - - -
#- - - - - - - - - - - - - - -
# extract features
x <- list()
for(i in c(unlist(project),extra)){
counts <- t(SummarizedExperiment::assays(data[[i]])$raw_counts)
colnames(counts) <- SummarizedExperiment::rowRanges(data[[i]])$gene_name
x[[i]] <- counts
}
# select most expressed protein-coding genes (for all TL projects together)
select <- list()
total <- numeric()
for(i in unlist(project)){
#total <- rbind(total,Matrix::colSums(x[[i]])) # original: mean filtering
total <- rbind(total,apply(X=x[[i]],MARGIN=2,FUN=stats::var)) # trial: variance filtering
}
type <- SummarizedExperiment::rowData(data[[i]])$gene_type
cond <- type=="protein_coding"
total[,!cond] <- 0
rank <- apply(X=total,MARGIN=1,FUN=rank)
mean_rank <- rowMeans(rank)
#temp <- cond & apply(total,2,function(x) all(x>0)) & (mean_rank >= sort(mean_rank[cond],decreasing=TRUE)[2000]) # original: top 2000
temp <- cond & mean_rank >= sort(mean_rank[cond],decreasing=TRUE)[5000] # trial: top 5000
for(i in unlist(project)){
select[[i]] <- temp
}
# select most expressed protein-coding genes (for MTL project)
#mean <- apply(X=x[[extra]],MARGIN=2,FUN=mean) # original
var <- apply(X=x[[extra]],MARGIN=2,FUN=var) # trial
#warning("change number in next line")
#temp <- cond & mean >= sort(mean[cond],decreasing=TRUE)[5000] # trial: top 5000
temp <- cond & var >= sort(var[cond],decreasing=TRUE)[5000] # trial: top 5000
select[[extra]] <- temp
# pre-processing
for(i in c(unlist(project),extra)){
lib.size <- Matrix::rowSums(x[[i]])
x[[i]] <- x[[i]][,select[[i]],drop=FALSE]
norm.factors <- edgeR::calcNormFactors(object=t(x[[i]]),lib.size=lib.size)
gamma <- norm.factors*lib.size/mean(lib.size)
gamma <- matrix(data=gamma,nrow=nrow(x[[i]]),ncol=ncol(x[[i]]))
x[[i]] <- x[[i]]/gamma
x[[i]] <- 2*sqrt(x[[i]] + 3/8) # Anscombe transform
x[[i]] <- scale(x[[i]]) # scale because of different datasets!?
}
#- - - - - - - - - - - - - -
#- - - extract targets - - -
#- - - - - - - - - - - - - -
# extract information on samples
frame <- list()
for(i in c(unlist(project),extra)){
list <- strsplit(data[[i]]$sra.sample_attributes,split="\\|")
data[[i]]$sra.experiment_attributes
# What about sra.experiment_attributes?
n <- length(list)
cols <- unique(sapply(strsplit(unlist(list),split=";;"),function(x) x[1]))
ncol <- length(cols)
frame[[i]] <- matrix(data=NA,nrow=n,ncol=ncol,dimnames=list(rownames(x[[i]]),cols))
for(j in seq_len(n)){
for(k in seq_len(ncol)){
vector <- list[[j]]
which <- which(substring(text=vector,first=1,last=nchar(cols[k]))==cols[k])
string <- vector[which]
if(length(string)==0){next}
frame[[i]][j,k] <- strsplit(string,split=";;")[[1]][2]
}
}
frame[[i]] <- as.data.frame(frame[[i]])
}
# extract binary outcome
y <- z <- list()
for(i in unlist(project)){
# CONTINUE HERE!!!
if(i=="ERP113396"){
y[[i]] <- sapply(X=frame[[i]]$`clinical history`,FUN=function(x) switch(EXPR=x,"responder"=1,"non-responder"=0,stop("invalid")))
} else if(i=="ERP114636"){
y[[i]] <- sapply(X=frame[[i]]$`clinical information`,FUN=function(x) switch(EXPR=x,"response to vedolizumab therapy"=1-1,"no response to vedolizumab therapy"=0+1,stop("invalid")))
warning("Inverting response and non-response!")
} else if(i=="SRP100787"){
y[[i]] <- sapply(X=frame[[i]]$condition,FUN=function(x) switch(EXPR=x,"CD inactive"=1,"UC inactive"=1,"CD active"=0,"UC active"=0,control=NA,"NA"=NA,stop("invalid")))
} else if(i=="SRP129004"){
y[[i]] <- sapply(X=frame[[i]]$`week 4 remission`,FUN=function(x) switch(EXP=x,"Yes"=1,"No"=0,"NA"=NA,stop("invalid")))
suppressWarnings(z[[i]] <- data.frame(pucai=as.numeric(frame[[i]]$pucai),mayo=as.numeric(frame[[i]]$`total mayo score`),histology=as.numeric(frame[[i]]$`histology severity score`)))
} else if(i=="SRP063496"){
y[[i]] <- sapply(X=frame[[i]]$`remission at week 10`,FUN=function(x) switch(x, "Remitter"=1,"Non-remitter"=0,"N/A"=NA,stop("invalid")))
} else if(i=="SRP169062"){
y[[i]] <- sapply(X=frame[[i]]$`flare event`,FUN=function(x) switch(x,"no flare"=1,"flare"=0,stop("invalid")))
} else if(i=="SRP155483"){
y[[i]] <- sapply(X=frame[[i]]$`disease activity`,FUN=function(x) switch(x,"remission"=1,"Low"=0,"Moderate"=0,"High"=0,"--"=NA,stop("invalid")))
z[[i]] <- sapply(X=frame[[i]]$`disease activity`,FUN=function(x) switch(x,"remission"=0,"Low"=1,"Moderate"=2,"High"=3,"--"=NA,stop("invalid")))
} else if(i=="SRP074736"){
y[[i]] <- sapply(X=frame[[i]]$`mtx response status`,FUN=function(x) switch(x,"responder"=1,"non-responder"=0,"control"=NA,stop("invalid")))
}
}
# overlap
for(j in unlist(project)){
is.na <- is.na(y[[j]])
if(length(is.na)!=nrow(x[[j]])){stop()}
y[[j]] <- y[[j]][!is.na]
if(!is.null(z[[j]])){
if(is.vector(z[[j]])){
z[[j]] <- z[[j]][!is.na]
} else {
z[[j]] <- z[[j]][!is.na,]
}
}
x[[j]] <- x[[j]][!is.na,]
}
This chunk performs the exploratory data analysis.
Requires: execution of chunks setup
,
define_projects
and preprocess_data
Execution time: \(0.5\) minutes
Ensures: files explore_data.RData
(results) and
info_explore.txt
(session information) in folder
results
#<<setup>>
#<<define_projects>>
#<<preprocess_data>>
set.seed(1)
alpha.holdout <- 0
alpha.crossval <- 1
family <- "binomial"
nfolds <- 10
codes <- unlist(project)
coef <- matrix(data=NA,nrow=ncol(x[[1]]),ncol=length(codes),dimnames=list(NULL,codes))
auc <- auc.pvalue <- matrix(data=NA,nrow=length(codes),ncol=length(codes),dimnames=list(codes,codes))
foldid <- make_folds_trans(y=y,family="binomial",nfolds=nfolds)
ridge <- lasso <- list()
for(i in seq_along(codes)){
ridge[[i]] <- glmnet::cv.glmnet(x=x[[codes[i]]],y=y[[codes[i]]],family=family,alpha=alpha.holdout,foldid=foldid[[i]])
coef[,i] <- stats::coef(ridge[[i]],s="lambda.min")[-1]
for(j in seq_along(codes)){
if(i==j){
y_hat <- rep(x=NA,times=length(y[[i]]))
for(k in seq_len(nfolds)){
holdout <- foldid[[i]]==k
temp <- glmnet::cv.glmnet(x=x[[codes[i]]][!holdout,],y=y[[codes[i]]][!holdout],family=family,alpha=alpha.crossval)
y_hat[holdout] <- predict(object=temp,newx=x[[codes[i]]][holdout,],s="lambda.min",type="response")
}
} else {
y_hat <- as.numeric(predict(object=ridge[[i]],newx=x[[j]],s="lambda.min",type="response"))
}
auc[i,j] <- pROC::auc(response=y[[codes[j]]],predictor=y_hat,direction="<",levels=c(0,1))
auc.pvalue[i,j] <- stats::wilcox.test(rank(y_hat)~y[[codes[[j]]]],alternative="less",exact=FALSE)$p.value
}
}
save(coef,auc,auc.pvalue,codes,file=file.path(path,"results","explore_data.RData"))
writeLines(text=capture.output(utils::sessionInfo(),cat("\n"),
sessioninfo::session_info()),con=paste0(path,"/results/info_explore.txt"))
This chunk generates the tables for the exploratory data analysis.
Requires: execution of chunk setup
, file
explore_data.RData
in folder results
(generated by chunk explore_apply
)
execution time: \(1\) second
Ensures: files tab_cor.tex
and
tab_auc.tex
in folder manuscript
#<<setup>>
#if(any(unlist(project)!=names(refs))){stop("not compatible")}
load(file.path(path,"results/explore_data.RData"))
names <- gsub(pattern="IBD.|RA.",replacement="",x=names(unlist(project)))
codes <- colnames(coef)
cor.pvalue <- matrix(data=NA,nrow=length(codes),ncol=length(codes),dimnames=list(codes,codes))
for(i in seq_along(codes)){
for(j in seq_along(codes)){
cor.pvalue[i,j] <- stats::cor.test(x=coef[,i],y=coef[,j],method="spearman",exact=FALSE)$p.value
}
}
diag(cor.pvalue) <- NA
insert.space <- function(table,cut){
index.left <- index.top <- seq_len(cut)
index.right <- index.bottom <- seq(from=cut+1,to=ncol(table))
top <- cbind(table[index.top,index.left],"",table[index.top,index.right])
bottom <- cbind(table[index.bottom,index.left],"",table[index.bottom,index.right])
out <- rbind(top,"",bottom)
colnames(out)[colnames(out)==""] <- " "
return(out)
}
table <- stats::cor(coef,method="spearman")
rownames(table) <- colnames(table) <- names
black <- (!is.na(cor.pvalue)) & (cor.pvalue<=0.05)
star <- (!is.na(cor.pvalue)) & (cor.pvalue<=0.05/choose(n=length(codes),k=2))
nonnegative <- table>=0
table <- format(round(table,digits=2),digits=2,trim=TRUE)
table[nonnegative] <- paste0("\\phantom{-}",table[nonnegative])
table[!black] <- paste0("\\textcolor{gray}{",table[!black],"}")
table[star] <- paste0(table[star],"$^\\star$")
table[!star] <- paste0(table[!star],"\\phantom{$^\\star$}")
#table[nonnegative] <- paste0("-",table[nonnegative])
diag(table) <- "-"
table <- insert.space(table=table,cut=5)
xtable <- xtable::xtable(x=table,align="rccccccccc",caption="Spearman correlation coefficients between the ridge regression coefficients from different datasets. Pairwise combinations of datasets with significantly correlated regression coefficients are highlighted, with black colour for nominal significance ($p$-value $\\leq 0.05$) and stars for adjusted significance ($p$-value $\\leq 0.05/28$). We expect a correlation coefficient close to $0$ for unrelated problems and close to $1$ for identical problems.",label="tab_cor")
xtable::print.xtable(x=xtable,sanitize.text.function=identity,rotate.colnames=TRUE,caption.placement="top",hline.after=c(0,nrow(table)),comment=FALSE,file=file.path(path,"manuscript","tab_cor.tex"),floating.environment="table*") #add.to.row=list(pos=list(5),command="\\hdashline \n")
table <- auc
rownames(table) <- colnames(table) <- names
table <- format(round(table,digits=2),digits=2)
black <- auc.pvalue<=0.05
star <- auc.pvalue<=0.05/(length(codes)*length(codes))
diag(table) <- paste0("(",diag(table),")")
table[!black] <- paste0("\\textcolor{gray}{",table[!black],"}")
table[star] <- paste0(table[star],"$^\\star$")
table[!star] <- paste0(table[!star],"\\phantom{$^\\star$}")
table <- insert.space(table=table,cut=5)
xtable <- xtable::xtable(x=table,align="rccccccccc",caption="Out-of-sample area under the receiver operating characteristic curve (\\textsc{roc-auc}) from logistic ridge regression trained on the dataset in the row and tested on the dataset in the column (off-diagonal entries), or cross-validated \\textsc{roc-auc} from logistic lasso regression trained and tested on the same dataset by $10$-fold external cross-validation (diagonal entries, between brackets). The \\textsc{roc-auc} of a random classifier is $0.5$, while that of a perfect classifier is $1.0$. Entries on and off the diagonal are not comparable. Predictions that are significantly better than random predictions (according to the one-sided Mann-Whitney $U$ test for testing whether the ranks of the predicted probabilities are significantly higher for the cases than for the controls) are highlighted, with black colour for nominal significance ($p$-value $\\leq 0.05$) and stars for adjusted significance ($p$-value $\\leq 0.05/64$).",label="tab_auc")
xtable::print.xtable(x=xtable,sanitize.text.function=identity,rotate.colnames=TRUE,caption.placement="top",hline.after=c(0,nrow(table)),comment=FALSE,file=file.path(path,"manuscript","tab_auc.tex"),floating.environment="table*")
This chunk performs the transfer learning analysis.
Requires: execution of chunks setup
and
define_projects
, file recount3_data.RData
in
folder results
(generated by chunk
download_data
), execution of chunk
preprocess_data
Execution time: 1.5 hours
Ensures: application.RData
(results) and
info_app.txt
(session information) in folder
results
#<<setup>>
#<<define_projects>>
#<<preprocess_data>>
result <- list()
for(i in names(project)){
cat("project:",i,"\n")
result[[i]] <- list()
for(j in seq_len(5)){ # 5 repetitions of 10-fold CV
set.seed(j)
codes <- project[[i]]
result[[i]][[j]] <- cv_transfer(y=y[codes],X=x[codes],family="binomial",method=c("wrap_separate","wrap_glmtrans","sparselink","wrap_xrnet"),alpha.init=ifelse(i=="RA",0,0.95)) # lasso-like elastic net for IBD, ridge for RA (weak signal)
}
}
save(result,project,file=file.path(path,"results","application.RData"))
writeLines(text=capture.output(utils::sessionInfo(),cat("\n"),
sessioninfo::session_info()),con=paste0(path,"/results/info_app.txt"))
# debugging
if(FALSE){
set.seed(1)
codes <- project[["RA"]]
test <- wrap_xrnet(x=x[codes],y=y[codes],alpha.init=0.95,alpha=1)
}
This chunk generates the figure on the predictive performance.
Requires: execution of chunk setup
, file
application.RData
in folder results
(generated
by chunk transfer_apply
)
Execution time: \(1\) second
Ensures: file fig_app.eps
in folder
manuscript
#<<setup>>
grDevices::postscript(file=file.path(path,"manuscript","fig_app.eps"),width=6.5,height=4,horizontal=FALSE,onefile=FALSE,paper="special")
graphics::par(mfrow=c(2,1),mar=c(4,2,1,1),oma=c(0,0,0,0))
load(file.path(path,paste0("results/application.RData")),verbose=TRUE)
model0 <- "wrap_glmtrans"
model1 <- "sparselink"
model2 <- "wrap_xrnet"
# predictivity
metric <- lapply(result,function(x) do.call(what="rbind",args=lapply(x,function(x) x$auc))) # DEV and AUC need different directions (increase=FALSE/TRUE)!
metric <- do.call(what="rbind",args=metric)
metric <- metric/metric[,"wrap_separate"]
#xlab <- refs[rownames(metric)]
#names <- gsub(pattern="",replacement="\n",x=unlist(project))
label <- gsub(pattern="IBD.|RA.",replacement="",x=gsub(pattern=" ",replacement="\n",x=names(unlist(project))))
index <- match(x=rownames(metric),table=unlist(project))
xlab <- label[index]
plot_change(x=xlab,y0=metric[,model0],y1=metric[,model1],y2=metric[,model2],main="metric",increase=TRUE,cex.main=0.8)
graphics::axis(side=1,at=length(project$IBD)+0.5,labels="|",tick=FALSE,line=-0.25,font=2)
graphics::abline(h=0.5,lty=2,col="grey")
graphics::abline(h=1,lty=2,col="grey")
# sparsity
nzero <- lapply(result,function(x) lapply(x,function(x) sapply(x$refit$coef,function(x) colSums(x!=0))))
nzero <- do.call(what="rbind",args=do.call(what="c",args=nzero))
plot_change(x=xlab,y0=nzero[,model0],y1=nzero[,model1],y2=nzero[,model2],main="sparsity",increase=FALSE,cex.main=0.8)
graphics::axis(side=1,at=length(project$IBD)+0.5,labels="|",tick=FALSE,line=-0.25,font=2)
graphics::abline(h=0,lty=2,col="grey")
grDevices::dev.off()
# percentage change
# (reported in section 4 "application" subsection 4.3 "transfer learning")
disease <- ifelse(rownames(metric) %in% project$IBD,"IBD",ifelse(rownames(metric) %in% project$RA,"RA",NA))
#round(100*colMeans(metric)-100,digits=2)
round(100*colMeans(metric[disease=="IBD",])-100,digits=2)
round(100*colMeans(metric[disease=="RA",])-100,digits=2)
colMeans(nzero)
colMeans(nzero[disease=="IBD",])
colMeans(nzero[disease=="RA",])
#--- revision: report AUC ---
Reduce(f="+",x=lapply(result$IBD,function(x) x$auc))/length(result$IBD)
lapply(result,function(x) round(colMeans(Reduce(f="+",x=lapply(x,function(x) x$auc))/length(result$IBD)),digits=2))
This chunk generates the figure on feature selection.
Requires: execution of chunk setup
, file
application.RData
in folder results
(generated
by chunk transfer_apply
)
Execution time: \(1\) second
Ensures: file fig_coef.eps
in folder
manuscript
#<<setup>>
load(file.path(path,"results","application.RData"))
coefs <- list()
for(i in seq_along(result$IBD)){
coefs[[i]] <- result$IBD[[i]]$refit$coef$sparselink
colnames(coefs[[i]]) <- names(project$IBD)
rownames(coefs[[i]]) <- rownames(result$IBD[[1]]$refit$coef$wrap_glmtrans) # try to avoid this
}
any <- rowSums(sapply(coefs,function(x) apply(x,1,function(x) any(x!=0))))!=0
for(i in seq_along(result$IBD)){
coefs[[i]] <- coefs[[i]][any,]
}
table <- Reduce(f="+",x=coefs)/5
cex <- 0.7
grDevices::postscript(file=file.path(path,"manuscript","fig_coef.eps"),width=7,height=4,horizontal=FALSE,onefile=FALSE,paper="special")
graphics::par(mfrow=c(1,1),mar=c(2.5,4.5,0.5,1.5),oma=c(0,0,0,0))
graphics::plot.new()
graphics::plot.window(xlim=c(0.6,ncol(table)+0.4),ylim=c(0.5,nrow(table)+0.5))
col <- apply(table,1,function(x) ifelse(all(x<=0),"blue",ifelse(all(x>=0),"red","black")))
colnames <- gsub(x=colnames(table),pattern=" ",replacement="\n")
graphics::mtext(text=colnames,side=1,at=seq_len(ncol(table)),cex=cex,line=1)
rownames <- rownames(table)
graphics::mtext(text=rownames,side=2,at=seq_len(nrow(table)),las=2,cex=cex,line=0.7,col=col)
star <- rowSums(table!=0)>1
graphics::mtext(text="*",side=2,at=which(star),line=-0.3)
graphics::mtext(text=ifelse(col=="blue","-",ifelse(col=="red","+",".")),side=4,at=seq_len(nrow(table)),las=2,cex=cex,line=0.5,col=col)
for(i in seq_len(nrow(table))){
for(j in seq_len(ncol(table))){
for(k in 1:5){
col <- ifelse(coefs[[k]][i,j]<0,"blue",ifelse(coefs[[k]][i,j]>0,"red","white"))
cex <- pmax(sqrt(5*abs(coefs[[k]][i,j])),0.2)
graphics::points(x=j-(-3+k)*0.17,y=i,col=col,cex=cex,pch=16)
}
}
}
graphics::abline(v=seq(from=0.5,to=5.5,by=1))
grDevices::dev.off()
This chunk saves the session information for generating figures and tables.