Package 'robomit'

January 31, 2025

Version 1.0.7

Date 2	2025-01-12
Title 1	Robustness Checks for Omitted Variable Bias
Maint	ainer Sergei Schaub <sergei.schaub@agroscope.admin.ch></sergei.schaub@agroscope.admin.ch>
1 1 3 5 1 1 4	interest in the proposed by Oster (2019). The 'robomit' package includes robust- mess checks proposed by Oster (2019). The 'robomit' package computes i) the bias-adjusted treat ment correlation or effect and ii) the degree of selection on unobservables relative to observ- ables (with respect to the treatment variable) that would be necessary to eliminate the re- sult based on the framework by Oster (2019). The code is based on the 'psacalc' com- mand in 'Stata'. Additionally, 'robomit' offers a set of sensitivity analysis and visualization func- tions. See Oster, E. 2019. <doi:10.1080 07350015.2016.1227711="">. Addition- ally, see Diegert, P., Masten, M. A., & Poirier, A. (2022) for a recent discus- sion of the topic: <doi:10.48550 arxiv.2206.02303="">.</doi:10.48550></doi:10.1080>
Licens	se MIT + file LICENSE
Encod	ing UTF-8
Roxyg	genNote 7.3.2
Impor	ts plm, dplyr, ggplot2, broom, tidyr, tibble, stats,
Sugges	sts testthat
Needs	Compilation no
	r Sergei Schaub [aut, cre] (https://orcid.org/0000-0001-8477-3737), ETH Zurich [cph]
Reposi	itory CRAN
Date/F	Publication 2025-01-31 17:20:02 UTC
Con	tents
	o_beta o_beta_boot o_beta_boot_inf o_beta_boot_viz o_beta_rsq

o_beta

o_bet	a	beta*				
Index					2	21
	o_delta_rsq_viz		 	 	 1	9
	o_delta_rsq					
	o_delta_boot_viz		 	 	 1	6
	o_delta_boot_inf		 	 	 1	4
	o_delta_boot		 	 	 1	2
	o_delta					
	o_beta_rsq_viz		 	 	 1	0

Description

Estimates beta*, i.e., the bias-adjusted treatment effect (or correlation) (following Oster 2019). The code is based on the psacalc command in Stata.

Usage

```
o_beta(y, x, con, w = NULL, id = "none", time = "none", delta = 1, R2max, type, data)
```

Arguments

У	Name of the dependent variable (as string).
Х	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: $"w + z +"$.
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
delta	delta for which beta* should be estimated (default is delta = 1).
R2max	Maximum R-square for which beta* should be estimated.
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
data	Dataset.

Details

Estimates beta*, i.e., the bias-adjusted treatment effect (or correlation).

Value

Returns tibble object, which includes beta* and various other information.

o_beta_boot 3

References

Oster, E. (2019) Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

Examples

```
# load data, e.g. the in-build mtcars dataset
data("mtcars")
data_oster <- mtcars
# preview of data
head(data_oster)
# load robomit
require(robomit)
# estimate beta*
                   # dependent variable
o_beta(y = "mpg",
                        # independent treatment variable
      x = "wt",
      con = "hp + qsec", # related control variables
                 # delta
      delta = 1,
      R2max = 0.9,
                        # maximum R-square
      type = "lm",
                        # model type
      data = data_oster) # dataset
```

o_beta_boot

Bootstrapped beta*s

Description

Estimates bootstrapped beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019).

Usage

```
o_beta_boot(y, x, con, w = NULL, id = "none", time = "none", delta = 1, R2max, sim, obs, rep, type, useed = NA, data)
```

у	Name of the dependent variable (as string).
X	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: " $w + z +$ ".
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R -square than Stata, leading deviation between R and Stata results.

o_beta_boot

id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
delta	delta for which beta*s should be estimated (default is delta = 1).
R2max	Maximum R-square for which beta*s should be estimated.
sim	Number of simulations.
obs	Number of draws per simulation.
rep	Bootstrapping either with (= TRUE) or without (= FALSE) replacement.
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
useed	User defined seed.
data	Dataset.

Details

Estimates bootstrapped beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019). Bootstrapping can either be done with or without replacement. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns tibble object, which includes bootstrapped beta*s.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

o_beta_boot_inf 5

o_beta_boot_inf

Bootstrapped mean beta* and confidence intervals

Description

Provides the mean and confidence intervals of estimated bootstrapped beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019).

Usage

```
o_beta_boot_inf(y, x, con, w = NULL, id = "none", time = "none", delta = 1, R2max, sim, obs, rep, CI, type, useed = NA, data)
```

У	Name of the dependent variable (as string).
x	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: $"w + z +"$.
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R -square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
delta	delta for which beta*s should be estimated (default is delta = 1).
R2max	Maximum R-square for which beta*s should be estimated.
sim	Number of simulations.
obs	Number of draws per simulation.
rep	Bootstrapping either with (= TRUE) or without (= FALSE) replacement
CI	Confidence intervals, indicated as vector. Can be and/or 90, 95, 99.
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
useed	User defined seed.
data	Dataset.

o_beta_boot_viz

Details

Provides the mean and confidence intervals of estimated bootstrapped beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019). Bootstrapping can either be done with or without replacement. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns tibble object, which includes the mean and confidence intervals of estimated bootstrapped beta*s.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

Examples

```
# load data, e.g. the in-build mtcars dataset
data("mtcars")
data_oster <- mtcars
# preview of data
head(data_oster)
# load robomit
require(robomit)
# compute the mean and confidence intervals of estimated bootstrapped beta*s
                         (y = "mpg",  # dependent variable
x = "wt",  # independent treatment variables
con = "hp + qsec",  # related control variables
o_beta_boot_inf(y = "mpg",
                                                            # independent treatment variable
                         delta = 1, # delta

R2max = 0.9, # maximum R-square

sim = 100, # number of simulations

obs = 30, # draws per simulation

rep = FALSE, # bootstrapping with or without replacement

CI = c(90,95,99), # confidence intervals

type = "lm", # model type

useed = 123, # seed
                          useed = 123,
                                                            # seed
                          data = data_oster)
                                                             # dataset
```

o_beta_boot_viz

Visualization of bootstrapped beta*s

Description

Estimates and visualizes bootstrapped beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019).

o_beta_boot_viz

Usage

```
o_beta_boot_viz(y, x, con, w = NULL, id = "none", time = "none",
delta = 1, R2max, sim, obs, rep, CI, type, norm = TRUE, bin,
col = c("#08306b","#4292c6","#c6dbef"), nL = TRUE, mL = TRUE, useed = NA, data)
```

Arguments

У	Name of the dependent variable (as string).
х	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: $"w + z +"$.
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
delta	delta for which beta*s should be estimated (default is delta = 1).
R2max	Maximum R-square for which beta*s should be estimated.
sim	Number of simulations.
obs	Number of draws per simulation.
rep	Bootstrapping either with (= TRUE) or without (= FALSE) replacement
CI	Confidence intervals, indicated as vector. Can be and/or 90, 95, 99.
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
norm	Option to include a normal distribution in the plot (default is norm = TURE).
bin	Number of bins used in the histogram.
col	Colors used to indicate different confidence interval levels (indicated as vector). Needs to be the same length as the variable CI. The default is a blue color range.
nL	Option to include a red vertical line at 0 (default is $nL = TRUE$).
mL	Option to include a vertical line at mean of all beta*s (default is $mL = TRUE$).
useed	User defined seed.
data	Dataset.

Details

Estimates and visualizes bootstrapped beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019). Bootstrapping can either be done with or without replacement. The function supports linear cross-sectional (see lm objects in R) and fixed effect panel (see plm objects in R) models.

Value

Returns ggplot2 object, which depicts the bootstrapped beta*s.

o_beta_rsq

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

Examples

o_beta_rsq

beta*s over a range of maximum R-squares

Description

Estimates beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019) over a range of maximum R-squares.

Usage

```
o_beta_rsq(y, x, con, w = NULL, id = "none", time = "none", delta = 1, type, data)
```

o_beta_rsq 9

Arguments

у	Name of the dependent variable (as string).
X	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: " $w + z +$ ".
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
delta	delta for which beta*s should be estimated (default is delta = 1).
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
data	Dataset.

Details

Estimates beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019) over a range of maximum R-squares. The range of maximum R-squares starts from the R-square of the controlled model rounded up to the next 1/100 to 1. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns tibble object, which includes beta*s over a range of maximum R-squares.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

10 o_beta_rsq_viz

```
type = "lm",  # model type
data = data_oster) # dataset
```

o_beta_rsq_viz

Visualization of beta*s over a range of maximum R-squares

Description

Estimates and visualizes beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019) over a range of maximum R-squares.

Usage

```
o_beta_rsq_viz(y, x, con, w = NULL, id = "none", time = "none", delta = 1, type, data)
```

Arguments

у	Name of the dependent variable (as string).
X	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: " $w + z +$ ".
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
delta	delta for which beta*s should be estimated (default is delta = 1).
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
data	Dataset.

Details

Estimates and visualizes beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019) over a range of maximum R-squares. The range of maximum R-squares starts from the R-square of the controlled model rounded up to the next 1/100 to 1. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns ggplot2 object, which depicts beta*s over a range of maximum R-squares.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

o_delta 11

Examples

Description

Estimates delta*, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019). The code is based on the psacalc command in Stata.

Usage

```
o_delta(y, x, con, w = NULL, id = "none", time = "none", beta = 0, R2max, type, data)
```

У	Name of the dependent variable (as string).
X	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: " $w + z +$ ".
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
beta	beta for which delta* should be estimated (default is beta = 0).

12 o_delta_boot

R2max Maximum R-square for which delta* should be estimated.

type Model type (either *lm* or *plm*; as string).

data Dataset.

Details

Estimates delta*, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019). The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns tibble object, which includes delta* and various other information.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

Examples

```
# load data, e.g. the in-build mtcars dataset
data("mtcars")
data_oster <- mtcars
# preview of data
head(data_oster)
# load robomit
require(robomit)
# estimate delta*
o_delta(y = "mpg",
                          # dependent variable
       x = "wt",
                          # independent treatment variable
       con = "hp + qsec", # related control variables
       beta = 0,
                           # beta
                     # maximum R-square
       R2max = 0.9,
       type = "lm",
                            # model type
       data = data_oster) # dataset
```

o_delta_boot

Bootstrapped delta*s

Description

Estimates bootstrapped delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019).

o_delta_boot

Usage

```
o_delta_boot(y, x, con, w = NULL, id = "none", time = "none", beta = 0, R2max, sim, obs, rep, type, useed = NA, data)
```

Arguments

У	Name of the dependent variable (as string).
x	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: " $w + z +$ ".
w	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
beta	beta for which delta*s should be estimated (default is beta = 0).
R2max	Maximum R-square for which delta*s should be estimated.
sim	Number of simulations.
obs	Number of draws per simulation.
rep	Bootstrapping either with (= TRUE) or without (= FALSE) replacement.
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
useed	User defined seed.
data	Dataset.

Details

Estimates bootstrapped delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019). Bootstrapping can either be done with or without replacement. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns tibble object, which includes bootstrapped delta*s.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

o_delta_boot_inf

Examples

```
# load data, e.g. the in-build mtcars dataset
data("mtcars")
data_oster <- mtcars</pre>
# preview of data
head(data_oster)
# load robomit
require(robomit)
# estimate bootstrapped delta*s
o_delta_boot(y = "mpg",
                               # dependent variable
            x = "wt",
                             # independent treatment variable
            con = "hp + qsec", # related control variables
            beta = 0,
                        # beta
            R2max = 0.9,
                             # maximum R-square
            sim = 100,
                             # number of simulations
            obs = 30,
                             # draws per simulation
                           # bootstrapping with or without replacement
            rep = FALSE,
            type = "lm",
                             # model type
            useed = 123,
                             # seed
            data = data_oster) # dataset
```

o_delta_boot_inf

Bootstrapped mean delta* and confidence intervals

Description

Provides the mean and confidence intervals of bootstrapped delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019).

Usage

```
o_delta_boot_inf(y, x, con, w = NULL, id = "none", time = "none", beta = 0, R2max, sim, obs, rep, CI, type, useed = NA, data)
```

У	Name of the dependent variable (as string).
Х	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: $"w + z +"$.
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.

o_delta_boot_inf

time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
beta	beta for which delta*s should be estimated (default is beta = 0)
R2max	Maximum R-square for which delta*s should be estimated.
sim	Number of simulations.
obs	Number of draws per simulation.
rep	Bootstrapping either with (= TRUE) or without (= FALSE) replacement
CI	Confidence intervals, indicated as vector. Can be and/or 90, 95, 99.
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
useed	User defined seed.
data	Dataset.

Details

Provides the mean and confidence intervals of bootstrapped delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019). Bootstrapping can either be done with or without replacement. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns tibble object, which includes the mean and confidence intervals of bootstrapped delta*s.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

o_delta_boot_viz

```
obs = 30,  # draws per simulation
rep = FALSE,  # bootstrapping with or without replacement
CI = c(90,95,99),  # confidence intervals
type = "lm",  # model type
useed = 123,  # seed
data = data_oster)  # dataset
```

o_delta_boot_viz

Visualization of bootstrapped delta*s

Description

Estimates and visualizes bootstrapped delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019).

Usage

```
o_delta_boot_viz(y, x, con, w = NULL, id = "none", time = "none",
beta = 0, R2max, sim, obs, rep, CI, type, norm = TRUE, bin,
col = c("#08306b","#4292c6","#c6dbef"), nL = TRUE, mL = TRUE, useed = NA, data)
```

у	Name of the dependent variable (as string).
x	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: " $w + z +$ ".
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R -square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
beta	beta for which delta*s should be estimated (default is beta = 0).
R2max	Maximum R-square for which delta*s should be estimated.
sim	Number of simulations.
obs	Number of draws per simulation.
	rumber of draws per simulation.
rep	Bootstrapping either with (= TRUE) or without (= FALSE) replacement
rep CI	·
·	Bootstrapping either with (= TRUE) or without (= FALSE) replacement
CI	Bootstrapping either with (= TRUE) or without (= FALSE) replacement Confidence intervals, indicated as vector. Can be and/or 90, 95, 99.

o_delta_boot_viz

col	Colors used to indicate different confidence interval levels (indicated as vector). Needs to be the same length as the variable CI. The default is a blue color range.
nL	Option to include a red vertical line at 0 (default is $nL = TRUE$).
mL	Option to include a vertical line at beta* mean (default is mL = TRUE).
useed	User defined seed.
data	Dataset.

Details

Estimates and visualizes bootstrapped delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019). Bootstrapping can either be done with or without replacement. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns ggplot2 object, which depicts the bootstrapped delta*s.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

```
# load data, e.g. the in-build mtcars dataset
data("mtcars")
data_oster <- mtcars
# preview of data
head(data_oster)
# load robomit
require(robomit)
# estimate and visualize bootstrapped delta*s
o_delta_boot_viz(y = "mpg", # dependent variable
                   x = "wt"
                                        # independent treatment variable
                   con = "hp + qsec", # related control variables
                   beta = 0, # beta
R2max = 0.9, # maxin
sim = 100, # number
                                        # maximum R-square
                                       # number of simulations
                   obs = 30, # draws per simulation
rep = FALSE, # bootstrapping with or without replacement
CI = c(90,95,99), # confidence intervals
                   \mbox{type = "lm",} \qquad \mbox{ \# model type}
                                       # normal distribution
                   norm = TRUE,
                                        # number of bins
                   bin = 200,
                   useed = 123,
                                         # seed
                   data = data_oster) # dataset
```

o_delta_rsq

o_delta_rsq delta*s over a range of maximum R-squares	
---	--

Description

Estimates delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019) over a range of maximum R-squares following Oster (2019).

Usage

```
o_delta_rsq(y, x, con, w = NULL, id = "none", time = "none", beta = 0, type, data)
```

Arguments

У	Name of the dependent variable (as string).
X	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: " $w + z +$ ".
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
beta	beta for which delta*s should be estimated (default is beta = 0).
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
data	Dataset.

Details

Estimates delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019) over a range of maximum R-squares. The range of maximum R-squares starts from the R-square of the controlled model rounded up to the next 1/100 to 1. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns tibble object, which includes delta*s over a range of maximum R-squares.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

o_delta_rsq_viz

Examples

o_delta_rsq_viz

Visualization of delta*s over a range of maximum R-squares

Description

Estimates and visualizes delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019) over a range of maximum R-squares.

Usage

```
o_delta_rsq_viz(y, x, con, w = NULL, id = "none", time = "none", beta = 0, type, data)
```

У	Name of the dependent variable (as string).
X	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: " $w + z +$ ".
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
beta	beta for which delta*s should be estimated (default is beta = 0).
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
data	Dataset.

20 o_delta_rsq_viz

Details

Estimates and visualizes delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019) over a range of maximum R-squares. The range of maximum R-squares starts from the R-square of the controlled model rounded up to the next 1/100 to 1. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns ggplot2 object, which depicts delta*s over a range of maximum R-squares.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

Index

```
o_beta, 2
o_beta_boot, 3
o_beta_boot_inf, 5
o_beta_boot_viz, 6
o_beta_rsq, 8
o_beta_rsq_viz, 10
o_delta, 11
o_delta_boot, 12
o_delta_boot_inf, 14
o_delta_boot_viz, 16
o_delta_rsq, 18
o_delta_rsq_viz, 19
```