---
title: "Incorporating observation data into models"
output:
html_document:
toc: true
theme: null
vignette: >
%\VignetteIndexEntry{Incorporating observation data}
%\VignetteEngine{knitr::rmarkdown}
\usepackage[utf8]{inputenc}
---
```{css, echo=FALSE}
.hide {
display: none!important;
}
/* https://bookdown.org/yihui/rmarkdown-cookbook/html-css.html */
.modelScript pre.sourceCode, .modelScript pre.sourceCode code {
background-color: #f0f8ff !important;
}
```
```{r, message=FALSE, echo=FALSE}
library(gadget3)
library(dplyr)
if (nzchar(Sys.getenv('G3_TEST_TMB'))) options(gadget3.tmb.work_dir = gadget3:::vignette_base_dir('work_dir'))
set.seed(123)
```
Each run of a model will generate a likelihood score, by summing the result of any *likelihood actions* in the model together.
To fit a model to observation data, we need to add a *likelihood action* that will compare observation data to the model.
To do this you either need `g3l_catchdistribution()` or `g3l_abundancedistribution()`.
As the names suggest, `g3l_catchdistribution()` will compare catch data of stocks from the provided fleets/predators,
`g3l_abundancedistribution()` will compare total abundance of stocks.
Otherwise they are identical.
This comparison is a 2 stage process:
1. Aggregation: The columns in the observation data are inspected, and converted into an array. Model data is then aggregated into an identically-sized array ready for the next step
2. Comparison: A comparison function (`function_f`) is supplied to `g3l_*distribution()`, to convert to a likelihood score.
For example `g3l_distribution_sumofsquares()`, which compares the relative abundance of each grouping vs. the model, and sums the square of these
We saw the following example in `vignette("introduction-single-stock")`:
```{r, message=FALSE, echo=FALSE}
library(dplyr)
area_names <- g3_areas(c('IXa', 'IXb'))
fish <- g3_stock("fish", seq(5L, 25L, 5)) |>
g3s_livesonareas(area_names["IXa"]) |>
g3s_age(1L, 5L)
```
```{r}
# TODO: This isn't a brilliantly-named example, something else?
# Generate random data
expand.grid(year = 1990:1994, step = 3, area = 'IXa') |>
# Fill in a number column with total numbers in that year/step/area combination
mutate(number = runif(n(), min = 10000, max = 100000)) ->
dist_si_acoustic
actions_likelihood_si_acoustic <- list(
g3l_abundancedistribution(
"dist_si_acoustic",
obs_data = dist_si_acoustic,
stocks = list(fish),
function_f = g3l_distribution_surveyindices_log(alpha = NULL, beta = 1),
area_group = area_names,
report = TRUE,
nll_breakdown = TRUE),
NULL)
```
The first step generates random observation data. We have the following columns:
* *year*: We want to do comparisons in 5 years, 1990..1994. Other years nothing will happen.
* *step*: We compare abundance in the autumn step
* *area*: We only compare with stock within the 'IXa' area
* *number*: We compare against number individuals.
There are no *age* or *length* columns, so this is total abundance within that area/time.
We use `g3l_distribution_surveyindices_log()`, which calculates the likelihood score by performing a linear fit using the log scale,
the slope (*beta*) is fixed.
The model optimisation process will minimise the total likelihood score,
and in the process fit the model to the observation data.
## gadget2<->gadget3 translation
The function of many of gadget2's likeihood components has been collapsed down into these 2 functions.
Here is a summary of how to translate:
* [CatchDistribution](https://gadget-framework.github.io/gadget2/userguide/chap-like.html#sec-catchdist) likelihood component
* Use ``g3l_catchdistribution()``
* Set *function_f* parameter to the matching ``g3l_distribution_*()`` function, e.g. ``g3l_distribution_sumofsquares()``
* Supply data with columns *year*, *step*, *area*, *age*, *length*, *number*
* [SurveyIndices](https://gadget-framework.github.io/gadget2/userguide/chap-like.html#sec-surveyindices) likelihood component
* Use ``g3l_abundancedistribution()``
* Set *function_f* parameter to ``g3l_distribution_surveyindices_log()`` or ``g3l_distribution_surveyindices_linear()``
* Supply data with columns *year*, *step*, *area*, *length*, *number*
* [CatchInKilos](https://gadget-framework.github.io/gadget2/userguide/chap-like.html#sec-catchinkilos) likelihood component
* Use ``g3l_catchdistribution(function_f = g3l_distribution_sumofsquares())``
* Supply data with columns *year*, *step*, *area*, *fleet*, *weight*
## Observation data format
gadget3 bases it's decision on how to aggregate on the incoming data.
Whilst it tries to do the "right thing" in most cases,
it's important to get the shape of this data to match what you require.
In doing so, the incoming `data.frame()` is converted into an `array()`.
We can use the `g3_distribution_preview()` function to see what that array will look like,
and in doing so see how gadget3 will treat the observation data.
Critically, your data needs to have column names it recognises.
The following breaks down what can be by each column.
### *weight* and *number* columns
At least a *weight* or *number* column needs to be supplied.
If a *number* column is present then each value will be compared to number of individuals in that group.
If a *weight* column is present then each value will be compared to total biomass in that group.
The *weight* is suitable for total catches in kilos, otherwise the *number* column will generally be used.
### *year* and *step* columns: Landings, abundance indices
If a *year* column is given, then catch/abundance will be aggregated by year.
Gaps are allowed, if so then no comparisons will be made for that year/step.
The following observations will be compared against the total number of indivduals caught in years 1999, 2000, 2002, 2003:
```{r}
g3_distribution_preview(read.table(header = TRUE, text="
year number
1999 1000
2000 1002
2002 1004
2003 1008
"))
```
If *step* is given, then it will restrict it to that step within the year (see `?g3a_time` for how to define steps in a year).
In the following example, we will aggregate **spring** of 1999 & 2000, **autumn** of 2001.
Any catch in spring of 2001, or other periods not mentioned, will be ignored:
```{r}
g3_distribution_preview(read.table(header = TRUE, text="
year step number
1999 2 1020
2000 2 2040
2001 3 1902
"))
```
### *length* column: Length distribution data
Adding a length column will aggregate catch/abundance data by the same length bins as in the observation data.
For instance:
```{r}
g3_distribution_preview(read.table(header = TRUE, text="
year length number
1999 [0,10) 1023
1999 [10,20) 2938
1999 [20,30) 3948
1999 [30,40) 3855
2000 [0,10) 1023
2000 [10,20) 2938
# NB: No [10,30)
2000 [30,40) 3855
"))
```
Note that unlike with the *year* & *step* columns, here gaps in data are preserved,
in the preview output we see ``NA`` for the missing *year* & *length* combination.
By default we will compare to ``0`` at this point,
this behaviour is controlled with the *missing_val* parameter to `?g3l_catchdistribution`.
Length aggregations do not have to be hand-crafted like we do above,
a length column could be generated using ``dplyr::group_by()`` and ``cut()``:
```{r}
# Generate an unaggregated length distribution
ldist.lln.raw <- data.frame(
year = c(1999, 2000),
length = sample(10:75, 100, replace = TRUE),
number = 1,
stringsAsFactors = FALSE)
# Group length into 10-long bins
ldist.lln.raw |> dplyr::group_by(
year = year,
length = cut(length, breaks = seq(10, 100, by = 10), right = FALSE)
) |> dplyr::summarise(number = sum(number), .groups = 'keep') -> ldist.lln.agg
ldist.lln.agg
# NB: The last 2 bins are empty, but because cut() creates a factor column,
# gadget3 knows about them even though they don't appear in the data.
g3_distribution_preview(ldist.lln.agg)
```
gadget3 will also automatically read the aggregation attributes used by `?mfdb::mfdb_sample_count`.
```{r, eval=nzchar(Sys.getenv('G3_TEST_TMB'))}
# Import data into a temporary database
library(mfdb)
mdb <- mfdb(tempfile(fileext=".duckdb"))
ldist.lln.raw$month <- 1
ldist.lln.raw$areacell <- 'all' # NB: We have to have an areacell mapping for MFDB
mfdb_import_area(mdb, data.frame(name = c('all'), size = c(5)))
mfdb_import_survey(mdb, ldist.lln.raw)
# Use mfdb_sample_count to extract & group in the same manner as above
ldist.lln.agg <- mfdb_sample_count(mdb, c('length'), list(
year=1999:2000,
length = mfdb_interval("len", seq(10, 100, by = 10)) ))[[1]]
g3_distribution_preview(ldist.lln.agg, area_group = c(all=1))
mfdb_disconnect(mdb)
```
### *age* column: Age-Length distribution data
Age-length aggregations can be performed by adding an *age* column in a very similar manner to the *length* column:
We can both group by individual age values:
```{r}
g3_distribution_preview(read.table(header = TRUE, text="
year age length number
1999 1 [0,10) 1026
1999 1 [10,20) 2936
1999 1 [20,30) 3962
1999 1 [30,40) 3863
1999 2 [0,10) 1026
1999 2 [10,20) 2936
1999 2 [20,30) 3962
1999 2 [30,40) 3863
"))
```
...or group ages together:
```{r}
g3_distribution_preview(read.table(header = TRUE, text="
year age length number
1999 [1,1] [0,10) 1026
1999 [1,1] [10,20) 2936
1999 [1,1] [20,30) 3962
1999 [1,1] [30,40) 3863
1999 [2,4] [0,10) 1011
# Missing [2,4] [10,20)
1999 [2,4] [20,30) 3946
1999 [2,4] [30,40) 3872
"))
```
As before, gaps in data are preserved, and ``missing_val`` is used to decide what to do with them.
Again, gadget3 will also interpret aggregation generated by ``group_by(age = cut(...))`` or `?mfdb::mfdb_sample_count`.
### *area* column
If a stock is divided up into multiple areas, then data can be broken down by area
```{r}
area_names <- g3_areas(c('IXa', 'IXb', 'IXc'))
g3_distribution_preview(read.table(header = TRUE, text="
year area number
1999 IXa 1000
1999 IXb 4305
2000 IXa 7034
2000 IXb 2381
2001 IXb 3913
"), area_group = area_names)[length = '0:Inf',,]
```
As before, gaps in data are preserved, and ``missing_val`` is used to decide what to do with them.
However, if an area isn't mentioned at all (note that ``IXc`` does not figure in the above data), then it won't be compared.
### *stock* column: Maturity stage distribution
If you have multiple stocks, for example because you have divided up your species into mature and immature substocks,
you can use this division in likelihood components also:
```{r}
st_imm <- g3_stock(c(species = 'fish', 'imm'), 1:10)
st_mat <- g3_stock(c(species = 'fish', 'mat'), 1:10)
g3_distribution_preview(read.table(header = TRUE, text="
year stock number
1999 fish_imm 1000
1999 fish_mat 4305
2000 fish_imm 7034
2000 fish_mat 2381
2001 fish_mat 3913
"), stocks = list(st_imm, st_mat))[length = '0:Inf',,]
```
The stock names have to match what gadget3 uses, or an error will be generated.
You can also use partial stock names, for example:
```{r}
stocks <- list(
g3_stock(c(species = 'fish', 'imm', 'f'), 1:10),
g3_stock(c(species = 'fish', 'imm', 'm'), 1:10),
g3_stock(c(species = 'fish', 'mat', 'f'), 1:10),
g3_stock(c(species = 'fish', 'mat', 'm'), 1:10) )
drop(g3_distribution_preview(read.table(header = TRUE, text="
year stock number
1999 imm 1000
1999 mat 4305
2000 imm 7034
2000 mat 2381
"), stocks = stocks))
```
The `imm` columns will compare to the sum of `fish_imm_f` & `fish_mat_f`.
The parts do not have to be in order, the following is also valid:
```{r}
drop(g3_distribution_preview(read.table(header = TRUE, text="
year stock number
1999 fish_f 1000
1999 fish_m 4305
2000 fish_f 7034
2000 fish_m 2381
"), stocks = stocks))
```
*NB:* A stock can only appear in one grouping:
```{r}
# NB: Wrong!
drop(g3_distribution_preview(read.table(header = TRUE, text="
year stock number
1999 f 1000
1999 imm 4305
2000 f 7034
2000 imm 2381
"), stocks = stocks))
```
`fish_imm_f` will only appear in the `f` rows, not `imm` rows.
In this case, multiple likelhood components would be a better approach.
As before, gaps in data are preserved, and ``missing_val`` is used to decide what to do with them.
### *fleet* column
```{r}
fleets <- list(
g3_fleet(c('comm', country = 'se')),
g3_fleet(c('comm', country = 'fi')),
g3_fleet(c('surv', country = 'se')) )
g3_distribution_preview(read.table(header = TRUE, text="
year fleet number
1999 comm 1000
1999 surv_se 4305
2000 comm 7034
2000 surv_se 2381
2001 surv_se 3913
"), fleets = fleets)[length = '0:Inf',,]
```
The name matching works in the same way as stocks above, and should be either the name gadget3 uses or parts of it.
As before, gaps in data are preserved, and ``missing_val`` is used to decide what to do with them.
### *predator* column
```{r}
predators <- list(
g3_stock(c('seal', 'imm', 'f'), 10:20),
g3_stock(c('seal', 'mat', 'f'), 10:20),
g3_stock(c('seal', 'imm', 'm'), 10:20),
g3_stock(c('seal', 'mat', 'm'), 10:20) )
drop(g3_distribution_preview(read.table(header = TRUE, text="
year predator number
1999 seal_f 1000
1999 seal_m 4305
2000 seal_f 7034
2000 seal_m 2381
"), predators = predators))
```
The name matching works in the same way as stocks above, and should be either the name gadget3 uses or parts of it.
As before, gaps in data are preserved, and ``missing_val`` is used to decide what to do with them.