## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----echo=TRUE, fig.width=8, fig.height=4------------------------------------- library(ecostats) data(iris) Y = with(iris, cbind(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width)) iris.mlm=lm(Y~Species,data=iris) # check normality assumption: par(mfrow=c(1,2),mar=c(3,3,1,1),mgp=c(1.75,0.75,0)) plotenvelope(iris.mlm,n.sim=199) ## ----echo=TRUE, fig.width=4, fig.height=4------------------------------------- y=rnorm(20) qqenvelope(y) ## ----anovaPB------------------------------------------------------------------ # generate random Poisson data and a predictor: y = rpois(50,lambda=1) x = 1:50 # fit a Poisson regressions with and without x: rpois_glm = glm(y~x,family=poisson()) rpois_int = glm(y~1,family=poisson()) # use the parametric bootstrap to test for an effect of x (will usually be non-significant) anovaPB(rpois_int,rpois_glm,n.sim=99, ncpus=1) ## ----aphidData, fig.width=6,fig.height=4-------------------------------------- data(aphids) cols=c(rgb(1,0,0,alpha=0.5),rgb(0,0,1,alpha=0.5)) #transparent colours with(aphids$oat, interaction.plot(Time,Plot,logcount,legend=FALSE, col=cols[Treatment], lty=1, ylab="Counts [log(y+1) scale]", xlab="Time (days since treatment)") ) legend("bottomleft",c("Excluded","Present"),col=cols,lty=1)