--- title: "A simple workflow" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{A simple workflow} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.height = 6, fig.width = 6 ) ``` ```{r message=TRUE, warning=TRUE, include=FALSE} if (Sys.info()[["sysname"]] == "Darwin") { knitr::opts_chunk$set( eval = FALSE ) } ``` This vignette gives a quick example of a simple workflow to produce a single simulation, a stack of simulations, or start from an existing inventory or a previous simulation. # Setup We will use `rcontroll` with packages `dplyr` and `tidyr` for data wrangling and `ggplot2` to do figures. ```{r libs} suppressMessages(library(dplyr)) library(tidyr) library(ggplot2) suppressMessages(library(rcontroll)) ``` # Data We load the species data available for French Guiana (`TROLLv3_species`), with associated climate data (`TROLLv3_climatedaytime12`) and day variation (`TROLLv3_daytimevar`). We also load a previous simulation (`TROLLv3_output`). We generate parameters using `generate_parameters` for a simulation per month (`iterperyear` = 12) lasting one year (`nbiter` = 12) on a 100x100 grid (`cols` = 100 and `rows` = 100). We further duplicated parameters with a simulation index using `mutate` and `unnest` for a stack of simulations using a `seedrain` of 5000 (default) and 500 (default/10). ```{r data} data("TROLLv3_species") data("TROLLv3_climatedaytime12") data("TROLLv3_daytimevar") data("TROLLv3_output") stack_parameters <- generate_parameters( cols = 100, rows = 100, iterperyear = 12, nbiter = 12 * 1 ) %>% mutate(simulation = list(c("seed50000", "seed500"))) %>% unnest(simulation) stack_parameters[62, 2] <- 500 # Cseedrain ``` # Generate parameters We can generate parameters and view them directly as a table with a description of its effect using `generate_parameters` and `kable`. ```{r genPar} generate_parameters(cols = 250, rows = 250, nbiter = 12 * 1) %>% head() %>% knitr::kable() ``` # Simple simulation We run a simple simulation using the `troll` function with loaded and generated data. Set `verbose` to `TRUE` to see the TROLL log directly in the console. ```{r troll} sim <- troll( name = "test", global = generate_parameters( cols = 100, rows = 100, iterperyear = 12, nbiter = 12 * 1 ), species = TROLLv3_species, climate = TROLLv3_climatedaytime12, daily = TROLLv3_daytimevar, verbose = TRUE ) ``` We can print a simple summary of the simulation. ```{r} sim ``` # Plot outputs We can quickly plot simulation outputs using the `autoplot` method for three types of outputs defined with the `what` parameter: * the `temporal` trajectories of variables for the whole ecosystem or user-defined species, * the `spatial` patterns of variables, including species labels, at forest initial or final pattern, * the `distribution` of variables at forest initial or final pattern for the whole ecosystem or user-defined species. For instance here we show species temporal trajectories for all available variables using 4 species: *Cecropia obtusa, Dicorynia guianensis, Eperua grandiflora,* and *Vouacapoua americana*: ```{r fullsimG1, fig.width=8} rcontroll::autoplot(sim, what = "temporal", species = c( "Cecropia_obtusa", "Dicorynia_guianensis", "Eperua_grandiflora", "Vouacapoua_americana" ) ) + theme(legend.position = "bottom") ``` >Note that `autoplot` results in a `ggplot2` object that you can modify with the `+` operator and other `ggplot2` commands such as `theme` used here to change the legend position. Similarly, we can quickly plot the forest final patterns using `autoplot` and `what` defined on `spatial`: ```{r fullsimG2, eval=FALSE} rcontroll::autoplot(sim, what = "spatial") ``` Finally, we can quickly plot variables distribution at forest final patterns using `autoplot` and `what` defined on `distribution`: ```{r fullsimG3} rcontroll::autoplot(sim, what = "distribution", variables = c("dbh", "height", "LA", "LMA") ) ``` # Stack of simulations We run a stack of simulations using the `stack` function with loaded and generated data. We can inactivate `verbose` to see only the loading bar. We can define the number of cores used for parallelization. And we can define a thinning of outputs by giving the number of iterations to be kept to reduce the output size. ```{r fullstack} sim_stack <- stack( name = "teststack", simulations = c("seed50000", "seed500"), global = stack_parameters, species = TROLLv3_species, climate = TROLLv3_climatedaytime12, daily = TROLLv3_daytimevar, verbose = FALSE, cores = 2, thin = c(1, 5, 10) ) ``` We can print a simple summary of the simulations. ```{r} sim_stack ``` We can quickly plot temporal trajectories for all simulations using `autoplot` and `what` defined on `temporal`, for instance here with basal area (ba) and aboveground biomass (agb): ```{r fullstackG1} rcontroll::autoplot(sim_stack, what = "temporal", variables = c("ba", "agb") ) ``` Similarly, we can quickly plot the forest final patterns using `autoplot` and `what` defined on `spatial`: ```{r fullstackG2, eval=FALSE} rcontroll::autoplot(sim_stack, what = "spatial") ``` # From a forest We can also run a simple simulation or a stack of simulations starting from an existing inventory or a previous simulation using the `troll` function with the `forest` parameter. We can first have a look to the ecosystem temporal trajectories of the `TROLLv3_output` simulation: ```{r} rcontroll::autoplot(TROLLv3_output, what = "temporal") ``` Similarly we can have a look to the the forest final pattern from `TROLLv3_output` that we will use to initiate the next simulation: ```{r, eval=FALSE} rcontroll::autoplot(TROLLv3_output, what = "spatial", variables = "age") ``` To run the simulation we first extracted the forest from `TROLLv3_output`, in which we removed unused columns (not mandatory). Then we extracted the previous simulation parameters to run the new one in similar conditions, we only changed the time length to 12 iterations. And we finally used the same `troll` function adding the previous forest to initiate the simulation with the `forest` parameter. A forest inventory can also be used with at least coordinates and DBH. ```{r} sim <- troll( name = "test", global = update_parameters(TROLLv3_output, nbiter = 12 * 1), species = TROLLv3_output@inputs$species, climate = TROLLv3_output@inputs$climate, daily = TROLLv3_output@inputs$daily, forest = get_forest(TROLLv3_output), verbose = FALSE ) ``` We can quickly plot temporal trajectories of both simulations to check that the initialization from `TROLLv3_output` worked. For that we updated the simulation iteration index by adding the number realised in the previous simulation. Then we simply joined ecosystem outputs with `bind_rows` before using `ggplot` to show aboveground biomass (agb) temporal trajectory: ```{r} sim@ecosystem$iter <- sim@ecosystem$iter + max(TROLLv3_output@ecosystem$iter) list( "TROLLv3_output" = TROLLv3_output@ecosystem, "sim" = sim@ecosystem ) %>% bind_rows(.id = "simulation") %>% ggplot(aes(iter / 12, agb, col = simulation)) + geom_point() + theme_bw() + xlab("Time (years)") + ylab(expression(Abovergound ~ biomass ~ (AGB ~ Kg ~ ha^{ -1 }))) ``` >Note how the simulation AGB starts at the end of `TROLLv3_output`'s temporal trajectory. # Dynamic visualisation ```{r, eval=F} gifs <- autogif( name = "dynamic", variables = "height_ct", global = update_parameters(TROLLv3_output, nbiter = 12 * 100, extent_visual = 100 ), species = TROLLv3_output@inputs$species, climate = TROLLv3_output@inputs$climate, daily = TROLLv3_output@inputs$daily, forest = get_forest(TROLLv3_output), verbose = FALSE ) gifs$height_ct ```