ggmice
equivalent of mice
plotsHow to re-create the output of the plotting functions from
mice
with ggmice
. In alphabetical order of the
mice
functions.
First load the ggmice
, mice
, and
ggplot2
packages, some incomplete data and a
mids
object into your workspace.
bwplot
Box-and-whisker plot of observed and imputed data.
# ggmice equivalent
ggmice(imp, aes(x = .imp, y = hgt)) +
geom_boxplot() +
labs(x = "Imputation number")
# extended reproduction with ggmice
ggmice(imp, aes(x = .imp, y = hgt)) +
stat_boxplot(geom = "errorbar", linetype = "dashed") +
geom_boxplot(outlier.colour = "grey", outlier.shape = 1) +
labs(x = "Imputation number") +
theme(legend.position = "none")
densityplot
Density plot of observed and imputed data.
# extended reproduction with ggmice
ggmice(imp, aes(x = hgt, group = .imp, size = .where)) +
geom_density() +
scale_size_manual(
values = c("observed" = 1, "imputed" = 0.5),
guide = "none"
) +
theme(legend.position = "none")
fluxplot
Influx and outflux plot of multivariate missing data patterns.
md.pattern
Missing data pattern plot.
# extended reproduction with ggmice
plot_pattern(dat, square = TRUE) +
theme(
legend.position = "none",
axis.title = element_blank(),
axis.title.x.top = element_blank(),
axis.title.y.right = element_blank()
)
plot.mids
Plot the trace lines of the MICE algorithm.
stripplot
Stripplot of observed and imputed data.
# ggmice equivalent
ggmice(imp, aes(x = .imp, y = hgt)) +
geom_jitter(width = 0.25) +
labs(x = "Imputation number")
# extended reproduction with ggmice (not recommended)
ggmice(imp, aes(x = .imp, y = hgt)) +
geom_jitter(
shape = 1,
width = 0.1,
na.rm = TRUE,
data = data.frame(
hgt = dat$hgt,
.imp = factor(rep(1:imp$m, each = nrow(dat))),
.where = "observed"
)
) +
geom_jitter(shape = 1, width = 0.1) +
labs(x = "Imputation number") +
theme(legend.position = "none")
xyplot
Scatterplot of observed and imputed data.
# extended reproduction with ggmice
ggmice(imp, aes(age, hgt)) +
geom_point(size = 2, shape = 1) +
theme(legend.position = "none")
To make ggmice
visualizations interactive, the
plotly
package can be used. For example, an interactive
influx and outflux plot may be more legible than a static one.
You may want to create a plot visualizing the imputations of multiple
variables as one object. To visualize multiple variables at once, the
variable names are saved in a vector. This vector is used together with
the functional programming package purrr
and visualization
package patchwork
to map()
over the variables
and subsequently wrap_plots
to create a single figure.
# load packages
library(purrr)
library(patchwork)
# create vector with variable names
vrb <- names(dat)
Display box-and-whisker plots for all variables.
# ggmice equivalent
p <- map(vrb, ~ {
ggmice(imp, aes(x = .imp, y = .data[[.x]])) +
geom_boxplot() +
scale_x_discrete(drop = FALSE) +
labs(x = "Imputation number")
})
wrap_plots(p, guides = "collect") &
theme(legend.position = "bottom")
Display density plots for all variables.
# ggmice equivalent
p <- map(vrb, ~ {
ggmice(imp, aes(x = .data[[.x]], group = .imp)) +
geom_density()
})
wrap_plots(p, guides = "collect") &
theme(legend.position = "bottom")
Display strip plots for all variables.
# ggmice equivalent
p <- map(vrb, ~ {
ggmice(imp, aes(x = .imp, y = .data[[.x]])) +
geom_jitter() +
labs(x = "Imputation number")
})
wrap_plots(p, guides = "collect") &
theme(legend.position = "bottom")
This is the end of the vignette. This document was generated using:
sessionInfo()
#> R version 4.3.0 (2023-04-21 ucrt)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows 10 x64 (build 19045)
#>
#> Matrix products: default
#>
#>
#> locale:
#> [1] LC_COLLATE=C LC_CTYPE=Dutch_Netherlands.utf8
#> [3] LC_MONETARY=Dutch_Netherlands.utf8 LC_NUMERIC=C
#> [5] LC_TIME=Dutch_Netherlands.utf8
#>
#> time zone: Europe/Amsterdam
#> tzcode source: internal
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] patchwork_1.1.2 purrr_1.0.1 plotly_4.10.1 ggmice_0.1.0
#> [5] ggplot2_3.4.2 mice_3.16.2
#>
#> loaded via a namespace (and not attached):
#> [1] gtable_0.3.3 shape_1.4.6 xfun_0.37 bslib_0.4.2
#> [5] htmlwidgets_1.6.2 lattice_0.21-8 crosstalk_1.2.0 vctrs_0.6.2
#> [9] tools_4.3.0 generics_0.1.3 tibble_3.2.1 fansi_1.0.4
#> [13] highr_0.10 pan_1.8 pkgconfig_2.0.3 jomo_2.7-6
#> [17] Matrix_1.5-4.1 data.table_1.14.8 lifecycle_1.0.3 compiler_4.3.0
#> [21] farver_2.1.1 stringr_1.5.0 munsell_0.5.0 codetools_0.2-19
#> [25] htmltools_0.5.4 sass_0.4.6 lazyeval_0.2.2 yaml_2.3.7
#> [29] glmnet_4.1-7 pillar_1.9.0 nloptr_2.0.3 jquerylib_0.1.4
#> [33] tidyr_1.3.0 ellipsis_0.3.2 MASS_7.3-58.4 cachem_1.0.8
#> [37] iterators_1.0.14 rpart_4.1.19 boot_1.3-28.1 foreach_1.5.2
#> [41] mitml_0.4-5 nlme_3.1-162 tidyselect_1.2.0 digest_0.6.31
#> [45] stringi_1.7.12 dplyr_1.1.2 labeling_0.4.2 splines_4.3.0
#> [49] fastmap_1.1.1 grid_4.3.0 colorspace_2.1-0 cli_3.6.1
#> [53] magrittr_2.0.3 survival_3.5-5 utf8_1.2.3 broom_1.0.5
#> [57] withr_2.5.0 scales_1.2.1 backports_1.4.1 rmarkdown_2.21
#> [61] httr_1.4.6 nnet_7.3-18 lme4_1.1-34 evaluate_0.21
#> [65] knitr_1.42 viridisLite_0.4.2 rlang_1.1.1 Rcpp_1.0.10
#> [69] glue_1.6.2 rstudioapi_0.14 minqa_1.2.5 jsonlite_1.8.7
#> [73] R6_2.5.1