The Explainable Ensemble Trees 'e2tree' approach has been proposed by Aria et al. (2024) <doi:10.1007/s00180-022-01312-6>. It aims to explain and interpret decision tree ensemble models using a single tree-like structure. 'e2tree' is a new way of explaining an ensemble tree trained through 'randomForest' or 'xgboost' packages.
| Version: | 
0.2.0 | 
| Imports: | 
dplyr, doParallel, parallel, foreach, future.apply, ggplot2, Matrix, partitions, purrr, tidyr, ranger, randomForest, rpart.plot, Rcpp, RSpectra, ape | 
| LinkingTo: | 
Rcpp | 
| Suggests: | 
testthat (≥ 3.0.0) | 
| Published: | 
2025-07-16 | 
| DOI: | 
10.32614/CRAN.package.e2tree | 
| Author: | 
Massimo Aria  
    [aut, cre, cph],
  Agostino Gnasso  
    [aut] | 
| Maintainer: | 
Massimo Aria  <aria at unina.it> | 
| BugReports: | 
https://github.com/massimoaria/e2tree/issues | 
| License: | 
MIT + file LICENSE | 
| URL: | 
https://github.com/massimoaria/e2tree | 
| NeedsCompilation: | 
yes | 
| Citation: | 
e2tree citation info  | 
| Materials: | 
README, NEWS  | 
| CRAN checks: | 
e2tree results |