## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", warning = FALSE, message = FALSE ) library(finnts) ## ----message = FALSE, eval = FALSE-------------------------------------------- # library(finnts) # # browseVignettes("finnts") ## ----message = FALSE---------------------------------------------------------- library(finnts) hist_data <- timetk::m4_monthly %>% dplyr::filter(date >= "2013-01-01") %>% dplyr::rename(Date = date) %>% dplyr::mutate(id = as.character(id)) print(hist_data) print(unique(hist_data$id)) ## ----message = FALSE, eval = hist_data, error=FALSE, warning = FALSE, echo=T, eval = TRUE---- run_info <- set_run_info( experiment_name = "finn_forecast", run_name = "test_run" ) ## ----message = FALSE, eval = hist_data, error=FALSE, warning = FALSE, echo=T, eval = TRUE---- # no need to assign it to a variable, since all of the outputs are written to disk :) forecast_time_series( run_info = run_info, input_data = hist_data, combo_variables = c("id"), target_variable = "value", date_type = "month", forecast_horizon = 3, back_test_scenarios = 6, models_to_run = c("arima", "ets"), return_data = FALSE ) ## ----message = FALSE, eval = finn_output, message = FALSE, eval = FALSE, echo=T---- # finn_output_tbl <- get_forecast_data(run_info = run_info) # # print(finn_output_tbl) ## ----message = FALSE, eval = finn_output, message = FALSE, eval = FALSE, echo=T---- # future_forecast_tbl <- finn_output_tbl %>% # dplyr::filter(Run_Type == "Future_Forecast") # # print(future_forecast_tbl) ## ----message = FALSE, eval = finn_output, eval = FALSE, echo=T---------------- # back_test_tbl <- finn_output_tbl %>% # dplyr::filter(Run_Type == "Back_Test") # # print(back_test_tbl) ## ----message = FALSE, eval = finn_output, eval = FALSE, echo=T---------------- # best_model_tbl <- finn_output_tbl %>% # dplyr::filter(Best_Model == "Yes") %>% # dplyr::select(Combo, Model_ID, Model_Name, Model_Type, Recipe_ID) %>% # dplyr::distinct() # # print(best_model_tbl) ## ----message = FALSE, eval = finn_output, eval = FALSE, echo=T---------------- # trained_model_tbl <- get_trained_models(run_info = run_info) # # print(trained_model_tbl) ## ----message = FALSE, eval = finn_output, eval = FALSE, echo=T---------------- # R1_prepped_data_tbl <- get_prepped_data( # run_info = run_info, # recipe = "R1" # ) # # print(R1_prepped_data_tbl) # # R2_prepped_data_tbl <- get_prepped_data( # run_info = run_info, # recipe = "R2" # ) # # print(R2_prepped_data_tbl) ## ----message = FALSE, eval = finn_output, eval = FALSE, echo=T---------------- # run_info_tbl <- get_run_info(experiment_name = "finn_forecast") # # print(run_info_tbl)