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computeIC Information criteria for Wishart mixtures and MoE models

Description

Compute AIC, BIC, and ICL for EM fits; and PSIS-LOO expected log predictive density (elpd_loo)
for Bayesian fits. Supports mixturewishart (finite mixture) and moewishart (MoE with covariates
in gating).

Usage

computeIC(fit)

Arguments

fit A fitted object returned by mixturewishart() or moewishart().

Details

For EM fits:

• AIC: AIC = 2k − 2ℓ, where k is the number of free parameters and ℓ is the maximized
log-likelihood (last EM iteration).

• BIC: BIC = k log n− 2ℓ.

• ICL: ICL = BIC +
∑n

i=1

∑K
k=1 τik log τik, i.e., BIC plus the entropy term (classification

likelihood approximation).

Parameter counting k:

• For mixturewishart: k = (K − 1) + K · p(p+1)
2 + K · I[estimate ν], where (K − 1) are

mixture weights, each Σk has p(p+1)
2 free parameters, and νk adds 1 per component when

estimated.

• For moewishart: k = q (K− 1)+K · p(p+1)
2 +K · I[estimate ν], where q (K− 1) are gating

regression coefficients (last class is reference with zero column).

For Bayesian fits:

• elpd_loo: computed via loo::loo using per-observation log-likelihood draws. Requires
fit$loglik_individual as a matrix of size S × n (draws by observations), as produced
by the provided samplers. Returns elpd_loo, se_elpd_loo, p_loo, and looic.

Notes:
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• AIC/BIC/ICL are defined for MLE (EM) fits. For Bayesian fits, prefer elpd_loo (or WAIC)
rather than AIC/BIC.

• The entropy term in ICL uses EM responsibilities τik (field tau for mixturewishart, gamma
for moewishart).

Value

- For method="em": a list with fields AIC, BIC, ICL. - For method="bayes": a list with fields ICL
and elpd of class ‘"loo"‘ as returned by [loo::loo()] that contains fields ‘estimates‘, ‘pointwise‘,
‘diagnostics‘

Examples

# Bayesian example (MoE)

# simulate data
set.seed(123)
n <- 500 # subjects
p <- 2
# True gating coefficients (last column zero)
set.seed(123)
Xq <- 3
K <- 3
betas <- matrix(runif(Xq * K, -2, 2), nrow = Xq, ncol = K)
betas[, K] <- 0
dat <- simData(n, p,

Xq = 3, K = 3, betas = betas,
pis = c(0.35, 0.40, 0.25),
nus = c(8, 16, 3)

)
set.seed(123)
fit <- moewishart(

dat$S,
X = cbind(1, dat$X), K = 3,
mh_sigma = c(0.2, 0.1, 0.1), # RW-MH variances (length K)
mh_beta = c(0.2, 0.2), # RW-MH variances (length K-1)
niter = 100, burnin = 50

)
computeIC(fit)

dWishart density of Wishart distribution

Description

Compute the (log) density of a p-dimensional Wishart distribution Wp(ν,Σ) at an SPD matrix S.
Returns either the log-density or the density depending on logarithm.
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Usage

dWishart(S, nu, Sigma, detS_val = NULL, logarithm = TRUE)

Arguments

S Numeric p× p SPD matrix at which to evaluate the density.

nu Numeric. Degrees of freedom ν (must exceed p− 1).

Sigma Numeric p× p SPD scale matrix Σ.

detS_val Optional numeric. Precomputed log |S| to reuse; if NULL, it is computed inter-
nally.

logarithm Logical. If TRUE, return log-density; otherwise return density.

Details

Let S ∼ Wp(ν,Σ) with degrees of freedom ν and scale matrix Σ (SPD). The density is:

f(S | ν,Σ) =
|S|(ν−p−1)/2 exp{− 1

2 tr(Σ
−1S)}

2νp/2 |Σ|ν/2 Γp(ν/2)
,

where Γp(·) is the multivariate gamma function and p is the dimension.

Note that (i) detS_val can be supplied to avoid recomputing log |S|, which is useful inside EM/MCMC
loops, and (ii) small diagonal jitter is added internally to S and Σ when computing determinants or
solves for numerical stability.

Constraints: (i) S and Σ must be SPD, and (ii) the Wishart requires ν > p− 1.

Value

A numeric scalar: the log-density if logarithm = TRUE, otherwise the density.

Examples

set.seed(123)
p <- 3
# Construct an SPD Sigma
A <- matrix(rnorm(p * p), p, p)
Sigma <- crossprod(A) + diag(p) * 0.5
# Draw a Wishart matrix using base stats::rWishart()
W <- drop(rWishart(1, df = p + 5, Sigma = Sigma))
# Evaluate log-density at W
dWishart(W, nu = p + 5, Sigma = Sigma, logarithm = TRUE)
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lmvgamma Log multivariate gamma function

Description

Compute the log of the multivariate gamma function log Γp(a) for dimension p and parameter a.

Usage

lmvgamma(a, p)

Arguments

a Numeric. Argument of Γp(·) (often ν/2 in Wishart contexts).

p Integer. Dimension p of the multivariate gamma.

Details

The multivariate gamma function Γp(a) is defined by:

Γp(a) = π p(p−1)/4

p∏
j=1

Γ

(
a+

1− j

2

)
.

Constraints: (i) p ∈ {1, 2, . . . } (positive integer), and (ii) a > (p − 1)/2 to keep all gamma terms
finite (as in the Wishart normalization constant).

Value

A numeric scalar equal to log Γp(a).

Examples

# Dimension
p <- 3
# Evaluate log multivariate gamma at a = nu/2
nu <- p + 5
lmvgamma(a = nu / 2, p = p)
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mixturewishart EM/Bayesian estimation for Wishart mixture model

Description

Fit finite mixtures of Wishart-distributed SPD matrices using either a Bayesian sampler or the EM
algorithm. The input S_list is a list of p × p SPD matrices. Under component k, Si | zi = k ∼
Wp(νk,Σk) with degrees of freedom νk and SPD scale matrix Σk. Mixture weights πk sum to 1.

Usage

mixturewishart(
S_list,
K,
niter = 3000,
burnin = 1000,
method = "bayes",
thin = 1,
alpha = NULL,
nu0 = NULL,
Psi0 = NULL,
init_pi = NULL,
init_nu = NULL,
init_Sigma = NULL,
marginal.z = TRUE,
estimate_nu = TRUE,
nu_prior_a = 2,
nu_prior_b = 0.1,
mh_sigma = 1,
n_restarts = 3,
restart_iters = 20,
tol = 1e-06,
verbose = TRUE

)

Arguments

S_list List of length n of SPD matrices, each p × p. These are the observed matrices
modeled by a mixture of Wisharts.

K Integer. Number of mixture components.

niter Integer. Total iterations. Bayesian mode: total MCMC iterations (including
burn-in). EM mode: maximum EM iterations (alias to maxiter).

burnin Integer. Number of burn-in iterations (Bayesian mode).

method Character; one of c("bayes","em"). Selects sampler or optimizer.

thin Integer. Thinning interval for saving draws (Bayesian).
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alpha Numeric vector length K (Dirichlet prior on π) or NULL to default to rep(1, K)
(Bayesian).

nu0 Numeric. Inverse-Wishart prior df for Σk (Bayesian). Default: p+ 2.

Psi0 Numeric p × p SPD matrix. Inverse-Wishart prior scale for Σk (Bayesian).
Default: diag(p).

init_pi Optional numeric vector length K summing to 1. EM initialization for mixture
weights. If NULL, random or data-driven initialization is used.

init_nu Optional numeric vector length K of initial degrees of freedom. Used in both
modes.

init_Sigma Optional list of K SPD matrices (each p× p). EM initialization for Σk.

marginal.z Logical. If TRUE, integrates out π when sampling z (collapsed step) in Bayesian
mode. If FALSE, samples z conditional on current π.

estimate_nu Logical. If TRUE, estimate/update νk (MH in Bayesian mode; Newton/EM in
EM). If FALSE, νk are fixed.

nu_prior_a Numeric. Prior hyperparameter a for νk (Bayesian), used when estimate_nu =
TRUE.

nu_prior_b Numeric. Prior hyperparameter b for νk (Bayesian), used when estimate_nu =
TRUE.

mh_sigma Numeric scalar or length-K vector. Proposal sd for MH updates on log(νk)
(Bayesian, when estimating ν).

n_restarts Integer. Number of random restarts for EM. Ignored in Bayesian mode.

restart_iters Integer. Number of short EM iterations per restart used to select a good initial-
ization. Ignored in Bayesian mode.

tol Numeric. Convergence tolerance on absolute change of log-likelihood (EM),
also used internally elsewhere.

verbose Logical. If TRUE, print progress information.

Details

Mixture mixture model: p(Si) =
∑K

k=1 πk fW (Si | νk,Σk).

Algorithms:

1. method = "bayes": Samples latent labels z, weights π, component scales Σk, and option-
ally νk. Uses a Dirichlet prior for π, inverse- Wishart prior for Σk, and a prior on νk when
estimate_nu = TRUE. Degrees-of-freedom are updated via MH on log(νk) with proposal sd
mh_sigma. Can integrate out π when sampling z if marginal.z = TRUE.

2. method = "em": Maximizes the observed-data log- likelihood via EM. The E-step computes
responsibilities via Wishart log-densities. The M-step updates πk and Σk; optionally updates
νk when estimate_nu = TRUE. Supports multiple random restarts.

Note that (i) All matrices in S_list must be SPD. Small ridge terms may be added internally for
stability, and (ii) Multiple EM restarts are recommended for robustness on difficult datasets.
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Value

A list whose structure depends on method:

• For method = "bayes":

– pi_ik: array (nsave x n x K), saved per-observation weights.
– pi: matrix (nsave x K), saved mixture proportions.
– nu: matrix (nsave x K), saved degrees- of-freedom.
– Sigma: list of length nsave; each is an array (p× p×K) of Σk draws.
– z: matrix (nsave x n), saved allocations.
– sigma_posterior_mean: array (p× p×K), posterior mean of Σk.
– loglik: numeric vector (length niter), log- likelihood trace.
– loglik_individual: matrix (niter x n), per-observation log-likelihood.

• For method = "em":

– pi: numeric vector length K, mixture proportions.
– Sigma: list length K, each a p× p SPD matrix.
– nu: numeric vector length K, degrees-of- freedom.
– tau: matrix (n×K), responsibilities.
– loglik: numeric vector, log-likelihood per EM iteration.
– iterations: integer, number of EM iterations performed.

Examples

# simulate data
set.seed(123)
n <- 500 # subjects
p <- 2
dat <- simData(n, p,
K = 3,
pis = c(0.35, 0.40, 0.25),
nus = c(8, 16, 3)

)

set.seed(123)
fit <- mixturewishart(

dat$S,
K = 3,
mh_sigma = c(0.2, 0.1, 0.1), # tune this for MH acceptance 20-40%
niter = 100, burnin = 50

)

# Posterior means for degrees of freedom of Wishart distributions:
nu_mcmc <- fit$nu[-c(1:fit$burnin), ]
colMeans(nu_mcmc)
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moewishart EM/Bayesian estimation for Wishart MoE model

Description

Fit a mixture-of-experts model for symmetric positive-definite (SPD) matrices with covariate-dependent
mixing proportions (gating network). Components are Wishart-distributed. Supports Bayesian sam-
pling and EM-based maximum-likelihood estimation.

Usage

moewishart(
S_list,
X,
K,
niter = 3000,
burnin = 1000,
method = "bayes",
thin = 1,
nu0 = NULL,
Psi0 = NULL,
init_nu = NULL,
estimate_nu = TRUE,
nu_prior_a = 2,
nu_prior_b = 0.1,
mh_sigma = 0.1,
mh_beta = 0.05,
sigma_beta = 10,
init = NULL,
tol = 1e-06,
ridge = 1e-08,
verbose = TRUE

)

Arguments

S_list List of length n of SPD matrices, each p× p. These are the observed responses
modeled by the MoE.

X Numeric matrix n× q of covariates for the gating network. Include an intercept
column if desired.

K Integer. Number of mixture components (experts).

niter Integer. Total iterations. Bayesian mode: total MCMC iterations (including
burn-in). EM mode: maximum EM iterations.

burnin Integer. Number of burn-in iterations (Bayesian mode).

method Character; one of c("bayes", "em"). Selects sampler or optimizer.
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thin Integer. Thinning interval for saving draws (Bayesian).

nu0 Numeric. Inverse-Wishart prior df for Σk (Bayesian). Default: p+ 2 if NULL.

Psi0 Numeric p × p SPD matrix. Inverse-Wishart prior scale for Σk (Bayesian).
Default: diag(p) if NULL.

init_nu Optional numeric vector length K of initial dfs νk. Used for initialization.

estimate_nu Logical. If TRUE, estimate νk (MH in Bayesian; Newton/EM in EM). If FALSE,
keep νk fixed at init_nu.

nu_prior_a Numeric. Prior hyperparameter a for νk (Bayesian), used when estimate_nu =
TRUE.

nu_prior_b Numeric. Prior hyperparameter b for νk (Bayesian), used when estimate_nu =
TRUE.

mh_sigma Numeric scalar or length-K vector. Proposal sd for MH updates on log(νk)
(Bayesian, when estimating ν).

mh_beta Numeric scalar or length-K − 1 vector. Proposal sd for MH updates of the free
B columns (Bayesian).

sigma_beta Numeric. Prior sd of the Gaussian prior on B (Bayesian).

init Optional list with fields for EM initialization, e.g., beta, Sigma, nu. See return
structure.

tol Numeric. Convergence tolerance on absolute change of log-likelihood (EM),
also used internally.

ridge Numeric. Small diagonal ridge added to Σk updates in EM for numerical stabil-
ity.

verbose Logical. If TRUE, print progress information.

Details

MoE-Wishart Model:

• Observation: Si is a p × p SPD matrix. Given allocation zi = k, Si | zi ∼ Wp(νk,Σk) with
df νk and scale Σk.

• Gating (MoE): Let Xi be q-dimensional covariates. Mixing weights πik = Pr(zi = k | Xi)

follow a softmax regression: πik = exp(ηik)/
∑K

j=1 exp(ηij), where ηi = X⊤
i B, B is q×K.

Identifiability: last column of B is fixed to zero.

Algorithms:

1. Bayesian (method = "bayes"): Metropolis-within-Gibbs sampler for z, Σk, optional νk, and
B. Gaussian priors on B with sd sigma_beta. Proposals use mh_sigma for log(νk) and
mh_beta for B.

2. EM (method = "em"): E-step responsibilities using Wishart log-densities and softmax gating.
M-step updates Σk, optional νk, and B via weighted multinomial logistic regression (BFGS).

Note that: (i) include an intercept column in X; none is added by default, and (ii) all S_list elements
must be SPD. A small ridge may be added for stability.
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Value

A list whose fields depend on method:

• For method = "bayes":

– Beta_samples: array (nsave x q x K), saved draws of B (last column zero).
– nu_samples: matrix (nsave x K), draws of νk.
– Sigma_samples: list of length nsave; each element is an array (p× p×K) of Σk draws.
– z_samples: matrix (nsave x n), draws of allocations.
– pi_ik: array (nsave x n x K), per-observation gating probabilities.
– pi_mean: matrix (n x K), posterior mean of gating probabilities.
– loglik: numeric vector (length niter), log-likelihood trace.
– loglik_individual: matrix (niter x n), per-observation log-likelihood.

• For method = "em":

– K, p, q, n: problem dimensions.
– Beta: matrix (q ×K), gating coefficients with last column zero (reference class).
– Sigma: list length K, each a p× p SPD matrix (scale).
– nu: numeric vector length K, degrees of freedom.
– gamma: matrix (n×K), final responsibilities.
– loglik: numeric vector, log-likelihood by EM iteration.
– iter: integer, number of EM iterations performed.

Examples

# simulate data
set.seed(123)
n <- 500 # subjects
p <- 2
# True gating coefficients (last column zero)
set.seed(123)
Xq <- 3
K <- 3
betas <- matrix(runif(Xq * K, -2, 2), nrow = Xq, ncol = K)
betas[, K] <- 0
dat <- simData(n, p,
Xq = 3, K = 3, betas = betas,
pis = c(0.35, 0.40, 0.25),
nus = c(8, 16, 3)

)

set.seed(123)
fit <- moewishart(

dat$S,
X = cbind(1, dat$X), K = 3,
mh_sigma = c(0.2, 0.1, 0.1), # RW-MH variances (length K)
mh_beta = c(0.2, 0.2), # RW-MH variances (length K-1)
niter = 500, burnin = 200

)
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# Posterior means for degrees of freedom of Wishart distributions:
nu_mcmc <- fit$nu[-c(1:fit$burnin), ]
colMeans(nu_mcmc)

rdirichlet Dirichlet random sampling

Description

Generate random draws from a Dirichlet distribution with parameter vector α ∈ RK
+ . Each draw is

a length-K probability vector on the simplex.

Usage

rdirichlet(n, alpha)

Arguments

n Integer. Number of independent Dirichlet draws to generate.

alpha Numeric vector of positive concentration parameters α = (α1, . . . , αK). Its
length K defines the dimension of the simplex.

Details

Definition: If Yk ∼ Gamma(αk, 1) independently for k = 1, . . . ,K (shape αk, rate 1), then the
normalized vector Xk = Yk/

∑K
j=1 Yj follows Dirichlet(α).

Note that alpha must be a numeric vector with strictly positive entries.

Value

A numeric matrix of size n×K, where each row is an independent Dirichlet draw that sums to 1.

Examples

set.seed(123)
# 3-dimensional Dirichlet with asymmetric concentration
alpha <- c(2, 5, 3)
rdirichlet(5, alpha)
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sampleIW Fast sampler for the inverse-Wishart distribution

Description

Draw a random sample from an inverse-Wishart distribution IWp(ν,Ψ) using the identity S ∼
IWp(ν,Ψ) iff S−1 ∼ Wp(ν,Ψ

−1). This implementation accepts Ψ−1 directly for speed.

Usage

sampleIW(nu, Psi_inv)

Arguments

nu Numeric. Degrees of freedom ν of the inverse-Wishart (must exceed p− 1).

Psi_inv Numeric p×p SPD matrix equal to Ψ−1, the inverse of the inverse-Wishart scale
matrix.

Details

Sampling scheme:

• Sample W ∼ Wp(ν,Ψ
−1) using rWishart.

• Return S = W−1, which has IWp(ν,Ψ).

Parameterization:

• ν is the degrees of freedom, must satisfy ν > p− 1.

• Ψ is the SPD scale matrix of the inverse-Wishart. This function expects its inverse Ψ−1 as
input for efficiency (avoids repeated matrix inversions).

Note that: (i) internally calls rWishart(1, df = nu, Sigma = Psi_inv), and (ii) returns solve(W);
if numerical issues arise, consider adding a small ridge to Ψ−1 prior to sampling.

Value

A p× p SPD matrix S distributed as IWp(ν,Ψ).

Examples

set.seed(123)
p <- 3
# Construct an SPD scale matrix Psi
A <- matrix(rnorm(p * p), p, p)
Psi <- crossprod(A) + diag(p) * 0.5
Psi_inv <- solve(Psi)

# Draw one inverse-Wishart sample
S <- sampleIW(nu = p + 5, Psi_inv = Psi_inv)
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S

simData Simulate data from a Wishart mixture or mixture-of-experts model

Description

Generate synthetic SPD matrices from either: (i) a finite mixture of Wishart components with fixed
mixing proportions, or (ii) a mixture-of-experts (MoE) where mixing proportions depend on covari-
ates via a softmax gating model.

Usage

simData(
n = 200,
p = 2,
Xq = 0,
K = NA,
betas = NULL,
pis = c(0.4, 0.6),
nus = c(8, 12),
Sigma = NULL

)

Arguments

n Integer. Number of observations to simulate.

p Integer. Dimension of the Wishart distribution (matrix size p× p).

Xq Integer. Number of covariates for the gating network (MoE case). If Xq = 0, a
standard mixture (no covariates) is simulated.

K Integer. Number of latent components. Required when Xq > 0. If Xq = 0, defaults
to length(pis).

betas Numeric matrix Xq × K of gating coefficients used when Xq > 0. If NULL,
random coefficients are generated and the last column is set to zero (reference
class).

pis Numeric vector of length K giving fixed mixture proportions when Xq = 0. Ig-
nored when Xq > 0.

nus Numeric vector length K, degrees of freedom νk for each component (must
exceed p− 1).

Sigma Optional list length K of SPD scale matrices Σk (each p× p). If NULL, defaults
are generated based on K and p.
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Details

Models:

• Fixed mixture (no covariates, Xq = 0): zi ∼ Categorical(π), and Si | zi = k ∼ Wp(νk,Σk).

• Mixture-of-experts (covariates, Xq > 0): Let Xi ∈ RXq. The mixing weights are πik =
Pr(zi = k | Xi) given by softmax regression πik = exp(X⊤

i Bk)/
∑K

j=1 exp(X
⊤
i Bj). La-

bels zi are drawn from Categorical(πi) and Si | zi = k ∼ Wp(νk,Σk).

Simulation steps:

1. Construct pis:

• If Xq = 0, replicate the provided pis over n rows.
• If Xq > 0, generate X ~ N(0, I) and compute softmax probabilities using betas (last col-

umn set to zero by default identifiability).

2. If Sigma is not provided, create default Σk matrices (SPD) depending on K and p.

3. Sample labels zi ∼ Categorical(πi).

4. Draw Si from Wp(νzi ,Σzi) via rWishart.

Note that: (i) in the MoE case, no intercept is automatically added to X. Use Xq to include desired
covariates; the default betas is randomly generated with betas[, K] = 0, and (ii) provided Sigma
must be a list of SPD p× p matrices. Provided nus must exceed p− 1.

Value

A list with the following elements:

• S: list of length n of simulated SPD matrices Si.

• z: integer vector length n of component labels.

• nu: numeric vector length K of degrees of freedom.

• pi: matrix n×K of mixing probabilities (rows sum to 1).

• Sigma_list: list length K of the scale matrices used for simulation.

• X: matrix n×Xq of covariates if Xq > 0, otherwise NULL.

• betas: the gating coefficient matrix used when Xq > 0, otherwise NULL.

Examples

# simulate data from mixture model (no covariates)
set.seed(123)
n <- 200 # subjects
p <- 10
dat <- simData(n, p,

K = 3,
pis = c(0.35, 0.40, 0.25),
nus = c(8, 12, 3)

)
str(dat)
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