Introduction

R-CMD-check

This R-package moewishart provides maximum likelihood estimation (MLE) and Bayesian estimation for the Wishart mixture model and the Wishart mixture-of-experts (MoE-Wishart) model. It implements four different inference algorithms for the two model:

Installation

Install the latest development version from GitHub:

# library("devtools")
devtools::install_github("zhizuio/moewishart")

Example


Data simulation from a MoE-Wishart model:

1. Working model: Bayesian MoE-Wishart model

library(moewishart)

n <- 200 # number of subjects
p <- 2 # dimension of covariance matrix
set.seed(123) # fix coefficients of underlying MoE model
Xq <- 3
K <- 3
betas <- matrix(runif(Xq * K, -2, 2), nrow = Xq, ncol = K)
betas[, K] <- 0

# simulate data
dat <- simData(n, p,
  Xq = 3, K = 3, betas = betas,
  pis = c(0.35, 0.40, 0.25),
  nus = c(8, 12, 3)
)

# fit Bayesian MoE-Wishart model
set.seed(123)
fit <- moewishart(
  dat$S,
  X = cbind(1, dat$X), K = 3,
  mh_sigma = c(0.2, 0.1, 0.2), # RW-MH variances (length K)
  mh_beta = c(0.3, 0.3), # RW-MH variances (length K-1)
  niter = 3000, burnin = 1000
)


Posterior means for degrees of freedom (DoF) of Wishart distributions:

burnin <- 1000
nu_mcmc <- fit$nu[-c(1:burnin), ]
colMeans(nu_mcmc)
## [1]  8.574911 14.397351  3.310689


True DoF:

dat$nu # true nu
## [1]  8 12  3


Posterior means for scale matrices of Wishart distributions:

MoE_Sigma <- Reduce("+", fit$Sigma) / length(fit$Sigma)
MoE_Sigma
## , , 1
## 
##           [,1]      [,2]
## [1,] 0.5197160 0.2103881
## [2,] 0.2103881 0.7470847
## 
## , , 2
## 
##           [,1]      [,2]
## [1,] 1.7637949 0.5540576
## [2,] 0.5540576 1.3244947
## 
## , , 3
## 
##            [,1]       [,2]
## [1,]  4.1115070 -0.1267705
## [2,] -0.1267705  3.0385263


Posterior means for gating coefficients:

beta_mcmc <- fit$Beta_samples[-c(1:burnin), , ]
apply(beta_mcmc, c(2, 3), mean)
##            [,1]        [,2] [,3]
## [1,] -0.3656861 -0.08024419    0
## [2,] -0.9526224  2.24956385    0
## [3,]  1.7609922  2.40287152    0
## [4,] -0.4953755 -2.56072719    0

2. Working model: Bayesian Wishart mixture model

# fit Bayesian Wishart mixture model
set.seed(123)
fit2 <- mixturewishart(
  dat$S,
  K = 3,
  mh_sigma = c(0.2, 0.1, 0.2), # RW-MH variances
  niter = 3000, burnin = 1000
)


Posterior means for subpopulation probabilities:

colMeans(fit2$pi[-c(1:burnin), ])
## [1] 0.2690425 0.5088864 0.2220712


Posterior means for DoF of Wishart distributions:

colMeans(fit2$nu[-c(1:burnin), ])
## [1]  7.986113 12.153338  3.284252

3. Working model: MoE-Wishart model via EM algorithm

# fit MoE-Wishart model via EM alg.
set.seed(123)
fit3 <- moewishart(
  dat$S,
  X = cbind(1, dat$X), K = 3,
  method = "em",
  niter = 3000
)
## Iter   1  loglik = -2079.322610
## Iter   2  loglik = -1998.694495
## Iter   3  loglik = -1985.659443
## Iter   4  loglik = -1947.223842
## Iter   5  loglik = -1899.666938
## Iter   6  loglik = -1878.233062
## Iter   7  loglik = -1861.702657
## Iter   8  loglik = -1851.548347
## Iter   9  loglik = -1847.342510
## Iter  10  loglik = -1845.497390
## Iter  11  loglik = -1844.693281
## Iter  12  loglik = -1844.360139
## Iter  13  loglik = -1844.220804
## Iter  14  loglik = -1844.160033
## Iter  15  loglik = -1844.132434
## Iter  16  loglik = -1844.119493
## Iter  17  loglik = -1844.113254
## Iter  18  loglik = -1844.110247
## Iter  19  loglik = -1844.108705
## Iter  20  loglik = -1844.107915
## Iter  21  loglik = -1844.107527
## Iter  22  loglik = -1844.107312
## Iter  23  loglik = -1844.107207
## Iter  24  loglik = -1844.107148
## Iter  25  loglik = -1844.107116
## Iter  26  loglik = -1844.107098
## Iter  27  loglik = -1844.107088
## Iter  28  loglik = -1844.107082
## Iter  29  loglik = -1844.107080
## Iter  30  loglik = -1844.107079
## Iter  31  loglik = -1844.107077
## Iter  32  loglik = -1844.107077
## Converged by loglik tolerance.


EM estimates for DoF of Wishart distributions:

fit3$nu
## [1]  7.515417 13.987158  3.274665


EM estimates for Wishart scale matrices:

fit3$Sigma
## [[1]]
##           [,1]      [,2]
## [1,] 0.5591113 0.2324429
## [2,] 0.2324429 0.8148737
## 
## [[2]]
##           [,1]      [,2]
## [1,] 1.7665723 0.5567668
## [2,] 0.5567668 1.3336367
## 
## [[3]]
##            [,1]       [,2]
## [1,]  4.3139885 -0.1886288
## [2,] -0.1886288  3.0983710


EM estimates for gating coefficients:

fit3$Beta
##             comp1      comp2 comp3
## [1,] -0.006270492  0.1302039     0
## [2,] -0.798302303  2.0340525     0
## [3,]  1.598530103  2.2399293     0
## [4,] -0.510585695 -2.3465248     0

4. Working model: Wishart mixture model via EM algorithm

# fit Wishart mixture model via EM alg.
set.seed(123)
fit4 <- mixturewishart(
  dat$S,
  K = 3,
  method = "em",
  niter = 3000
)
## Running 3 initialization restarts...
##   -> Restart 1: Loglik = -2011.91
##   -> Restart 2: Loglik = -1989.16
##   -> Restart 3: Loglik = -1989.16
## Iter  10 | Loglik: -1953.0326 | Nu: 5, 7.26, 5
## Iter  20 | Loglik: -1952.7924 | Nu: 5.15, 7.05, 5.21
## Iter  30 | Loglik: -1930.6036 | Nu: 4.21, 7.13, 8.27
## Iter  40 | Loglik: -1902.9306 | Nu: 3.08, 7.78, 10.79
## Iter  50 | Loglik: -1902.6288 | Nu: 3, 7.76, 11.11
## Iter  60 | Loglik: -1902.6133 | Nu: 2.99, 7.71, 11.21
## Iter  70 | Loglik: -1902.6102 | Nu: 2.99, 7.69, 11.26
## Iter  80 | Loglik: -1902.6095 | Nu: 2.99, 7.68, 11.28
## Iter  90 | Loglik: -1902.6093 | Nu: 3, 7.68, 11.3
## Iter 100 | Loglik: -1902.6092 | Nu: 3, 7.68, 11.3
## Iter 110 | Loglik: -1902.6092 | Nu: 3, 7.68, 11.31
## Converged at iteration 116


EM estimates for DoF of Wishart distributions:

fit4$nu
## [1]  2.995383  7.682819 11.309040


EM estimate for Wishart scale matrices:

fit4$Sigma
## [[1]]
##           [,1]     [,2]
## [1,]  4.048859 -1.10103
## [2,] -1.101030  2.79641
## 
## [[2]]
##           [,1]      [,2]
## [1,] 0.5582012 0.2515063
## [2,] 0.2515063 0.8151752
## 
## [[3]]
##           [,1]      [,2]
## [1,] 2.0930529 0.6273737
## [2,] 0.6273737 1.5706730