## ----------------------------------------------------------------------------- library(precrec) # Load a test dataset data(P10N10) # Calculate ROC and Precision-Recall curves sscurves <- evalmod(scores = P10N10$scores, labels = P10N10$labels) ## ----fig.width=7, fig.show='hold'--------------------------------------------- # Show ROC and Precision-Recall plots plot(sscurves) # Show a Precision-Recall plot plot(sscurves, "PRC") ## ----fig.width=7, fig.show='hold'--------------------------------------------- # The ggplot2 package is required library(ggplot2) # Show ROC and Precision-Recall plots autoplot(sscurves) # Show a Precision-Recall plot autoplot(sscurves, "PRC") ## ----fig.show = 'hide', results = 'hold'-------------------------------------- # 5 data sets with 50000 positives and 50000 negatives samp1 <- create_sim_samples(5, 50000, 50000) # Calculate curves eval1 <- evalmod(scores = samp1$scores, labels = samp1$labels) # Reduced supporting points system.time(autoplot(eval1)) # Full supporting points system.time(autoplot(eval1, reduce_points = FALSE)) ## ----------------------------------------------------------------------------- # Get a data frame with AUC scores aucs <- auc(sscurves) # Use knitr::kable to display the result in a table format knitr::kable(aucs) # Get AUCs of Precision-Recall aucs_prc <- subset(aucs, curvetypes == "PRC") knitr::kable(aucs_prc) ## ----------------------------------------------------------------------------- # Convert sscurves to a data frame sscurves.df <- as.data.frame(sscurves) # Use knitr::kable to display the result in a table format knitr::kable(head(sscurves.df)) ## ----------------------------------------------------------------------------- s1 <- c(1, 2, 3, 4) s2 <- c(5, 6, 7, 8) s3 <- matrix(1:8, 4, 2) # Join two score vectors scores1 <- join_scores(s1, s2) # Join two vectors and a matrix scores2 <- join_scores(s1, s2, s3) ## ----------------------------------------------------------------------------- l1 <- c(1, 0, 1, 1) l2 <- c(1, 0, 1, 1) l3 <- c(1, 0, 1, 0) # Join two label vectors labels1 <- join_labels(l1, l2) labels2 <- join_labels(l1, l3) ## ----------------------------------------------------------------------------- # Create an input dataset with two score vectors and one label vector msmdat <- mmdata(scores1, labels1) # Specify dataset IDs smmdat <- mmdata(scores1, labels2, dsids = c(1, 2)) # Specify model names and dataset IDs mmmdat <- mmdata(scores1, labels2, modnames = c("mod1", "mod2"), dsids = c(1, 2) ) ## ----------------------------------------------------------------------------- # A dataset with 10 positives and 10 negatives for the random performance level samps1 <- create_sim_samples(1, 10, 10, "random") # A dataset for five different performance levels samps2 <- create_sim_samples(1, 10, 10, "all") # A dataset with 20 samples for the good early retrieval performance level samps3 <- create_sim_samples(20, 10, 10, "good_er") # A dataset with 20 samples for five different performance levels samps4 <- create_sim_samples(20, 10, 10, "all") ## ----------------------------------------------------------------------------- # Use a list with multiple score vectors and a list with a single label vector msmdat1 <- mmdata(scores1, labels1) # Explicitly specify model names msmdat2 <- mmdata(scores1, labels1, modnames = c("mod1", "mod2")) # Use a sample dataset created by the create_sim_samples function msmdat3 <- mmdata(samps2[["scores"]], samps2[["labels"]], modnames = samps2[["modnames"]] ) ## ----------------------------------------------------------------------------- # Calculate ROC and Precision-Recall curves for multiple models mscurves <- evalmod(msmdat3) ## ----fig.width=7, fig.show='hold'--------------------------------------------- # Show ROC and Precision-Recall curves with the ggplot2 package autoplot(mscurves) ## ----------------------------------------------------------------------------- # Convert mscurves to a data frame mscurves.df <- as.data.frame(mscurves) # Use knitr::kable to display the result in a table format knitr::kable(head(mscurves.df)) ## ----------------------------------------------------------------------------- # Specify test dataset IDs names smmdat1 <- mmdata(scores1, labels2, dsids = c(1, 2)) # Use a sample dataset created by the create_sim_samples function smmdat2 <- mmdata(samps3[["scores"]], samps3[["labels"]], dsids = samps3[["dsids"]] ) ## ----------------------------------------------------------------------------- # Calculate curves for multiple test datasets and keep all the curves smcurves <- evalmod(smmdat2, raw_curves = TRUE) ## ----fig.width=7, fig.show='hold'--------------------------------------------- # Show an average Precision-Recall curve with the 95% confidence bounds autoplot(smcurves, "PRC", show_cb = TRUE) # Show raw Precision-Recall curves autoplot(smcurves, "PRC", show_cb = FALSE) ## ----------------------------------------------------------------------------- # Convert smcurves to a data frame smcurves.df <- as.data.frame(smcurves) # Use knitr::kable to display the result in a table format knitr::kable(head(smcurves.df)) ## ----------------------------------------------------------------------------- # Specify model names and test dataset IDs names mmmdat1 <- mmdata(scores1, labels2, modnames = c("mod1", "mod2"), dsids = c(1, 2) ) # Use a sample dataset created by the create_sim_samples function mmmdat2 <- mmdata(samps4[["scores"]], samps4[["labels"]], modnames = samps4[["modnames"]], dsids = samps4[["dsids"]] ) ## ----------------------------------------------------------------------------- # Calculate curves for multiple models and multiple test datasets mmcurves <- evalmod(mmmdat2) ## ----fig.width=7, fig.show='hold'--------------------------------------------- # Show average Precision-Recall curves autoplot(mmcurves, "PRC") # Show average Precision-Recall curves with the 95% confidence bounds autoplot(mmcurves, "PRC", show_cb = TRUE) ## ----------------------------------------------------------------------------- # Convert smcurves to a data frame mmcurves.df <- as.data.frame(mmcurves) # Use knitr::kable to display the result in a table format knitr::kable(head(mmcurves.df)) ## ----fig.width=7, fig.show='hold'--------------------------------------------- # Show all curves smcurves_all <- evalmod(smmdat2, raw_curves = TRUE) autoplot(smcurves_all) ## ----fig.width=7, fig.show='hold'--------------------------------------------- # x_bins: 2 smcurves_xb2 <- evalmod(smmdat2, x_bins = 2) autoplot(smcurves_xb2) ## ----fig.width=7, fig.show='hold'--------------------------------------------- # x_bins: 10 smcurves_xb10 <- evalmod(smmdat2, x_bins = 10) autoplot(smcurves_xb10) ## ----fig.width=7, fig.show='hold'--------------------------------------------- # cb_alpha: 0.1 for 90% confidence band smcurves_cb1 <- evalmod(smmdat2, x_bins = 10, cb_alpha = 0.1) autoplot(smcurves_cb1) # cb_alpha: 0.01 for 99% confidence band smcurves_cb2 <- evalmod(smmdat2, x_bins = 10, cb_alpha = 0.01) autoplot(smcurves_cb2) ## ----------------------------------------------------------------------------- # Load data data(M2N50F5) # Use knitr::kable to display the result in a table format knitr::kable(head(M2N50F5)) ## ----fig.width=7, fig.show='hold'--------------------------------------------- # Convert data frame to list nfold_list1 <- format_nfold( nfold_df = M2N50F5, score_cols = c(1, 2), lab_col = 3, fold_col = 4 ) # Use column names nfold_list2 <- format_nfold( nfold_df = M2N50F5, score_cols = c("score1", "score2"), lab_col = "label", fold_col = "fold" ) # Use the result for evalmod cvcurves <- evalmod( scores = nfold_list2$scores, labels = nfold_list2$labels, modnames = rep(c("m1", "m2"), each = 5), dsids = rep(1:5, 2) ) autoplot(cvcurves) ## ----fig.width=7, fig.show='hold'--------------------------------------------- # mmdata cvcurves2 <- mmdata( nfold_df = M2N50F5, score_cols = c(1, 2), lab_col = 3, fold_col = 4, modnames = c("m1", "m2"), dsids = 1:5 ) # evalmod cvcurves3 <- evalmod( nfold_df = M2N50F5, score_cols = c(1, 2), lab_col = 3, fold_col = 4, modnames = c("m1", "m2"), dsids = 1:5 ) autoplot(cvcurves3) ## ----------------------------------------------------------------------------- # Calculate basic evaluation measures mmpoins <- evalmod(mmmdat2, mode = "basic") ## ----fig.width=7, fig.show='hold'--------------------------------------------- # Show normalized ranks vs. error rate and accuracy autoplot(mmpoins, c("error", "accuracy")) # Show normalized ranks vs. specificity, sensitivity, and precision autoplot(mmpoins, c("specificity", "sensitivity", "precision")) # Show normalized ranks vs. Matthews correlation coefficient and F-score autoplot(mmpoins, c("mcc", "fscore")) ## ----fig.width=7, fig.show='hold'--------------------------------------------- # Show normalized ranks vs. scores and labels autoplot(mmpoins, c("score", "label")) ## ----------------------------------------------------------------------------- # Convert mmpoins to a data frame mmpoins.df <- as.data.frame(mmpoins) # Use knitr::kable to display the result in a table format knitr::kable(head(mmpoins.df)) ## ----------------------------------------------------------------------------- # Calculate ROC and Precision-Recall curves curves <- evalmod(scores = P10N10$scores, labels = P10N10$labels) # Calculate partial AUCs curves.part <- part(curves, xlim = c(0.0, 0.25)) # Retrieve a dataframe of pAUCs paucs.df <- pauc(curves.part) # Use knitr::kable to display the result in a table format knitr::kable(paucs.df) ## ----fig.width=7, fig.show='hold'--------------------------------------------- # Show ROC and Precision-Recall curves autoplot(curves.part) ## ----------------------------------------------------------------------------- # Calculate AUC (ROC) aucs <- evalmod(scores = P10N10$scores, labels = P10N10$labels, mode = "aucroc") # Convert to data.frame aucs.df <- as.data.frame(aucs) # Use knitr::kable to display the result in a table format knitr::kable(aucs.df) ## ----------------------------------------------------------------------------- # Calculate CI of AUCs with normal distibution auc_ci <- auc_ci(smcurves) # Use knitr::kable to display the result in a table format knitr::kable(auc_ci) ## ----------------------------------------------------------------------------- # Calculate CI of AUCs with alpha = 0.01 auc_ci_a <- auc_ci(smcurves, alpha = 0.01) # Use knitr::kable to display the result in a table format knitr::kable(auc_ci_a) ## ----------------------------------------------------------------------------- # Calculate CI of AUCs t-distribution auc_ci_t <- auc_ci(smcurves, dtype = "t") # Use knitr::kable to display the result in a table format knitr::kable(auc_ci_t) ## ----------------------------------------------------------------------------- # Balanced dataset samps5 <- create_sim_samples(100, 100, 100, "all") simmdat1 <- mmdata(samps5[["scores"]], samps5[["labels"]], modnames = samps5[["modnames"]], dsids = samps5[["dsids"]] ) # Imbalanced dataset samps6 <- create_sim_samples(100, 25, 100, "all") simmdat2 <- mmdata(samps6[["scores"]], samps6[["labels"]], modnames = samps6[["modnames"]], dsids = samps6[["dsids"]] ) ## ----------------------------------------------------------------------------- # Balanced dataset simcurves1 <- evalmod(simmdat1) # Imbalanced dataset simcurves2 <- evalmod(simmdat2) ## ----fig.width=7, fig.show='hold'--------------------------------------------- # Balanced dataset autoplot(simcurves1) # Imbalanced dataset autoplot(simcurves2)