MFL: Basics

Tan Ho

2023-02-11

In this vignette, I’ll walk through how to get started with a basic dynasty value analysis on MFL.

We’ll start by loading the packages:

  library(ffscrapr)
  library(dplyr)
  library(tidyr)

Set up the connection to the league:

ssb <- mfl_connect(season = 2020, 
                   league_id = 54040, # from the URL of your league
                   rate_limit_number = 3, 
                   rate_limit_seconds = 6)
ssb
#> <MFL connection 2020_54040>
#> List of 5
#>  $ platform   : chr "MFL"
#>  $ season     : num 2020
#>  $ league_id  : chr "54040"
#>  $ APIKEY     : NULL
#>  $ auth_cookie: NULL
#>  - attr(*, "class")= chr "mfl_conn"

I’ve done this with the mfl_connect() function, although you can also do this from the ff_connect() call - they are equivalent. Most if not all of the remaining functions are prefixed with “ff_”.

Cool! Let’s have a quick look at what this league is like.

ssb_summary <- ff_league(ssb)

str(ssb_summary)
#> tibble [1 × 17] (S3: tbl_df/tbl/data.frame)
#>  $ league_id        : chr "54040"
#>  $ league_name      : chr "The Super Smash Bros Dynasty League"
#>  $ season           : int 2020
#>  $ league_type      : chr NA
#>  $ franchise_count  : num 14
#>  $ qb_type          : chr "1QB"
#>  $ idp              : logi FALSE
#>  $ scoring_flags    : chr "0.5_ppr, TEPrem, PP1D"
#>  $ best_ball        : logi FALSE
#>  $ salary_cap       : logi FALSE
#>  $ player_copies    : num 1
#>  $ years_active     : chr "2018-2021"
#>  $ qb_count         : chr "1"
#>  $ roster_size      : num 33
#>  $ league_depth     : num 462
#>  $ draft_type       : chr " email draft"
#>  $ draft_player_pool: chr "Both"

Okay, so it’s the Smash Bros Dynasty League, it’s a 1QB league with 14 teams, best ball scoring, half ppr and point-per-first-down settings.

Let’s grab the rosters now.

ssb_rosters <- ff_rosters(ssb)

head(ssb_rosters)
#> # A tibble: 6 × 11
#>   franchise_id franc…¹ playe…² playe…³ pos   team    age roste…⁴ drafted draft…⁵
#>   <chr>        <chr>   <chr>   <chr>   <chr> <chr> <dbl> <chr>   <chr>   <chr>  
#> 1 0001         Team P… 13189   Engram… TE    NYG    28.4 ROSTER  3.04    2017   
#> 2 0001         Team P… 11680   Landry… WR    CLE    30.2 ROSTER  4.02    2014   
#> 3 0001         Team P… 13645   Smith,… WR    NOS    27.1 ROSTER  18.02   2018   
#> 4 0001         Team P… 12110   Brate,… TE    TBB    31.6 ROSTER  19.04   2014   
#> 5 0001         Team P… 13168   Reynol… WR    LAR    28   ROSTER  20.02   2017   
#> 6 0001         Team P… 13793   Valdes… WR    GBP    28.3 ROSTER  21.04   2018   
#> # … with 1 more variable: draft_round <chr>, and abbreviated variable names
#> #   ¹​franchise_name, ²​player_id, ³​player_name, ⁴​roster_status, ⁵​draft_year
#> # ℹ Use `colnames()` to see all variable names

Values

Cool! Let’s pull in some additional context by adding DynastyProcess player values.

player_values <- dp_values("values-players.csv")

# The values are stored by fantasypros ID since that's where the data comes from. 
# To join it to our rosters, we'll need playerID mappings.

player_ids <- dp_playerids() %>% 
  select(mfl_id,fantasypros_id)

player_values <- player_values %>% 
  left_join(player_ids, by = c("fp_id" = "fantasypros_id")) %>% 
  select(mfl_id,ecr_1qb,ecr_pos,value_1qb)

# Drilling down to just 1QB values and IDs, we'll be joining it onto rosters and don't need the extra stuff

ssb_values <- ssb_rosters %>% 
  left_join(player_values, by = c("player_id"="mfl_id")) %>% 
  arrange(franchise_id,desc(value_1qb))

head(ssb_values)
#> # A tibble: 6 × 14
#>   franchise_id franc…¹ playe…² playe…³ pos   team    age roste…⁴ drafted draft…⁵
#>   <chr>        <chr>   <chr>   <chr>   <chr> <chr> <dbl> <chr>   <chr>   <chr>  
#> 1 0001         Team P… 14803   Edward… RB    KCC    23.8 ROSTER  1.01    2020   
#> 2 0001         Team P… 14835   Higgin… WR    CIN    24   ROSTER  Trade   2020   
#> 3 0001         Team P… 14779   Herber… QB    LAC    24.9 ROSTER  2.11    2020   
#> 4 0001         Team P… 14777   Burrow… QB    CIN    26.2 INJURE… 1.14    2020   
#> 5 0001         Team P… 14838   Shenau… WR    JAC    24.4 ROSTER  2.02    2020   
#> 6 0001         Team P… 11680   Landry… WR    CLE    30.2 ROSTER  4.02    2014   
#> # … with 4 more variables: draft_round <chr>, ecr_1qb <dbl>, ecr_pos <dbl>,
#> #   value_1qb <int>, and abbreviated variable names ¹​franchise_name,
#> #   ²​player_id, ³​player_name, ⁴​roster_status, ⁵​draft_year
#> # ℹ Use `colnames()` to see all variable names

Let’s do some team summaries now!

value_summary <- ssb_values %>% 
  group_by(franchise_id,franchise_name,pos) %>% 
  summarise(total_value = sum(value_1qb,na.rm = TRUE)) %>%
  ungroup() %>% 
  group_by(franchise_id,franchise_name) %>% 
  mutate(team_value = sum(total_value)) %>% 
  ungroup() %>% 
  pivot_wider(names_from = pos, values_from = total_value) %>% 
  arrange(desc(team_value))

value_summary
#> # A tibble: 14 × 7
#>    franchise_id franchise_name     team_value    QB    RB    TE    WR
#>    <chr>        <chr>                   <int> <int> <int> <int> <int>
#>  1 0010         Team Yoshi              41170  4753 14710  7284 14423
#>  2 0006         Team King Dedede        35184  6458  2513   597 25616
#>  3 0004         Team Ice Climbers       35091   115 19362  2470 13144
#>  4 0009         Team Link               33078  1168 10578  5188 16144
#>  5 0003         Team Donkey Kong        30043  1299  6034  7220 15490
#>  6 0007         Team Kirby              27880  4890 14108   182  8700
#>  7 0005         Team Dr. Mario          27659    17  7137  2586 17919
#>  8 0011         Team Diddy Kong         26143   564 12406  2583 10590
#>  9 0002         Team Simon Belmont      25905    40 11318    12 14535
#> 10 0012         Team Mewtwo             24317   618 17670  1340  4689
#> 11 0013         Team Ness               20004   803 15980  1744  1477
#> 12 0014         Team Luigi              19761  1738  5828  1068 11127
#> 13 0001         Team Pikachu            17651  4323  6293   833  6202
#> 14 0008         Team Bowser             13150  5673  4069    25  3383

So with that, we’ve got a team summary of values! I like applying some context, so let’s turn these into percentages.

value_summary_pct <- value_summary %>% 
  mutate_at(c("team_value","QB","RB","WR","TE"),~.x/sum(.x)) %>% 
  mutate_at(c("team_value","QB","RB","WR","TE"),round, 3)

value_summary_pct
#> # A tibble: 14 × 7
#>    franchise_id franchise_name     team_value    QB    RB    TE    WR
#>    <chr>        <chr>                   <dbl> <dbl> <dbl> <dbl> <dbl>
#>  1 0010         Team Yoshi              0.109 0.146 0.099 0.22  0.088
#>  2 0006         Team King Dedede        0.093 0.199 0.017 0.018 0.157
#>  3 0004         Team Ice Climbers       0.093 0.004 0.131 0.075 0.08 
#>  4 0009         Team Link               0.088 0.036 0.071 0.157 0.099
#>  5 0003         Team Donkey Kong        0.08  0.04  0.041 0.218 0.095
#>  6 0007         Team Kirby              0.074 0.151 0.095 0.005 0.053
#>  7 0005         Team Dr. Mario          0.073 0.001 0.048 0.078 0.11 
#>  8 0011         Team Diddy Kong         0.069 0.017 0.084 0.078 0.065
#>  9 0002         Team Simon Belmont      0.069 0.001 0.076 0     0.089
#> 10 0012         Team Mewtwo             0.064 0.019 0.119 0.04  0.029
#> 11 0013         Team Ness               0.053 0.025 0.108 0.053 0.009
#> 12 0014         Team Luigi              0.052 0.054 0.039 0.032 0.068
#> 13 0001         Team Pikachu            0.047 0.133 0.043 0.025 0.038
#> 14 0008         Team Bowser             0.035 0.175 0.027 0.001 0.021

Armed with a value summary like this, we can see team strengths and weaknesses pretty quickly, and figure out who might be interested in your positional surpluses and who might have a surplus at a position you want to look at.

Age

Another question you might ask: what is the average age of any given team?

I like looking at average age by position, but weighted by dynasty value. This helps give a better idea of age for each team!

age_summary <- ssb_values %>% 
  group_by(franchise_id,pos) %>% 
  mutate(position_value = sum(value_1qb,na.rm=TRUE)) %>% 
  ungroup() %>% 
  mutate(weighted_age = age*value_1qb/position_value) %>% 
  group_by(franchise_id,franchise_name,pos) %>% 
  summarise(count = n(),
            age = sum(weighted_age,na.rm = TRUE)) %>% 
  pivot_wider(names_from = pos,
              values_from = c(age,count))

age_summary
#> # A tibble: 14 × 10
#> # Groups:   franchise_id, franchise_name [14]
#>    franchi…¹ franc…² age_QB age_RB age_TE age_WR count…³ count…⁴ count…⁵ count…⁶
#>    <chr>     <chr>    <dbl>  <dbl>  <dbl>  <dbl>   <int>   <int>   <int>   <int>
#>  1 0001      Team P…   25.5   24.3   27.7   24.9       4       8       7      14
#>  2 0002      Team S…   26.5   27.1   26.3   26.1       8      11       3       8
#>  3 0003      Team D…   26.5   25.3   33.3   28.7       5       8       7      13
#>  4 0004      Team I…   30.3   27.1   28.3   28.6       5       9       9      13
#>  5 0005      Team D…   37.4   24.8   26.5   26.3       2       7       3      19
#>  6 0006      Team K…   27.4   27.4   28.2   26.8       3      10       7      10
#>  7 0007      Team K…   26.1   26.8   30.5   30.4       4       9       4      17
#>  8 0008      Team B…   27.8   28.4   34.7   29.9       4      11       4      11
#>  9 0009      Team L…   29.0   27.8   30.1   29.9       3      11       5       7
#> 10 0010      Team Y…   29.4   23.9   29.4   27.7       2       6       6      16
#> 11 0011      Team D…   33.1   28.5   25.7   25.1       4      12       6      11
#> 12 0012      Team M…   34.7   25.7   26.2   25.5       5       7       6      13
#> 13 0013      Team N…   34.4   25.3   25.2   27.0       5       9       5      12
#> 14 0014      Team L…   34.2   27.0   25.3   28.8       3      10       7      14
#> # … with abbreviated variable names ¹​franchise_id, ²​franchise_name, ³​count_QB,
#> #   ⁴​count_RB, ⁵​count_TE, ⁶​count_WR

Next steps

In this vignette, I’ve used three functions: ff_connect, ff_league, and ff_rosters. Now that you’ve gotten this far, why not check out some of the other possibilities?