## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = FALSE ) ## ----setup-------------------------------------------------------------------- # library(healthbR) # library(dplyr) ## ----------------------------------------------------------------------------- # pof_years() # #> [1] "2002-2003" "2008-2009" "2017-2018" ## ----------------------------------------------------------------------------- # pof_info("2017-2018") ## ----------------------------------------------------------------------------- # # all registers # pof_registers("2017-2018") # # # only health-related registers # pof_registers("2017-2018", health_only = TRUE) ## ----------------------------------------------------------------------------- # # list all variables in the domicilio register # pof_variables("2017-2018", "domicilio") # # # search for food security variables # pof_variables("2017-2018", search = "ebia") # # # search for weight-related variables # pof_variables("2017-2018", "morador", search = "peso") ## ----------------------------------------------------------------------------- # domicilio <- pof_data("2017-2018", "domicilio") ## ----------------------------------------------------------------------------- # domicilio <- domicilio |> # mutate( # ebia = factor( # V6199, # levels = 1:4, # labels = c( # "Food security", # "Mild insecurity", # "Moderate insecurity", # "Severe insecurity" # ) # ) # ) # # # frequency table # domicilio |> # count(ebia) |> # mutate(pct = n / sum(n) * 100) ## ----------------------------------------------------------------------------- # library(srvyr) # # domicilio_svy <- pof_data("2017-2018", "domicilio", as_survey = TRUE) # # # add EBIA categories # domicilio_svy <- domicilio_svy |> # mutate( # ebia = factor( # V6199, # levels = 1:4, # labels = c( # "Food security", # "Mild insecurity", # "Moderate insecurity", # "Severe insecurity" # ) # ) # ) # # # weighted prevalence # domicilio_svy |> # group_by(ebia) |> # summarize( # prevalence = survey_mean(na.rm = TRUE, vartype = "ci"), # n = unweighted(n()) # ) ## ----------------------------------------------------------------------------- # # food insecurity by state # domicilio_svy |> # group_by(UF, ebia) |> # summarize( # prevalence = survey_mean(na.rm = TRUE, vartype = "ci"), # n = unweighted(n()) # ) |> # filter(ebia == "Severe insecurity") |> # arrange(desc(prevalence)) ## ----------------------------------------------------------------------------- # consumo <- pof_data("2017-2018", "consumo_alimentar") ## ----------------------------------------------------------------------------- # # total daily caloric intake per person # consumo |> # group_by(COD_UPA, NUM_DOM, NUM_UC, COD_INFORMANTE) |> # summarize( # total_kcal = sum(ENERGIA_KCAL, na.rm = TRUE), # total_protein = sum(PROTEINA, na.rm = TRUE), # total_carb = sum(CARBOIDRATO, na.rm = TRUE), # total_fat = sum(LIPIDIO, na.rm = TRUE), # .groups = "drop" # ) |> # summarize( # mean_kcal = mean(total_kcal, na.rm = TRUE), # mean_protein = mean(total_protein, na.rm = TRUE), # mean_carb = mean(total_carb, na.rm = TRUE), # mean_fat = mean(total_fat, na.rm = TRUE) # ) ## ----------------------------------------------------------------------------- # despesas <- pof_data("2017-2018", "despesa_individual") ## ----------------------------------------------------------------------------- # # explore expense categories # despesas |> # count(QUADRO) |> # arrange(desc(n)) ## ----------------------------------------------------------------------------- # # download morador (demographic data) and domicilio (household data) # morador <- pof_data("2017-2018", "morador") # domicilio <- pof_data("2017-2018", "domicilio") # # # merge: add household-level EBIA to individual-level data # morador_ebia <- morador |> # left_join( # domicilio |> select(COD_UPA, NUM_DOM, NUM_UC, V6199), # by = c("COD_UPA", "NUM_DOM", "NUM_UC") # ) |> # mutate( # ebia = factor( # V6199, # levels = 1:4, # labels = c( # "Food security", # "Mild insecurity", # "Moderate insecurity", # "Severe insecurity" # ) # ) # ) # # # food insecurity by age group # morador_ebia |> # mutate(age_group = cut(V0403, breaks = c(0, 5, 12, 18, 30, 60, Inf))) |> # count(age_group, ebia) |> # group_by(age_group) |> # mutate(pct = n / sum(n) * 100) ## ----------------------------------------------------------------------------- # # check health modules by edition # pof_info("2017-2018") # EBIA + food consumption # pof_info("2008-2009") # anthropometry + food consumption # pof_info("2002-2003") # expenses only ## ----------------------------------------------------------------------------- # # check cached files # pof_cache_status() # # # clear cache if needed # pof_clear_cache() ## ----------------------------------------------------------------------------- # # install arrow for optimized caching (recommended) # install.packages("arrow")