Using the Poverty Probability Index

The {ppitables} package contains PPI lookup tables for the 61 countries1 where PPI can currently be calculated. To be able to use the lookup tables in {ppitables} appropriately, you need to be aware of the naming syntax used for the tables for each country. The name for each table will always have three fixed or constant components as follows:

ppiXXXYYYY

The name of any of the PPI tables contains:

  1. ppi in lower case letters;
  2. XXX which is the the three letter ISO code of the country of interest (all capitals); and,
  3. YYYY which is the specific year at which the country PPI table was released.

These three components are joined together without any spaces or gaps.

Some country lookup tables may have additional components to their name which are added after the year separated with an underscore. These usually signify that a lookup table released on a particular year has a subset table in which the poverty likelihoods for a given PPI score are reported based on a different poverty definition or cut-off. This additional component to the table name is usually a character value or alphanumeric and is usually country-specific. To know more about what this additional component to some PPI tables refer to, read the index table here.

Retrieving PPI tables

This list of available PPI country tables can be retrieved in R using the find_table() function. View the complete list using the following command in R:

find_table()
#> # A tibble: 116 × 7
#>    region            country survey_year release_year description type  filename
#>    <chr>             <chr>         <int>        <int> <chr>       <chr> <chr>   
#>  1 Asia              Afghan…        2007         2012 PPI for Af… sps   ppiAFG2…
#>  2 Africa            Angola         2008         2015 PPI for An… sps   ppiAGO2…
#>  3 Asia              Bangla…        2010         2013 PPI for Ba… sps   ppiBEN2…
#>  4 Africa            Benin          2010         2012 PPI for Be… sps   ppiBGD2…
#>  5 Africa            Benin          2018         2022 PPI for Be… ipa   ppiBEN2…
#>  6 Africa            Benin          2018         2022 PPI for Be… ipa   ppiBEN2…
#>  7 Latin American a… Bolivia        2013         2015 PPI for Bo… sps   ppiBOL2…
#>  8 Latin American a… Bolivia        2020         2023 PPI for Bo… ipa   ppiBOL2…
#>  9 Latin American a… Brazil         2008         2010 PPI for Br… sps   ppiBRA2…
#> 10 Africa            Burkin…        2003         2011 PPI for Bu… sps   ppiBFA2…
#> # ℹ 106 more rows

View the list of PPI country tables for Africa using the following command in R:

find_table(region = "Africa")
#> # A tibble: 50 × 7
#>    region country       survey_year release_year description      type  filename
#>    <chr>  <chr>               <int>        <int> <chr>            <chr> <chr>   
#>  1 Africa Angola               2008         2015 PPI for Angola … sps   ppiAGO2…
#>  2 Africa Benin                2010         2012 PPI for Benin b… sps   ppiBGD2…
#>  3 Africa Benin                2018         2022 PPI for Benin b… ipa   ppiBEN2…
#>  4 Africa Benin                2018         2022 PPI for Benin b… ipa   ppiBEN2…
#>  5 Africa Burkina Faso         2003         2011 PPI for Burkina… sps   ppiBFA2…
#>  6 Africa Burkina Faso         2014         2017 PPI for Burkina… sps   ppiBFA2…
#>  7 Africa Burkina Faso         2014         2017 PPI for Burkina… ipa   ppiBFA2…
#>  8 Africa Burkina Faso         2018         2023 PPI for Burkina… ipa   ppiBFA2…
#>  9 Africa Cameroon             2007         2013 PPI for Cameroo… sps   ppiCMR2…
#> 10 Africa Cote d'Ivoire        2008         2013 PPI for Ivory C… sps   ppiCIV2…
#> # ℹ 40 more rows

View the list of PPI country tables in Zambia using the the following command in R:

find_table(country = "Zambia")
#> # A tibble: 4 × 7
#>   region country survey_year release_year description             type  filename
#>   <chr>  <chr>         <int>        <int> <chr>                   <chr> <chr>   
#> 1 Africa Zambia         2010         2013 PPI for Zambia based o… sps   ppiZMB2…
#> 2 Africa Zambia         2010         2013 PPI for Zambia based o… sps   ppiZMB2…
#> 3 Africa Zambia         2015         2017 PPI for Zambia based o… sps   ppiZMB2…
#> 4 Africa Zambia         2015         2017 PPI for Zambia based o… ipa   ppiZMB2…

To extract the actual PPI tables, the get_table() function can be used. The get_table() function wraps around the find_table() function to make a search for a specific PPI table and then extracts the table/s and puts them together into a tidy data frame.

For example, to get the actual PPI tables for all countries with PPI tables, the following command can be used in R:

get_table()
#> # A tibble: 124,467 × 7
#>    country     release_year filename   type  score poverty_definition   ppi
#>    <chr>       <chr>        <chr>      <chr> <dbl> <chr>              <dbl>
#>  1 Afghanistan 2012         ppiAFG2012 sps       0 nl                   100
#>  2 Afghanistan 2012         ppiAFG2012 sps       0 nu150                100
#>  3 Afghanistan 2012         ppiAFG2012 sps       0 nu200                100
#>  4 Afghanistan 2012         ppiAFG2012 sps       0 extreme              100
#>  5 Afghanistan 2012         ppiAFG2012 sps       0 ppp125               100
#>  6 Afghanistan 2012         ppiAFG2012 sps       0 ppp250               100
#>  7 Afghanistan 2012         ppiAFG2012 sps       1 nl                   100
#>  8 Afghanistan 2012         ppiAFG2012 sps       1 nu150                100
#>  9 Afghanistan 2012         ppiAFG2012 sps       1 nu200                100
#> 10 Afghanistan 2012         ppiAFG2012 sps       1 extreme              100
#> # ℹ 124,457 more rows

To get the actual PPI tables for all countries with PPI tables in Africa, the following command can be used in R:

get_table(region = "Africa")
#> # A tibble: 57,927 × 7
#>    country release_year filename   type  score poverty_definition   ppi
#>    <chr>   <chr>        <chr>      <chr> <dbl> <chr>              <dbl>
#>  1 Angola  2015         ppiAGO2015 sps       0 nl100              100  
#>  2 Angola  2015         ppiAGO2015 sps       0 nl150              100  
#>  3 Angola  2015         ppiAGO2015 sps       0 nl200              100  
#>  4 Angola  2015         ppiAGO2015 sps       0 half100             86.5
#>  5 Angola  2015         ppiAGO2015 sps       0 ppp125             100  
#>  6 Angola  2015         ppiAGO2015 sps       0 ppp200             100  
#>  7 Angola  2015         ppiAGO2015 sps       0 ppp250             100  
#>  8 Angola  2015         ppiAGO2015 sps       0 ppp500             100  
#>  9 Angola  2015         ppiAGO2015 sps       1 nl100              100  
#> 10 Angola  2015         ppiAGO2015 sps       1 nl150              100  
#> # ℹ 57,917 more rows

Retrieving poverty probabilities

Example 1: An organisation in Colombia offering vocational training to the nation’s poorest citizens employs the PPI to assess if they are effectively reaching their target demographic. If a client scores 30 on the PPI, the corresponding look-up table indicates a 42.6% chance that the household lives below the $2.50/day poverty line.

In Example 1, using the 2012 release version of the lookup PPI table for Colombia (ppiCOL2012) to arrive at the client’s poverty probability, we use:

ppiCOL2012$ppp250[ppiCOL2018$score == 30]
#> [1] 42.6

Example 2: Surveying a sample of 10 clients in the same area of Colombia showed poverty scores of 25, 26, 25, 27, 26, 29, 28, 29, 25, 28. Based on $2.50/day poverty threshold, the survey revealed an average likelihood of 60.7% living below this threshold, providing valuable insights for the organisation’s outreach efforts.

In Example 2, using the 2012 release version of the lookup PPI table for Colombia (ppiCOL2012) to arrive at the average poverty probability across these 10 clients, we use:

ppi_scores <- c("25", "26", "25", "27", "26", "29", "28", "29", "25", "28")

poverty_prob <- lapply(
  X = ppi_scores,
  FUN = function(x) ppiCOL2012$ppp250[ppiCOL2018$score == x]
)

poverty_prob <- unlist(poverty_prob)
mean(poverty_prob)
#> [1] 60.7

  1. Only 60 country PPI tables are shown here and available via the package. There is no lookup table for China because the China Poverty Scorecard is an expert-based scorecard. See this for further explanation.↩︎