---
title: "Get Started"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{get_started}
%\VignetteEncoding{UTF-8}
%\VignetteEngine{knitr::rmarkdown}
editor_options:
markdown:
wrap: 72
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
options(rmarkdown.html_vignette.check_title = FALSE)
```
```{r setup, warning = FALSE, message = FALSE}
library(tidyverse)
library(dplyr)
library(lubridate)
library(tidyverse)
library(shiny)
# for the tables
library(reactable)
library(reactablefmtr)
# for the charts
library(highcharter)
# the library planr
library(planr)
```
Let's present the 3 functions:
- **light_proj_inv()** : to calculate projected inventories &
coverages
- **proj_inv()** : to calculate & analyze projected inventories vs min
& max targets
- **drp()** : to calculate a replenishment plan
## Part 1 : Projected Inventories & Coverages Calculation
### 1.1) Data Template
```{r}
Period <- c(
"1/1/2020", "2/1/2020", "3/1/2020", "4/1/2020", "5/1/2020", "6/1/2020", "7/1/2020", "8/1/2020", "9/1/2020", "10/1/2020", "11/1/2020", "12/1/2020","1/1/2021", "2/1/2021", "3/1/2021", "4/1/2021", "5/1/2021", "6/1/2021", "7/1/2021", "8/1/2021", "9/1/2021", "10/1/2021", "11/1/2021", "12/1/2021")
Demand <- c(360, 458,300,264,140,233,229,208,260,336,295,226,336,434,276,240,116,209,205,183,235,312,270,201)
Opening <- c(1310,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
Supply <- c(0,0,0,0,0,2500,0,0,0,0,0,0,0,0,0,2000,0,0,0,0,0,0,0,0)
# assemble
my_demand_and_suppply <- data.frame(Period,
Demand,
Opening,
Supply)
# let's add a Product
my_demand_and_suppply$DFU <- "Product A"
# format the Period as a date
my_demand_and_suppply$Period <- as.Date(as.character(my_demand_and_suppply$Period), format = '%m/%d/%Y')
# let's have a look at it
head(my_demand_and_suppply)
```
It contains some basic features:
- a Product: it's an item, a SKU (Storage Keeping Unit), or a SKU at a
location, also called a DFU (Demand Forecast Unit)
- a Period of time : for example monthly or weekly buckets
- a Demand : could be some sales forecasts, expressed in units
- an Opening Inventory : what we hold as available inventories at the
beginning of the horizon, expressed in units
- a Supply Plan : the supplies that we plan to receive, expressed in
units
### 1.2) Calculation
Let's apply the light_proj_inv().
We are going to calculate 2 new features for each DFU:
- projected inventories
- projected coverages, based on the Demand Forecasts
```{r}
# calculate
calculated_projection <- light_proj_inv(dataset = my_demand_and_suppply,
DFU = DFU,
Period = Period,
Demand = Demand,
Opening = Opening,
Supply = Supply)
# see results
head(calculated_projection)
```
### 1.3) A nicer display
We will use the libraries reactable and reactablefmtr to create a nice
table.
```{r}
# set a working df
df1 <- calculated_projection
# keep only the needed columns
df1 <- df1 %>% select(Period,
Demand,
Calculated.Coverage.in.Periods,
Projected.Inventories.Qty,
Supply)
# create a f_colorpal field
df1 <- df1 %>% mutate(f_colorpal = case_when( Calculated.Coverage.in.Periods > 6 ~ "#FFA500",
Calculated.Coverage.in.Periods > 2 ~ "#32CD32",
Calculated.Coverage.in.Periods > 0 ~ "#FFFF99",
TRUE ~ "#FF0000" ))
# create reactable
reactable(df1, resizable = TRUE, showPageSizeOptions = TRUE,
striped = TRUE, highlight = TRUE, compact = TRUE,
defaultPageSize = 20,
columns = list(
Demand = colDef(
name = "Demand (units)",
cell = data_bars(df1,
fill_color = "#3fc1c9",
text_position = "outside-end"
)
),
Calculated.Coverage.in.Periods = colDef(
name = "Coverage (Periods)",
maxWidth = 90,
cell= color_tiles(df1, color_ref = "f_colorpal")
),
f_colorpal = colDef(show = FALSE), # hidden, just used for the coverages
`Projected.Inventories.Qty`= colDef(
name = "Projected Inventories (units)",
format = colFormat(separators = TRUE, digits=0),
style = function(value) {
if (value > 0) {
color <- "#008000"
} else if (value < 0) {
color <- "#e00000"
} else {
color <- "#777"
}
list(color = color
#fontWeight = "bold"
)
}
),
Supply = colDef(
name = "Supply (units)",
cell = data_bars(df1,
fill_color = "#3CB371",
text_position = "outside-end"
)
)
), # close columns lits
columnGroups = list(
colGroup(name = "Projected Inventories", columns = c("Calculated.Coverage.in.Periods",
"Projected.Inventories.Qty"))
)
) # close reactable
```
### 1.4) A little chart
```{r}
# set a working df
df1 <- calculated_projection
# keep only the needed columns
df1 <- df1 %>% select(Period,
Projected.Inventories.Qty)
# create a value.index
df1$Value.Index <- if_else(df1$Projected.Inventories.Qty < 0, "Shortage", "Stock")
# spread
df1 <- df1 %>% spread(Value.Index, Projected.Inventories.Qty)
#----------------------------------------------------
# Chart
u <- highchart() %>%
hc_title(text = "Projected Inventories") %>%
hc_subtitle(text = "in units") %>%
hc_add_theme(hc_theme_google()) %>%
hc_xAxis(categories = df1$Period) %>%
hc_add_series(name = "Stock",
color = "#32CD32",
#dataLabels = list(align = "center", enabled = TRUE),
data = df1$Stock) %>%
hc_add_series(name = "Shortage",
color = "#dc3220",
#dataLabels = list(align = "center", enabled = TRUE),
data = df1$Shortage) %>%
hc_chart(type = "column") %>%
hc_plotOptions(series = list(stacking = "normal"))
u
```
## Part 2 : Calculation & Analysis
Now, let's consider some parameters such as : - a target of minimum
stock level - a target of maximum stock level
And then: - calculate the projected inventories and coverages - analyze
those values vs those defined targets
First, let's add some parameters to our initial database.
### 2.1) Data Template
Define min & max coverages, through 2 parameters: -
Min.Cov - Max.Cov
Expressed in number of periods of coverages. The periods can be in
monthly buckets, weekly buckets, etc...
```{r}
my_data_with_parameters <- my_demand_and_suppply
my_data_with_parameters$Min.Cov <- 2
my_data_with_parameters$Max.Cov <- 4
head(my_data_with_parameters)
```
### 2.2) Calculation
Let's apply the proj_inv() function
```{r}
df1 <- proj_inv(data = my_data_with_parameters,
DFU = DFU,
Period = Period,
Demand = Demand,
Opening = Opening,
Supply = Supply,
Min.Cov = Min.Cov,
Max.Cov = Max.Cov)
# see results
calculated_projection_and_analysis <- df1
head(calculated_projection_and_analysis)
```
### 2.3) A nicer display
First, let's create a function status_PI.Index()
```{r}
# create a function status.PI.Index
status_PI.Index <- function(color = "#aaa", width = "0.55rem", height = width) {
span(style = list(
display = "inline-block",
marginRight = "0.5rem",
width = width,
height = height,
backgroundColor = color,
borderRadius = "50%"
))
}
```
And now let's create a reactable:
```{r}
# set a working df
df1 <- calculated_projection_and_analysis
# remove not needed column
df1 <- df1[ , -which(names(df1) %in% c("DFU"))]
# create a f_colorpal field
df1 <- df1 %>% mutate(f_colorpal = case_when( Calculated.Coverage.in.Periods > 6 ~ "#FFA500",
Calculated.Coverage.in.Periods > 2 ~ "#32CD32",
Calculated.Coverage.in.Periods > 0 ~ "#FFFF99",
TRUE ~ "#FF0000" ))
#-------------------------
# Create Table
reactable(df1, resizable = TRUE, showPageSizeOptions = TRUE,
striped = TRUE, highlight = TRUE, compact = TRUE,
defaultPageSize = 20,
columns = list(
Demand = colDef(
name = "Demand (units)",
cell = data_bars(df1,
#round_edges = TRUE
#value <- format(value, big.mark = ","),
#number_fmt = big.mark = ",",
fill_color = "#3fc1c9",
#fill_opacity = 0.8,
text_position = "outside-end"
)
),
Calculated.Coverage.in.Periods = colDef(
name = "Coverage (Periods)",
maxWidth = 90,
cell= color_tiles(df1, color_ref = "f_colorpal")
),
f_colorpal = colDef(show = FALSE), # hidden, just used for the coverages
`Projected.Inventories.Qty`= colDef(
name = "Projected Inventories (units)",
format = colFormat(separators = TRUE, digits=0),
style = function(value) {
if (value > 0) {
color <- "#008000"
} else if (value < 0) {
color <- "#e00000"
} else {
color <- "#777"
}
list(color = color
#fontWeight = "bold"
)
}
),
Supply = colDef(
name = "Supply (units)",
cell = data_bars(df1,
#round_edges = TRUE
#value <- format(value, big.mark = ","),
#number_fmt = big.mark = ",",
fill_color = "#3CB371",
#fill_opacity = 0.8,
text_position = "outside-end"
)
#format = colFormat(separators = TRUE, digits=0)
#number_fmt = big.mark = ","
),
PI.Index = colDef(
name = "Analysis",
cell = function(value) {
color <- switch(
value,
TBC = "hsl(154, 3%, 50%)",
OverStock = "hsl(214, 45%, 50%)",
OK = "hsl(154, 64%, 50%)",
Alert = "hsl(30, 97%, 70%)",
Shortage = "hsl(3, 69%, 50%)"
)
PI.Index <- status_PI.Index(color = color)
tagList(PI.Index, value)
}),
`Safety.Stocks`= colDef(
name = "Safety Stocks (units)",
format = colFormat(separators = TRUE, digits=0)
),
`Maximum.Stocks`= colDef(
name = "Maximum Stocks (units)",
format = colFormat(separators = TRUE, digits=0)
),
`Opening`= colDef(
name = "Opening Inventories (units)",
format = colFormat(separators = TRUE, digits=0)
),
`Min.Cov`= colDef(name = "Min Stocks Coverage (Periods)"),
`Max.Cov`= colDef(name = "Maximum Stocks Coverage (Periods)"),
# ratios
`Ratio.PI.vs.min`= colDef(name = "Ratio PI vs min"),
`Ratio.PI.vs.Max`= colDef(name = "Ratio PI vs Max")
), # close columns lits
columnGroups = list(
colGroup(name = "Projected Inventories", columns = c("Calculated.Coverage.in.Periods",
"Projected.Inventories.Qty")),
colGroup(name = "Stocks Levels Parameters", columns = c("Min.Cov",
"Max.Cov",
"Safety.Stocks",
"Maximum.Stocks")),
colGroup(name = "Analysis Features", columns = c("PI.Index",
"Ratio.PI.vs.min",
"Ratio.PI.vs.Max"))
)
) # close reactable
```
Compared to the previous table, we have here some additional information
available: the calculated fields [Analysis Features] - based on safety &
maximum stocks targets - useful for a mass analysis (Cockpit / Supply
Risks Alarm), but perhaps too detailed for a focus on a SKU
We also can notice that the minimum and maximum stocks coverages,
initially expressed in Periods (of coverage) are converted in units.
It's quite useful to chart the projected inventories vs those 2
thresholds for example.
### 2.4) A little chart
```{r}
# set a working df
df1 <- calculated_projection_and_analysis
# Chart
p <- highchart() %>%
hc_add_series(name = "Max", color = "crimson", data = df1$Maximum.Stocks) %>%
hc_add_series(name = "min", color = "lightblue", data = df1$Safety.Stocks) %>%
hc_add_series(name = "Projected Inventories", color = "gold", data = df1$Projected.Inventories.Qty) %>%
hc_title(text = "Projected Inventories") %>%
hc_subtitle(text = "in units") %>%
hc_xAxis(categories = df1$Period) %>%
#hc_yAxis(title = list(text = "Sales (units)")) %>%
hc_add_theme(hc_theme_google())
p
```
We can visualize the periods when we are in Alert & OverStock, comparing
to the minimum and Maximum stocks levels.
## Part 3) Replenishment Plan
### 3.1) Data Template
Let's now add a few parameters to the initial database
"my_demand_and_suppply"
```{r}
df1 <- my_demand_and_suppply
df1$SSCov <- 2
df1$DRPCovDur <- 3
df1$MOQ <- 1
df1$FH <- c("Frozen", "Frozen", "Frozen", "Frozen","Frozen","Frozen","Free","Free","Free","Free","Free","Free","Free","Free","Free","Free","Free","Free","Free","Free","Free","Free","Free","Free")
# get Results
my_drp_template <- df1
head(my_drp_template)
```
### 3.2) Calculation
Apply drp()
```{r}
# set a working df
df1 <- my_drp_template
# calculate drp
demo_drp <- drp(data = df1,
DFU = DFU,
Period = Period,
Demand = Demand,
Opening = Opening,
Supply = Supply,
SSCov = SSCov,
DRPCovDur = DRPCovDur,
MOQ = MOQ,
FH = FH
)
glimpse(demo_drp)
```
### 3.3) A nicer display
```{r}
# set a working df
df1 <- demo_drp
# keep only the needed columns
df1 <- df1 %>% select(Period,
Demand,
DRP.Calculated.Coverage.in.Periods,
DRP.Projected.Inventories.Qty,
DRP.plan)
# replace missing values by zero
df1$DRP.plan[is.na(df1$DRP.plan)] <- 0
df1$DRP.Projected.Inventories.Qty[is.na(df1$DRP.Projected.Inventories.Qty)] <- 0
# create a f_colorpal field
df1 <- df1 %>% mutate(f_colorpal = case_when( DRP.Calculated.Coverage.in.Periods > 8 ~ "#FFA500",
DRP.Calculated.Coverage.in.Periods > 2 ~ "#32CD32",
DRP.Calculated.Coverage.in.Periods > 0 ~ "#FFFF99",
TRUE ~ "#FF0000" ))
# create reactable
reactable(df1, resizable = TRUE, showPageSizeOptions = TRUE,
striped = TRUE, highlight = TRUE, compact = TRUE,
defaultPageSize = 20,
columns = list(
Demand = colDef(
name = "Demand (units)",
cell = data_bars(df1,
fill_color = "#3fc1c9",
text_position = "outside-end"
)
),
DRP.Calculated.Coverage.in.Periods = colDef(
name = "Coverage (Periods)",
maxWidth = 90,
cell= color_tiles(df1, color_ref = "f_colorpal")
),
f_colorpal = colDef(show = FALSE), # hidden, just used for the coverages
`DRP.Projected.Inventories.Qty`= colDef(
name = "Projected Inventories (units)",
format = colFormat(separators = TRUE, digits=0),
style = function(value) {
if (value > 0) {
color <- "#008000"
} else if (value < 0) {
color <- "#e00000"
} else {
color <- "#777"
}
list(color = color
#fontWeight = "bold"
)
}
),
DRP.plan = colDef(
name = "Replenishment (units)",
cell = data_bars(df1,
fill_color = "#3CB371",
text_position = "outside-end"
)
)
), # close columns lits
columnGroups = list(
colGroup(name = "Projected Inventories", columns = c("DRP.Calculated.Coverage.in.Periods",
"DRP.Projected.Inventories.Qty"))
)
) # close reactable
```
### 3.4) A little chart
```{r}
# set a working df
df1 <- demo_drp
# Chart
p <- highchart() %>%
hc_add_series(name = "Max", color = "crimson", data = df1$Maximum.Stocks) %>%
hc_add_series(name = "min", color = "lightblue", data = df1$Safety.Stocks) %>%
hc_add_series(name = "Projected Inventories", color = "gold", data = df1$DRP.Projected.Inventories.Qty) %>%
hc_title(text = "(DRP) Projected Inventories") %>%
hc_subtitle(text = "in units") %>%
hc_xAxis(categories = df1$Period) %>%
#hc_yAxis(title = list(text = "Sales (units)")) %>%
hc_add_theme(hc_theme_google())
p
```