sGMRFmix: Sparse Gaussian Markov Random Field Mixtures for Anomaly
Detection
An implementation of sparse Gaussian Markov random field mixtures 
  presented by Ide et al. (2016) <doi:10.1109/ICDM.2016.0119>.
  It provides a novel anomaly detection method for multivariate noisy sensor data.
  It can automatically handle multiple operational modes.
  And it can also compute variable-wise anomaly scores.
| Version: | 
0.3.0 | 
| Imports: | 
ggplot2, glasso, mvtnorm, stats, tidyr, utils, zoo | 
| Suggests: | 
dplyr, ModelMetrics, testthat, covr, knitr, rmarkdown | 
| Published: | 
2018-04-16 | 
| DOI: | 
10.32614/CRAN.package.sGMRFmix | 
| Author: | 
Koji Makiyama [cre, aut] | 
| Maintainer: | 
Koji Makiyama  <hoxo.smile at gmail.com> | 
| License: | 
MIT + file LICENSE | 
| NeedsCompilation: | 
no | 
| Materials: | 
NEWS  | 
| In views: | 
AnomalyDetection | 
| CRAN checks: | 
sGMRFmix results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=sGMRFmix
to link to this page.