## ----include=FALSE, echo=FALSE------------------------------------------------ knitr::opts_chunk$set(fig.width = 7, fig.height = 4, # cache = TRUE, warning = FALSE) ## ----load_package, echo=FALSE, results='hide', message=FALSE------------------ library(morseTKTD) ## ----TKTDcst------------------------------------------------------------------ # (1) load data set data(propiconazole) # (2) check structure and integrity of the data set survDataCheck(propiconazole) # (3) create a `survData` object PRZcst <- survData(propiconazole) # (4) represent the number of survivors as a function of time plot(PRZcst) ## ----fitcstSD, echo=TRUE, warning=FALSE--------------------------------------- # (6) fit the TKTD model SD fit_cstSD <- fit(PRZcst, model_type = "SD", refresh = 0) ## ----priorsParams------------------------------------------------------------- in_param <- priors_distribution(fit_cstSD) head(in_param) ## ----fitcst_pp1--------------------------------------------------------------- # prior/posterior estimates pp_cstSD = priorPosterior(fit_cstSD) head(pp_cstSD) ## ----plot_pp_cstSD------------------------------------------------------------ # plot of parameters estimates plot(pp_cstSD) ## ----plot_fit_cstSD----------------------------------------------------------- plot(fit_cstSD) ## ----plot_fit_cstSD_withData-------------------------------------------------- plot(fit_cstSD, add_data = FALSE) ## ----plot_ppc_cstSD----------------------------------------------------------- # PPC_fit_cstSD <- ppc(fit_cstSD) # plot(PPC_fit_cstSD) ## ----extractNsurvPPC---------------------------------------------------------- extNsurvPPC_cstSD <- extract_Nsurv_ppc(fit_cstSD) head(extNsurvPPC_cstSD) ## ----extractNsurvSIM---------------------------------------------------------- extNsurvSIM_cstSD <- extract_Nsurv_sim(fit_cstSD) head(extNsurvSIM_cstSD) ## ----fitcstSDFIXhb, warning=FALSE--------------------------------------------- # fit the TKTD model SD with fixed hb value fit_cstSDFIXhb <- fit(PRZcst, model_type = "SD", hb_value = 0.2, refresh = 0) ## ----plotcstSDFIXhb_PrintVal-------------------------------------------------- plot(fit_cstSDFIXhb) ## ----summarycstSDFIXhbSummary------------------------------------------------- pp_cstSDFIXhb = priorPosterior(fit_cstSDFIXhb) head(pp_cstSDFIXhb[pp_cstSDFIXhb$pp == "posterior", ]) ## ----fitcstIT----------------------------------------------------------------- fit_cstIT <- fit(PRZcst, model_type = "IT", refresh = 0) ## ----PLOTpriors_post_cstIT---------------------------------------------------- PP_cstIT <- priorPosterior(fit_cstIT) plot(PP_cstIT) ## ----plot_fit_cstIT----------------------------------------------------------- plot(fit_cstIT) ## ----ppc_fit_cstIT------------------------------------------------------------ ppc_cstIT = ppc(fit_cstIT) head(ppc_cstIT) ## ----plot_ppc_fit_cstIT------------------------------------------------------- # plot(ppc_cstIT) ## ----predict------------------------------------------------------------------ # (1) upload or build a data frame with the exposure profile # argument `replicate` is used to provide several profiles of exposure data_4prediction <- data.frame(time = c(1:10, 1:10), conc = c(c(0,0,40,0,0,0,40,0,0,0), c(21,19,18,23,20,14,25,8,13,5)), replicate = c(rep("pulse", 10), rep("random", 10))) # (2) Use the fit on constant exposure propiconazole with model SD (see previously) predict_PRZ_cstSD_4pred <- predict(fit_cstSD, data_4prediction) ## ----predictPlot-------------------------------------------------------------- # (3) Plot the predicted survival rate under the new exposure profiles. plot(predict_PRZ_cstSD_4pred) ## ----predictPlotBackground---------------------------------------------------- # (3) Plot the predicted survival rate under the new exposure profiles. plot(predict_PRZ_cstSD_4pred, background_concentration = TRUE) ## ----predictPlotBackgroundLegend---------------------------------------------- # (3) Plot the predicted survival rate under the new exposure profiles. plot(predict_PRZ_cstSD_4pred, background_concentration = TRUE, add_legend = TRUE) ## ----MCMCPredicExternal, warning=FALSE---------------------------------------- Nsurv_predict_PRZ_cst4pred = compute_Nsurv(predict_PRZ_cstSD_4pred, Ninit = 10) Nsurv_predict_PRZ_cst4pred$df_quantile ## ----hb_value----------------------------------------------------------------- # Use the same data set profile to predict without 'hb' predict_PRZ_cstSD_4pred_hbOUT <- predict( fit = fit_cstSD, display.exposure = data_4prediction, hb_value = 0) # Plot the prediction: plot(predict_PRZ_cstSD_4pred_hbOUT) ## ----hb_valueFIX2------------------------------------------------------------- # Use the same data set profile to predict without 'hb' predict_PRZ_cstSD_4pred_hbFIX2 <- predict( fit = fit_cstSD, display.exposure = data_4prediction, hb_value = 2) # Plot the prediction: plot(predict_PRZ_cstSD_4pred_hbFIX2) ## ----cstTOcst, warning=FALSE-------------------------------------------------- predict_psurv_PRZ_SD_cstTOcst <- predict(fit_cstSD, propiconazole) compute_Nsurv_PRZ_SD_cstTOcst <- compute_Nsurv( predict_psurv_PRZ_SD_cstTOcst, Ninit = compute_Ninit(propiconazole) ) head(predict_psurv_PRZ_SD_cstTOcst $df_quantile) ## ----cstTOvar, warning=FALSE-------------------------------------------------- data(propiconazole_pulse_exposure) predict_psurv_PRZ_SD_cstTOvar <- predict(fit_cstSD, propiconazole_pulse_exposure) predict_Nsurv_PRZ_SD_cstTOvar <- compute_Nsurv( predict_psurv_PRZ_SD_cstTOvar, Ninit = compute_Ninit(propiconazole) ) head(predict_Nsurv_PRZ_SD_cstTOvar$df_quantile) ## ----checkNsurvPRED_1--------------------------------------------------------- # compute_check(compute_Nsurv_PRZ_SD_cstTOvar) ## ----plotPredict_Nsurv-------------------------------------------------------- # plot(predict_Nsurv_PRZ_SD_cstTOvar) ## ----ppcPredict_Nsurv--------------------------------------------------------- # ppc(predict_Nsurv_PRZ_SD_cstTOvar) ## ----nameEFSA_SD-------------------------------------------------------------- # head(priors_distribution(fit_cstSD, EFSA_name = TRUE)) # plot_prior_post(fit_cstSD, EFSA_name = TRUE) ## ----nameEFSA_IT-------------------------------------------------------------- # head(priors_distribution(fit_cstIT, EFSA_name = TRUE)) # plot_prior_post(fit_cstIT, EFSA_name = TRUE) ## ----cstSDLCx----------------------------------------------------------------- # LC50 at the maximum time-point: LCx_cstSD <- lcxt(fit_cstSD, x = 0.5) plot(LCx_cstSD) # LC50 at time = 2 lcxt(fit_cstSD, x = 0.5, t = 2) |> plot() ## Note the use of the pipe operator, `|>`, which is a powerful tool for clearly expressing a sequence of multiple operations. ## For more information on pipes, see: http://r4ds.had.co.nz/pipes.html ## ----cstSDLCx_3015------------------------------------------------------------ # LC50 at time = 15 lcxt(fit_cstSD, x = 0.5, t = 15) |> plot() ## ----cstITLCx----------------------------------------------------------------- # LC50 at the maximum time-point: LCx_cstIT <- lcxt(fit_cstIT, x = 0.5) plot(LCx_cstIT) # LC50 at time = 2 lcxt(fit_cstIT, x = 0.5, t = 2) |> plot() # LC30 at time = 15 lcxt(fit_cstIT, x = 0.3, t = 15) |> plot() ## ----MFx_compt---------------------------------------------------------------- # (1) upload or build a data frame with the exposure profile data_4MFx <- data.frame(time = 1:10, conc = c(0,0.5,8,3,0,0,0.5,8,3.5,0), replicate = "A") # (2) Use the fit on constant exposure propiconazole with model SD (see previously) MFx_PRZ_cstSD_4MFx <- lpxt(fit = fit_cstSD, display.exposure = data_4MFx) ## ----MFx_plot----------------------------------------------------------------- # (3) Plot the survival rate as function of the multiplication factors. plot(MFx_PRZ_cstSD_4MFx) ## ----MFx_plotMfX-------------------------------------------------------------- # (3 bis) Plot the binary-search of MFx plot(MFx_PRZ_cstSD_4MFx, plot = "MFx") ## ----print_df_MFx------------------------------------------------------------- MFx_PRZ_cstSD_4MFx$df_q50 ## ----MFx_x10------------------------------------------------------------------ # (2 bis) fit on constant exposure propiconazole with model SD (see previously) MFx_PRZ_cstSD_4MFx_x10 <- lpxt(fit = fit_cstSD, x = 0.1, display.exposure = data_4MFx) plot(MFx_PRZ_cstSD_4MFx_x10) ## ----MFx_x10plot2------------------------------------------------------------- plot(MFx_PRZ_cstSD_4MFx_x10, plot = "MFx") ## ----MFx_IT------------------------------------------------------------------- # (2) Use the fit on constant exposure propiconazole with model IT. No print of run messages. MFx_PRZ_cstIT_4pred <- lpxt( fit = fit_cstIT, x = 0.5, t = 4, display.exposure = data_4MFx) # (3) Plot the survival rate versus multiplication factors. plot(MFx_PRZ_cstIT_4pred) # (4) Plot the serching plot(MFx_PRZ_cstIT_4pred, plot = "MFx") ## ----MFx_ITplot--------------------------------------------------------------- # (2) Use the fit on constant exposure propiconazole with model IT. No print of run messages. MFx_PRZ_cstIT_4pred <- lpxt(fit = fit_cstIT, x = 0.1, t = 4, display.exposure = data_4MFx) # plot(MFx_PRZ_cstIT_4pred) # plot(MFx_PRZ_cstIT_4pred, plot = "MFx")