## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(gradLasso) ## ----------------------------------------------------------------------------- set.seed(42) # Simulate 200 obs, 20 predictors, 5 active sim <- simulate_data(n = 200, p = 20, family = "gaussian", k = 5, snr = 3.0) df <- data.frame(y = sim$y, sim$X) # Check the first few rows head(df[, 1:6]) ## ----------------------------------------------------------------------------- fit <- gradLasso(y ~ ., data = df, lambda_cv = TRUE, boot = TRUE, n_boot = 50) print(fit) ## ----------------------------------------------------------------------------- summary(fit) ## ----------------------------------------------------------------------------- # Plot Stability Selection (Plot 1) and CV Deviance (Plot 2) plot(fit, which = c(1, 2)) ## ----------------------------------------------------------------------------- set.seed(456) sim_zinb <- simulate_data(n = 500, p = 20, family = "zinb", k_mu = 5, k_pi = 5, theta = 2.0) df_zinb <- data.frame(y = sim_zinb$y, sim_zinb$X) ## ----------------------------------------------------------------------------- # We use a smaller number of bootstraps for speed in this vignette fit_zinb <- gradLasso(y ~ . | ., data = df_zinb, family = grad_zinb(), n_boot = 10, lambda = 0.05) # Fixed lambda for demonstration print(fit_zinb) ## ----------------------------------------------------------------------------- summary(fit_zinb) ## ----------------------------------------------------------------------------- # Example (not run in vignette): # fit <- gradLasso(y ~ ., data = df, parallel = TRUE, n_cores = 4)