Package ‘slideimp’

January 7, 2026

Type Package
Title Numeric Matrices K-NN and PCA Imputation
Version 0.5.4

Description Fast k-nearest neighbors (K-NN) and principal component
analysis (PCA) imputation algorithms for missing values in
high-dimensional numeric matrices, i.e., epigenetic data. For
extremely high-dimensional data with ordered features, a sliding
window approach for K-NN or PCA imputation is provided. Additional
features include group-wise imputation (e.g., by chromosome),
hyperparameter tuning with repeated cross-validation, multi-core
parallelization, and optional subset imputation. The K-NN algorithm is
described in: Hastie, T., Tibshirani, R., Sherlock, G., Eisen, M.,

Brown, P. and Botstein, D. (1999) * " Imputing Missing Data for Gene
Expression Arrays". The PCA imputation is an optimized version of the
imputePCA() function from the 'missMDA' package described in: Josse,
J. and Husson, F. (2016) <doi:10.18637/jss.v070.i01> * *missMDA: A
Package for Handling Missing Values in Multivariate Data Analysis".

License GPL (>=2)
URL https://github.com/hhp94/slideimp

BugReports https://github.com/hhp94/slideimp/issues
Depends R (>=4.1.0)

Imports bigmemory, checkmate, collapse, mirai, purrr, Rcpp, stats,
tibble

Suggests carrier, FactoMineR, knitr, missMDA, rlang, rmarkdown,
testthat (>= 3.0.0)

LinkingTo mlpack, Repp, ReppArmadillo, ReppEnsmallen
VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

https://doi.org/10.18637/jss.v070.i01
https://github.com/hhp94/slideimp
https://github.com/hhp94/slideimp/issues

col _vars

NeedsCompilation yes
Author Hung Pham [aut, cre, cph] (ORCID:

<https://orcid.org/0000-0002-8271-9355>)

Maintainer Hung Pham <amser.hoanghung@gmail.com>
Repository CRAN
Date/Publication 2026-01-07 09:20:02 UTC

Contents
COLVArS . . . L 2
COMPULE_MELTICS . .« v v v v v v e e e e e e e e e e e e e e e e e e 3
group_features L e e e 4
GIOUP_IMP L . o e e e 5
khanmissl e e 8
knn_imp 9
mean_imp_col. e e e e e e e e 11
PCAIMD . . . o o o e e e e e e e e e e 12
print.ImputedMatrix L. e 14
SIM_MAL o o o e e, 15
slide_imp L 16
tUNE_IMP o o v e e e e 18

Index 22

col_vars Calculate Matrix Column Variance
Description

Computes the sample variance for each column of a numeric matrix

Usage

col_vars(mat, cores = 1)

Arguments

mat A numeric matrix.

cores Number of cores to use for parallel computation. Defaults to 1.
Details

Variances for columns with one unique value after dropping NA are set to NA.

Value

A named numeric vector of column variances

https://orcid.org/0000-0002-8271-9355

compute_metrics 3

Examples

col_vars(t(khanmiss1))

compute_metrics Compute Prediction Accuracy Metrics

Description

Computes prediction accuracy metrics for results from tune_imp().

Usage
compute_metrics(results, metrics = c("mae”, "rmse"”, "rsq"))
Arguments
results A tibble from tune_imp() containing a result column with tibbles that have
truth and estimate columns.
metrics A character vector of metric names to compute. Defaults to c("mae”, "rmse",
"rsqg"). Also available: "mape”, "bias”, "calc_rsq_trad".
Details

For alternative or faster metrics, see the {yardstick} package.

Value

A tibble with the original parameters and unnested metrics (.metric, .estimator, .estimate).

Examples

data(khanmiss1)
set.seed(1234)
results <- tune_imp(
obj = t(khanmiss1),
parameters = data.frame(k = 10),

.f = "knn_imp",
rep = 1,
num_na = 20

compute_metrics(results)

4 group_features

group_features Group Features for Imputation

Description

Groups matrix columns (features) based on a provided grouping data.frame, optionally preparing
parameters for K-NN or PCA imputation. This function organizes features into groups, handles
imputation of only a subset of features, and can pad groups to meet a minimum size.

Usage

group_features(
obj,
features_df,
k = NULL,
ncp = NULL,
subset = NULL,
min_group_size = 0,

seed = NULL
)
Arguments

obj A numeric matrix with samples in rows and features in columns.

features_df A data.frame with exactly two columns: feature_id and group. Maps feature
identifiers to their respective groups. No missing values or duplicate feature_id
values are allowed.

k Integer or NULL. If specified, prepares parameters for K-NN imputation with k
neighbors. Cannot be used together with ncp.

ncp Integer or NULL. If specified, prepares parameters for PCA imputation with ncp
principal components. Cannot be used together with k.

subset Character vector of column names or integer vector of column indices specifying

which columns to impute.

min_group_size Integer (default 0). Minimum number of features per group. If a group has fewer
features, additional features are randomly sampled from remaining columns to
meet this threshold.

seed Numeric or NULL. Random seed for reproducibility when sampling for min_group_size
padding.

Value

A tibble::tibble() with columns:

* features: A list-column containing character vectors of feature column names to impute

* aux: A list-column containing character vectors of auxiliary column names used for imputa-
tion but not imputed themselves. Omitted if all elements are NULL

* parameters: A list-column containing group-specific parameters if k or ncp are specified

group_imp 5

See Also

group_imp()

Examples

sim_obj <- sim_mat(perc_col_NA = 1)

obj <- t(sim_obj$input)
obj_meta <- sim_obj$group_feature

group “obj" based on the metadata
head(obj_meta)

create “group_df~ which can then be used for “group_imp~. We can specify
k> for K-NN imputation and subset here as well.
group_df <- group_features(
obj,
obj_meta,
subset = sample(obj_meta$feature_id, size = 10),
k =10
)
group_df

imputed_obj <- group_imp(obj, group_df)
imputed_obj

group_imp Grouped K-NN or PCA Imputation

Description

K-NN or PCA imputation by groups, such as chromosomes, flanking columns, or clusters identified
by column clustering techniques.

Usage

group_imp(
obj,
group,
k = NULL,
colmax = NULL,
knn_method = NULL,
post_imp = NULL,
dist_pow = NULL,
tree = NULL,
cores =1,
ncp = NULL,

6 group_imp

scale = NULL,
pca_method = NULL,
coeff.ridge = NULL,
threshold = NULL,
row.w = NULL,

seed = NULL,
nb.init = NULL,
maxiter = NULL,
miniter = NULL,
.progress = TRUE

)
Arguments
obj A numeric matrix with samples in rows and features in columns.
group Preferably created by group_features(). A data.frame with columns:
* features: A list-column containing character vectors of feature column
names to impute
* aux: (Optional) A list-column containing character vectors of auxiliary col-
umn names used for imputation but not imputed themselves
* parameters: (Optional) A list-column containing group-specific parame-
ters
k Number of nearest neighbors for imputation. 10 is a good starting point.
colmax A number from O to 1. Threshold of missing data above which K-NN imputation
is skipped.
knn_method Either "euclidean" (default) or "manhattan". Distance metric for nearest neigh-
bor calculation.
post_imp Whether to impute remaining missing values (those that failed K-NN imputa-
tion) using column means (default = TRUE).
dist_pow The amount of penalization for further away nearest neighbors in the weighted
average. dist_pow = @ (default) is the simple average of the nearest neighbors.
tree Either NULL (default, brute-force K-NN), "ball", or "kd" to find nearest neighbors
using the {mlpack} ball-tree or kd-tree algorithms.
cores Controls the number of cores to parallelize over for K-NN imputation only. To
setup parallelization for PCA imputation, use mirai: :daemons().
ncp integer corresponding to the number of components used to to predict the miss-
ing entries
scale boolean. By default TRUE leading to a same weight for each variable
pca_method "regularized" by default or "EM".
coeff.ridge 1 by default to perform the regularized pca_imp (imputePCA) algorithm; useful

only if method="Regularized". Other regularization terms can be implemented
by setting the value to less than 1 in order to regularized less (to get closer to the
results of the EM method) or more than 1 to regularized more (to get closer to
the results of the mean imputation)

group_imp 7

threshold the threshold for assessing convergence
row.w Row weights. Can be one of:

* NULL (default): all rows weighted equally.
* A numeric vector of length nrow(obj): custom positive weights.
* "n_miss": rows with more missing values receive lower weight.

Weights are normalized to sum to 1.

seed integer, by default seed = NULL implies that missing values are initially imputed
by the mean of each variable. Other values leads to a random initialization

nb.init integer corresponding to the number of random initializations; the first initial-
ization is the initialization with the mean imputation

maxiter integer, maximum number of iteration for the algorithm
miniter integer, minimum number of iteration for the algorithm
.progress Show imputation progress (default = FALSE)

Details

This function performs K-NN or PCA imputation on groups of features independently, which sig-
nificantly reduce imputation time for large datasets.

Specify k and related arguments to use K-NN, ncp and related arguments for PCA imputation. If
k and ncp are both NULL, then the group-wise parameters column i.e., group$parameters must be
specified and must contains either k or ncp for all groups of group-wise parameters.

Strategies for grouping may include:

* Breaking down search space by chromosomes

* Grouping features with their flanking values/neighbors (e.g., 1000 bp down/up stream of a
CpG)

 Using clusters identified by column clustering techniques

Only features in each group (each row of the data.frame) will be imputed, using the search space
defined as the union of the features and optional aux columns of that group. Columns that are in
aux or in the object but not in any features will be left unchanged.

Value

A numeric matrix of the same dimensions as obj with missing values imputed.

See Also

group_features()

Examples

Generate example data with missing values
set.seed(1234)
to_test <- sim_mat(

m = 20,

8 khanmiss1

n = 50,
perc_NA = 0.
perc_col_NA
nchr = 2

)

t() to put features in columns

obj <- t(to_test$input)

head(to_test$group_feature) # which group each feature belongs to

3,
:‘]’

Use group_features() to create the group tibble. By setting "k = 57 in

group_features(), we are doing K-NN imputation in group_imp(). To make use

of the “subset™ argument in knn_imp(), we specify subset in group_features().
For demonstration of different group-wise parameters we set “k = 10~ for the
second group.

subset_features <- sample(to_test$group_feature$feature_id, size = 10)
head(subset_features)

knn_df <- group_features(obj, to_test$group_feature, k = 5, subset = subset_features)
knn_df

knn_df$parameters[[2]]1%k <- 10

knn_df$parameters

Run grouped imputation. "k for K-NN has been specified in ~“knn_df".
knn_grouped <- group_imp(obj, group = knn_df, cores = 2)
knn_grouped # only features in subset are imputed

Specify “ncp” for PCA directly in the group_imp() function (instead of in
group_features()). We run in parallel with “mirai::daemons(2)".

mirai::daemons(2) # Set up 2 cores for parallelization
pca_df <- group_features(obj, to_test$group_feature)
pca_grouped <- group_imp(obj, group = pca_df, ncp = 2)
mirai::daemons (@)

pca_grouped

khanmiss1 Khan microarray data with random missing values

Description
A text file containing the Khan microarray data with random missing values introduced for illustra-
tive purposes. Adapted from the impute package.

Usage

data(khanmiss1)

Format

The data set khanmiss1 consists of genes on rows and samples on column.

Please note that this dataset was derived from the original by introducing some random missing
values purely for the purpose of illustration.

knn_imp 9

Source

Khan, J. and Wei, J.S. and Ringner, M. and Saal, L. and Ladanyi, M. and Westermann, F. and
Berthold, F. and Schwab, M. and Antonescu, C. and Peterson, C. and Meltzer, P. (2001) Classi-
fication and diagnostic prediction of cancers using gene expression profiling and artificial neural
network. Nature Medicine 7, 673-679.

References

Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and Gilbert Chu (2002). Diagnosis
of multiple cancer types by shrunken centroids of gene expression PNAS 99: 6567-6572. Available
at www.pnas.org

Examples

data(khanmiss1)

knn_imp K-Nearest Neighbor Imputation for Numeric Matrices

Description

Imputes missing values in numeric matrices using full k-nearest neighbor imputation.

Usage
knn_imp(
obj,
K,
colmax = 0.9,
method = c("euclidean”, "manhattan"),
cores = 1,
post_imp = TRUE,
subset = NULL,
dist_pow = 0,
tree = NULL
)
Arguments
obj A numeric matrix with samples in rows and features in columns.
k Number of nearest neighbors for imputation. 10 is a good starting point.
colmax A number from 0O to 1. Threshold of missing data above which K-NN imputation
is skipped.
method Either "euclidean" (default) or "manhattan”. Distance metric for nearest neigh-

bor calculation.

10

cores

post_imp

subset

dist_pow

tree

Details

knn_imp

Number of cores to parallelize over.

Whether to impute remaining missing values (those that failed K-NN imputa-
tion) using column means (default = TRUE).

Character vector of column names or integer vector of column indices specifying
which columns to impute.

The amount of penalization for further away nearest neighbors in the weighted
average. dist_pow = @ (default) is the simple average of the nearest neighbors.

Either NULL (default, brute-force K-NN), "ball", or "kd" to find nearest neighbors
using the {mlpack} ball-tree or kd-tree algorithms.

This function performs column-wise nearest neighbor imputation.

When dist_pow > 0, imputed values are computed as distance-weighted averages where weights
are inverse distances raised to the power of dist_pow.

The tree parameter enables faster neighbor search using spatial data structures but requires pre-
filling missing values with column means, which may introduce bias in high-missingness data.
Tree construction overhead may reduce performance for low-dimensional data.

Value

A numeric matrix of the same dimensions as obj with missing values imputed.

Performance Optimization

* Tree methods: Only use when imputation runtime becomes prohibitive and missingness is
low (<5% missing)

* Subset imputation: Use subset parameter for efficiency when only specific columns need
imputation (e.g., epigenetic clocks CpGs)

References

Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and Gilbert Chu (2002). Diagnosis
of multiple cancer types by shrunken centroids of gene expression PNAS 99: 6567-6572. Available

at www.pnas.org

Examples

data(khanmiss1)

sum(is.na(khanmiss1))

Basic K-NN imputation (khanmiss1 has genes in rows, so transpose)
t_khanmiss1 <- t(khanmiss1)
result <- knn_imp(t_khanmiss1, k = 5)

result

mean_imp_col 11

mean_imp_col Column Mean Imputation

Description

Imputes missing values in a matrix by replacing them with the mean of their respective columns.

Usage

mean_imp_col(obj, subset = NULL)

Arguments
obj A numeric matrix with samples in rows and features in columns.
subset Character vector of column names or integer vector of column indices specifying
which columns to impute.
Details

This function calculates the mean for each column excluding missing values and replaces all missing
values in that column with the computed mean.

The subset parameter allows for imputation of only specific columns.

Value

A numeric matrix of the same dimensions as obj with missing values in the specified columns
replaced by column means.

Examples

Create example matrix with missing values

mat <- matrix(c(1, 2, NA, 4, 5, 6, NA, 8, 9), nrow = 3)
colnames(mat) <- c("A", "B", "C")

mat

Impute missing values with column means
imputed_mat <- mean_imp_col(mat)
imputed_mat

Impute only specific columns by name
imputed_subset <- mean_imp_col(mat, subset = c("A", "C"))
imputed_subset

Impute only specific columns by index
imputed_idx <- mean_imp_col(mat, subset = c(1, 3))
imputed_idx

12

pca_imp

pca_imp

Impute dataset with PCA

Description

(From the missMDA package on CRAN) Impute the missing values of a dataset with the Principal
Components Analysis model. Can be used as a preliminary step before performing a PCA on an

completed dataset.

Usage

pca_imp(
obj,
ncp = 2,

scale = TRUE,

method = c("regularized”, "EM"),

coeff.ridge =

row.w = NULL,

1,

threshold = 1e-06,

seed = NULL,
nb.init =1,

maxiter = 1000,

miniter = 5

Arguments

obj

ncp

scale
method
coeff.ridge

row.w

threshold

A numeric matrix with samples in rows and features in columns.

integer corresponding to the number of components used to to predict the miss-
ing entries

boolean. By default TRUE leading to a same weight for each variable
"regularized" by default or "EM"

1 by default to perform the regularized pca_imp (imputePCA) algorithm; useful
only if method="Regularized". Other regularization terms can be implemented
by setting the value to less than 1 in order to regularized less (to get closer to the
results of the EM method) or more than 1 to regularized more (to get closer to
the results of the mean imputation)

Row weights. Can be one of:

e NULL (default): all rows weighted equally.
* A numeric vector of length nrow(obj): custom positive weights.
* "n_miss": rows with more missing values receive lower weight.

Weights are normalized to sum to 1.

the threshold for assessing convergence

pca_imp 13

seed integer, by default seed = NULL implies that missing values are initially imputed
by the mean of each variable. Other values leads to a random initialization

nb.init integer corresponding to the number of random initializations; the first initial-
ization is the initialization with the mean imputation

maxiter integer, maximum number of iteration for the algorithm
miniter integer, minimum number of iteration for the algorithm
Details

Impute the missing entries of a mixed data using the iterative PCA algorithm (method="EM") or
the regularised iterative PCA algorithm (method="Regularized"). The (regularized) iterative PCA
algorithm first consists imputing missing values with initial values such as the mean of the variable.
If the argument seed is set to a specific value, a random initialization is performed: the initial values
are drawn from a gaussian distribution with mean and standard deviation calculated from the ob-
served values. nb.init different random initialization can be drawn. In such a situation, the solution
giving the smallest objective function (the mean square error between the fitted matrix and the ob-
served one) is kept. The second step of the (regularized) iterative PCA algorithm is to perform PCA
on the completed dataset. Then, it imputes the missing values with the (regularized) reconstruc-
tion formulae of order ncp (the fitted matrix computed with ncp components for the (regularized)
scores and loadings). These steps of estimation of the parameters via PCA and imputation of the
missing values using the (regularized) fitted matrix are iterate until convergence. The iterative PCA
algorithm is also known as the EM-PCA algorithm since it corresponds to an EM algorithm of the
fixed effect model where the data are generated as a fixed structure (with a low rank representation)
corrupted by noise. The number of components used in the algorithm can be found using cross-
validation criteria implemented in the function estim_ncpPCA.

We advice to use the regularized version of the algorithm to avoid the overfitting problems which
are very frequent when there are many missing values. In the regularized algorithm, the singular
values of the PCA are shrinked.

The output of the algorithm can be used as an input of the PCA function of the FactoMineR package
in order to perform PCA on an incomplete dataset.

Value

A numeric matrix of the same dimensions as obj with missing values imputed.

Author(s)

Francois Husson <francois.husson@institut-agro.fr>

Julie Josse <julie.josse@polytechnique.edu>

References

Josse, J & Husson, F. (2013). Handling missing values in exploratory multivariate data analysis
methods. Journal de la SFdS. 153 (2), pp. 79-99.

Josse, J. and Husson, F. missMDA (2016). A Package for Handling Missing Values in Multivariate
Data Analysis. Journal of Statistical Software, 70 (1), pp 1-31 doi:10.18637/jss.v070.i01.

https://doi.org/10.18637/jss.v070.i01

14 print.ImputedMatrix

Examples

data(”"khanmiss1")

Transpose to put genes on columns. Randomly initialize missing values 5
times (Ist time is mean).
pca_imp(t(khanmiss1), ncp = 2, nb.init = 5)

print.ImputedMatrix Print ImputedMatrix

Description

Print ImputedMatrix

Usage
S3 method for class 'ImputedMatrix'
print(x, n =5, m=5, ...)
Arguments
X An ImputedMatrix
n Number of rows to print
m Number of cols to print
Not used
Value

Invisible object of class ImputedMatrix

Examples

data(khanmiss1)

t_khanmiss1 <- t(khanmiss1)

result <- knn_imp(t_khanmiss1, k = 5)
print(result, n =6, m = 6)

sim_mat 15

sim_mat Simulate Methylation Beta Values with Metadata

Description

This function generates a matrix of random normal data, scaled between 0 and 1 per column. It also
creates corresponding data frames for feature and sample metadata and can optionally introduce NA
values into a specified proportion of rows.

Usage
sim_mat(
n = 100,
m = 100,
nchr = 2,
ngrp = 1,
perc_NA = 0.5,
perc_col_NA = 0.5,
beta = TRUE
)
Arguments
n An integer specifying the number of rows (features). Default is 100.
m An integer specifying the number of columns (samples). Default is 100.
nchr An integer for the number of chromosome groups to assign to features (e.g.,
nchr = 22 for human autosomes). Default is 2.
ngrp An integer for the number of groups to assign to samples. Default is 1.
perc_NA A numeric value between 0 and 1 indicating the proportion of values to set to NA
within each selected row. Default is . 5.
perc_col_NA A numeric value between 0 and 1 indicating the proportion of rows to select for
NA introduction. Default is . 5.
beta If TRUE (default) then simulate beta values by scaling the values between 0 and
1.
Value

A list containing three elements:

e input: The simulated n x m numeric matrix with values between 0 and 1.
* group_feature: A data.frame with feature IDs and their assigned chromosome group.

* group_sample: A data.frame with sample IDs and their assigned group.

16

Examples

set.seed(123)

slide_imp

sim_data <- sim_mat(n = 50, m = 10)

Metadata of each features
sim_data$group_feature[1:5,]
sim_data$group_sample[1:5, 1]

View the first few rows and columns of the matrix
sim_data$input[1:5, 1:5]

Generate a dataset with no missing values
sim_data_complete <- sim_mat(n = 50, m = 10, perc_NA = @, perc_col_NA = 0)
sum(is.na(sim_data_complete$input))

slide_imp

Sliding Window K-NN or PCA Imputation

Description

Performs sliding window K-NN or PCA imputation of large numeric matrices column-wise.

This method assumes that columns are meaningfully sorted.

Usage

slide_imp(
obj,
n_feat,
n_overlap,
k = NULL,
colmax = 0.
knn_method
cores =1,
post_imp = TRUE,
dist_pow = 0,
subset = NULL,
ncp = NULL,
scale = TRUE,

9,

c("euclidean”, "manhattan"),

pca_method = c("regularized”, "EM"),

coeff.ridge = 1,
seed = NULL,
row.w = NULL,
nb.init =1,
maxiter = 1000,
miniter 5,
.progress = TRUE
)

slide_imp

Arguments

obj
n_feat
n_overlap
k

colmax

knn_method

cores

post_imp

dist_pow

subset

ncp

scale
pca_method

coeff.ridge

seed

row.w

nb.init

maxiter
miniter

.progress

17

A numeric matrix with samples in rows and features in columns.
Number of features in a window.

Number of overlapping features between two windows.

Number of nearest neighbors for imputation. 10 is a good starting point.

A number from 0 to 1. Threshold of missing data above which K-NN imputation
is skipped.

Either "euclidean" (default) or "manhattan”. Distance metric for nearest neigh-
bor calculation.

Number of cores to parallelize over.

Whether to impute remaining missing values (those that failed K-NN imputa-
tion) using column means (default = TRUE).

The amount of penalization for further away nearest neighbors in the weighted
average. dist_pow = @ (default) is the simple average of the nearest neighbors.

Character vector of column names or integer vector of column indices specifying
which columns to impute.

integer corresponding to the number of components used to to predict the miss-
ing entries

boolean. By default TRUE leading to a same weight for each variable
"regularized" by default or "EM".

1 by default to perform the regularized pca_imp (imputePCA) algorithm; useful
only if method="Regularized". Other regularization terms can be implemented
by setting the value to less than 1 in order to regularized less (to get closer to the
results of the EM method) or more than 1 to regularized more (to get closer to
the results of the mean imputation)

integer, by default seed = NULL implies that missing values are initially imputed
by the mean of each variable. Other values leads to a random initialization

Row weights. Can be one of:

* NULL (default): all rows weighted equally.
* A numeric vector of length nrow(obj): custom positive weights.

* "n_miss": rows with more missing values receive lower weight.
Weights are normalized to sum to 1.

integer corresponding to the number of random initializations; the first initial-
ization is the initialization with the mean imputation

integer, maximum number of iteration for the algorithm
integer, minimum number of iteration for the algorithm

Show progress bar (default = TRUE).

18 tune_imp

Details

The sliding window approach divides the input matrix into smaller, overlapping segments and ap-
plies imputation to each window independently. Values in overlapping areas are averaged across
windows to produce the final imputed result. This approach assumes that features (columns) are
sorted meaningfully (e.g., by genomic position, time, etc.).

Specify k and related arguments to use K-NN, ncp and related arguments for PCA.

Value

A numeric matrix of the same dimensions as obj with missing values imputed.

Examples

Generate sample data with missing values with 20 samples and 100 columns
where the column order is sorted (i.e., by genomic position)
set.seed(1234)

beta_matrix <- t(sim_mat(100, 20)$input)

Sliding Window K-NN imputation by specifying k-~
imputed_knn <- slide_imp(

beta_matrix,

k =5,

n_feat = 50,

n_overlap = 10,

scale = FALSE # This argument belongs to PCA imputation and will be ignored
)

imputed_knn

Sliding Window PCA imputation by specifying “ncp”
pca_knn <- slide_imp(

beta_matrix,

ncp = 2,

n_feat = 50,

n_overlap = 10
)

pca_knn

tune_imp Tune Parameters for Imputation Methods

Description

Tunes hyperparameters for imputation methods such as slide_imp(), knn_imp(), pca_imp(), or
user-supplied custom functions by repeated cross-validation.

tune_imp 19
Usage
tune_imp(
obj,
parameters,
.f = NULL,
rep =1,
num_na = 100,
rowmax = 0.9,
colmax = 0.9,
check_sd = FALSE,
max_iter = 1000,

.progress = TRUE,

cores =

Arguments

obj
parameters

rep

num_na
rowmax

colmax

check_sd

max_iter

.progress
cores

A numeric matrix with samples in rows and features in columns.
A data.frame specifying parameter combinations to tune, where each column
represents a parameter accepted by . f (excluding obj). List columns are sup-
ported for complex parameters. Duplicate rows are automatically removed.
When . f = NULL, the imputation method is inferred from the column names:

* k: K-NN imputation

* ncp: PCA imputation

* k or ncp with n_feat and n_overlap: sliding window imputation
Custom function to tune. Must accept obj as the first argument, accept the
arguments in parameters, and return a matrix with the same dimension as obj
(default = NULL).
Either an integer specifying the number of repetitions for random NA injection,
or a list defining fixed NA positions for each repetition (in which case num_na is
ignored). The list elements can be one of the following formats:

* A two-column integer matrix. The first column is the row index, the second

column is the column index. Each row is an missing value.

* A numeric vector specifying linear locations of NAs.
The number of missing values used to estimate prediction quality.
Number between 0 to 1. NA injection cannot create rows with more missing %
than this number.
Number between O to 1. NA injection cannot create cols with more missing %
than this number.
Check if after NA injections zero variance columns are created or not.
Maximum number of iterations to attempt finding valid NA positions (default to
1000).
Show progress bar (default = TRUE).
Controls the number of cores to parallelize over for K-NN and sliding window
K-NN imputation only. To setup parallelization for PCA and sliding window
PCA imputation, use mirai: : daemons().

20 tune_imp

Details

"non

The function supports tuning for built-in imputation methods ("slide_imp", "knn_imp", "pca_imp")
or custom functions provided via . f.

When using a custom . f, the columns in parameters must correspond to the arguments of .f
(excluding the obj argument). The custom function must accept obj (a numeric matrix) as its first
argument and return a numeric matrix of identical dimensions.

Tuning results can be evaluated using the {yardstick} package or compute_metrics().

Value

A tibble: :tibble() with columns from parameters, plus param_set (unique parameter set ID),
rep (repetition index), and result (a nested tibble containing truth and estimate columns for
true and imputed values, respectively).

Examples

data(khanmiss1)
obj <- t(khanmiss1)[1:20, sample.int(nrow(khanmiss1), size = 200)]

Tune full K-NN imputation
parameters <- data.frame(k = c(5, 10))

With random NA injection
results <- tune_imp(obj, parameters, rep = 1, num_na = 20)

Compute metrics on results
compute_metrics(results)

Tune with fixed NA positions (2 repetitions)
Positions must not be NA in the original “obj"~
na_positions <- list(
matrix(c(1, 2, 3, 1, 1, 1), ncol 2), # Rows 1-3 in column 1
matrix(c(2, 3, 4, 2, 2, 2), ncol = 2) # Rows 2-4 in column 2
)
results_fixed <- tune_imp(
obj,
data.frame(k = 10),
rep = na_positions

)

compute_metrics(results_fixed)

Custom imputation function example, with 2 cores parallelization with “mirai::daemons()"
custom_imp <- function(obj, mean = @, sd = 1) {

na_pos <- is.na(obj)

objlna_pos] <- rnorm(sum(na_pos), mean = mean, sd = sd)

obj
3

mirai::daemons(2) # Setup 2 cores for parallelization
parameters_custom <- data.frame(mean = c(@, @, 1), sd = c(1, 2, 1))

tune_imp

results_custom <- tune_imp(
obj,
parameters_custom,
.f = custom_imp,
rep = 2,
num_na = 20
)
mirai::daemons (@)
compute_metrics(results_custom)

21

Index

x datasets
khanmiss1, 8

col_vars, 2
compute_metrics, 3
compute_metrics(), 20

group_features, 4
group_features(), 6, 7
group_imp, 5
group_imp(), 5

khanmiss1, 8
knn_imp, 9
knn_imp(), 18

mean_imp_col, 11

pca_imp, 12
pca_imp(), I8
print.ImputedMatrix, 14

sim_mat, 15
slide_imp, 16
slide_imp(), I8

tune_imp, 18
tune_imp(), 3

22

	col_vars
	compute_metrics
	group_features
	group_imp
	khanmiss1
	knn_imp
	mean_imp_col
	pca_imp
	print.ImputedMatrix
	sim_mat
	slide_imp
	tune_imp
	Index

