Package ‘crossfit’

February 19, 2026
Title Cross-Fitting Engine for Double/Debiased Machine Learning
Version 0.1.1

Description Provides a general cross-fitting engine for double /
debiased machine learning and other meta-learners. The core
functions implement flexible graphs of nuisance models with
per-node training fold widths, target-specific evaluation
windows, and several fold allocation schemes (" " independence",
*“overlap”, * " disjoint"). The engine supports both numeric
estimators (mode = * " estimate") and cross-fitted prediction
functions (mode = " " predict"), with configurable aggregation
over panels and repetitions.

License GPL-3
URL https://github.com/EtiennePeyrot/crossfit-R

BugReports https://github.com/EtiennePeyrot/crossfit-R/issues
Encoding UTF-8

RoxygenNote 7.3.1

Depends R (>=4.1.0)

Imports stats, utils

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

Author Etienne Peyrot [aut, cre] (ORCID:
<https://orcid.org/0009-0006-8520-6201>)

Maintainer Etienne Peyrot <etienne.peyrot@inserm.fr>
Repository CRAN
Date/Publication 2026-02-19 20:00:08 UTC

https://github.com/EtiennePeyrot/crossfit-R
https://github.com/EtiennePeyrot/crossfit-R/issues
https://orcid.org/0009-0006-8520-6201

2 create_method

Contents
crossfit-package L. 2
create_ method L L e 2
Create_NUISANCE v v v v e e e e e e e e e e e e e 4
Crossfit e 5
crossfit_multl L e e 7
mean_estimate e e e e e e e e e e 9
mean_predictor oL e e e e e e e 10

Index 12

crossfit-package crossfit: Cross-Fitting Engine for Double / Debiased Machine Learn-
ing
Description

Provides a general cross-fitting engine for double / debiased machine learning and other meta-
learners. The core functions implement flexible graphs of nuisance models with per-node training
fold widths, target-specific evaluation windows, and several fold allocation schemes ("indepen-

non non

dence", "overlap", "disjoint"). The engine supports both numeric estimators (mode = "estimate")
and cross-fitted prediction functions (mode = "predict"), with configurable aggregation over panels
and repetitions.

Author(s)

Maintainer: Etienne Peyrot <etienne.peyrot@inserm.fr> (ORCID)

See Also
Useful links:

* https://github.com/EtiennePeyrot/crossfit-R
* Report bugs at https://github.com/EtiennePeyrot/crossfit-R/issues

create_method Create a cross-fitting method specification

Description

Helper to create a method specification for crossfit / crossfit_multi. A method bundles to-
gether:

* atarget functional target(),

* anamed list of nuisance specifications,

* cross-fitting geometry (folds, repeats, eval_fold, mode, fold_allocation),

* and panel / repetition aggregation functions.

https://orcid.org/0009-0006-8520-6201
https://github.com/EtiennePeyrot/crossfit-R
https://github.com/EtiennePeyrot/crossfit-R/issues

create_method

Usage

create_method(
target,

list_nuisance = NULL,

folds,
repeats,

mode = c("estimate”, "predict”),

eval_fold = if (mode == "estimate”) 1L else 0oL,
fold_allocation = c("independence”, "overlap”, "disjoint"),
aggregate_panels = NULL,

aggregate_repeats = NULL

Arguments

target

list_nuisance

folds

A function representing the target functional. It must accept nuisance predic-
tions as arguments (named after nuisances) and optionally a data argument.

Optional named list of nuisance specifications created by create_nuisance.

Positive integer giving the number of folds . May be NULL, in which case
crossfit_multi will infer a minimal feasible K from the dependency structure.

repeats Positive integer giving the number of repetitions.

mode Cross-fitting mode. FEither "estimate” (target returns numeric estimates) or
"predict” (target returns a cross-fitted predictor).

eval_fold Integer giving the width (in folds) of the evaluation window for the target. Must

fold_allocation

be > @ for mode = "estimate” and @ for mode = "predict”. If omitted, the
default is 1L for "estimate” and @L for "predict”.

non

Fold allocation strategy; one of "independence”, "overlap”, or "disjoint".

aggregate_panels

Aggregation function for panel-level results, typically one of mean_estimate,
median_estimate, mean_predictor, median_predictor, or a custom func-
tion. May be NULL, in which case a global default can be supplied via crossfit_multi.

aggregate_repeats

Details

Aggregation function for repetition-level results, typically one of mean_estimate,
median_estimate, mean_predictor, median_predictor, or a custom func-
tion. May be NULL, in which case a global default can be supplied via crossfit_multi.

The returned list is validated by validate_method() to ensure structural soundness, but the vali-
dated object is not stored: you are free to modify the returned method before passing it to crossfit
or crossfit_multi.

n

By default, eval_foldis chosen to be 1L when mode = "estimate” and OL when mode = "predict”.
If you override eval_fold, it must satisfy these constraints: positive integer for "estimate”, zero
for "predict”.

Value

A method specification list suitable for use in crossfit or crossfit_|

Examples

set.seed(1)

n <- 50

x <= rnorm(n)

y <= x + rnorm(n)

Nuisance: regression for E[LY | X]
nuis_y <- create_nuisance(
fit = function(data, ...) lm(y ~ x, data = data),
predict = function(model, data, ...) predict(model, newdata

)

Target: mean squared error of the nuisance predictor

target_mse <- function(data, nuis_y, ...) {
mean((data$y - nuis_y)*2)

3

m <- create_method(
target = target_mse,
list_nuisance = list(nuis_y = nuis_y),

folds = 2,

repeats = 1,
eval_fold = 1L,
mode = "estimate”,

fold_allocation
aggregate_panels
aggregate_repeats

"independence”,
mean_estimate,
mean_estimate

str(m)

create_nuisance

multi.

data)

create_nuisance Create a nuisance specification

Description

Helper to create a nuisance specification with basic structural checks

. A nuisance is defined by a

fit function, a predict function, and optional dependency mappings.

Usage

create_nuisance(
fit,
predict,
train_fold = 1L,

crossfit 5
fit_deps = NULL,
pred_deps = NULL
)
Arguments
fit A function fit(data, ...) that trains the nuisance model on a subset of the
data and returns a fitted model object.
predict A function predict(model, data, ...) that returns predictions for the nui-
sance on new data.
train_fold Positive integer giving the width (in folds) of the training window used for this
nuisance. Defaults to 1L.
fit_deps Optional named character vector mapping fit() argument names to nuisance
names, used to specify nuisance inputs to the fit function. If NULL, the depen-
dencies are inferred later from required arguments whose names match nuisance
names.
pred_deps Optional named character vector mapping predict() argument names to nui-
sance names, used to specify nuisance inputs to the predict function.
Value

A list representing a nuisance specification, suitable for inclusion in the 1ist_nuisance argument
of create_method.

Examples

Simple linear regression nuisance: E[Y | X]

set.seed(1)
n <- 50
X <= rnorm(n)

y <= x + rnorm(n)

nuis <- create_nuisance(

fit = function(data, ...) lm(y ~ x, data = data),
predict = function(model, data, ...) predict(model, newdata = data)
)
str(nuis)
crossfit Cross-fitting for a single method
Description

Convenience wrapper around crossfit_multi for the common case of a single method. It enforces
that method is a single method specification and forwards the aggregation functions stored inside

method.

6 crossfit

Usage

crossfit(
data,
method,
fold_split = function(data, K) sample(rep_len(1:K, nrow(data))),
seed = NULL,
max_fail = Inf,
verbose = FALSE

)
Arguments
data Data frame or matrix with the observations.
method A single method specification (list) created by create_method. It must con-
tain a target function and aggregate_panels / aggregate_repeats must be
functions.
fold_split A function producing a K-fold split of the data (see crossfit_multi).
seed Integer base random seed.
max_fail Non-negative integer or Inf controlling how many repetitions the method may
fail before being disabled.
verbose Logical; if TRUE, prints a compact status line per repetition.
Value

The same structure as crossfit_multi, but with a single method named "method”. The final
estimate is in $estimates$method.

Examples

set.seed(1)

n <- 100

x <= rnorm(n)

y <= x + rnorm(n)

data <- data.frame(x = x, y = y)

Nuisance: ELY | X]
nuis_y <- create_nuisance(

fit = function(data, ...) lm(y ~ x, data = data),
predict = function(model, data, ...) predict(model, newdata = data)
)
Target: mean squared error of the nuisance predictor
target_mse <- function(data, nuis_y, ...) {
mean((data$y - nuis_y)*2)
3

method <- create_method(
target = target_mse,

crossfit_multi 7

list_nuisance = list(nuis_y = nuis_y),
folds = 2,

repeats = 2,

eval_fold = 1L,

mode = "estimate”,
fold_allocation = "independence”,
aggregate_panels = mean_estimate,
aggregate_repeats = mean_estimate

)

cf <- crossfit(data, method)

cf$estimates

crossfit_multi Cross-fitting for multiple methods
Description

Runs cross-fitting for one or more methods defined via create_method and create_nuisance.
This is the main engine that:

* validates and normalizes method specifications,
* builds the global instance graph and fold geometry,
* repeatedly draws K-fold splits and evaluates all active methods,

* aggregates results across panels and repetitions.

Usage

crossfit_multi(
data,
methods,
fold_split = function(data, K) sample(rep_len(1:K, nrow(data))),
seed = NULL,
aggregate_panels = identity,
aggregate_repeats = identity,
max_fail = Inf,
verbose = FALSE

)
Arguments
data Data frame or matrix of size n X p containing the observations.
methods A (named) list of method specifications, typically created with create_method.
fold_split A function of the form function(data, K) returning a vector of length nrow(data)

with integer fold labels in 1:K. It must assign at least one observation to each
fold.

8 crossfit_multi

seed Integer base random seed used for the K-fold splits; each repetition uses seed +
rep_id - 1.

aggregate_panels
Function used as the default aggregator over panels (folds) for each method. It
is applied to the list of per-panel values. Methods can override this via their own
aggregate_panels.

aggregate_repeats
Function used as the default aggregator over repetitions for each method. It is
applied to the list of per-repetition aggregated values. Methods can override this
via their own aggregate_repeats.

max_fail Non-negative integer or Inf controlling how many repetitions a method is al-
lowed to fail before being disabled. Structural model failures and panel-level
errors both count toward this limit.

verbose Logical; if TRUE, prints a compact status line per repetition.

Details

Each method can operate in either mode = "estimate” (target returns numeric values) or mode =
"predict” (target returns a prediction function). Cross-fitting ensures that nuisance models are
always trained on folds disjoint from the folds on which their predictions are used in the target.

Value
A list with components:

estimates Named list of final estimates per method (after aggregating over panels and repetitions).

per_method For each method, a list with values (per-repetition aggregated results) and errors
(error traces).

repeats_done Number of repetitions successfully completed for each method.

K Number of folds used in the plan.

K_required Per-method minimal required K based on their dependency structure.
methods The validated and normalized method specifications.

plan The cross-fitting plan produced by build_instances().

Examples

set.seed(1)

n <- 100

X <= rnorm(n)

y <= x + rnorm(n)

data <- data.frame(x = x, y = y)

Shared nuisance: ELY | X]
nuis_y <- create_nuisance(
fit = function(data, ...) lm(y ~ x, data = data),
predict = function(model, data, ...) predict(model, newdata = data)

)

mean_estimate 9

Method 1: MSE of nuisance predictor

target_mse <- function(data, nuis_y, ...) {
mean((data$y - nuis_y)*2)

3

Method 2: mean fitted value

target_mean <- function(data, nuis_y, ...) {
mean(nuis_y)

3

ml <- create_method(
target = target_mse,
list_nuisance = list(nuis_y = nuis_y),
folds = 2,
repeats = 2,
eval_fold = 1L,
mode = "estimate”,
fold_allocation = "independence”

m2 <- create_method(
target = target_mean,
list_nuisance = list(nuis_y = nuis_y),
folds = 2,
repeats = 2,
eval_fold = 1L,

mode = "estimate”,
fold_allocation = "overlap”

)

cf_multi <- crossfit_multi(
data = data,
methods = list(mse = m1, mean = m2),
aggregate_panels = mean_estimate,
aggregate_repeats = mean_estimate

cf_multi$estimates

mean_estimate Aggregators for scalar estimates

Description

These helpers implement simple aggregation schemes for panel-level and repetition-level estimates
in crossfit and crossfit_multi.

10 mean_predictor

Usage

mean_estimate(xs)

median_estimate(xs)

Arguments
XS A list of numeric values or numeric vectors. Elements are unlisted and concate-
nated prior to aggregation, so xs may contain scalars or length-k vectors.
Details

In mode = "estimate”, each repetition typically produces a list of numeric values (one per evalua-
tion panel). The functions mean_estimate() and median_estimate() aggregate such lists into a
single numeric value.

Value

A single numeric value (the mean or median of all entries in xs.

Examples

xs <- list(c(1, 2, 3), 4, c(5, 6))
mean_estimate(xs)

xs <- list(c(1, 100), 10, 20)
median_estimate(xs)

mean_predictor Aggregators for cross-fitted predictors

Description

These helpers aggregate several cross-fitted predictors into a single ensemble predictor. They are
designed for methods run with mode = "predict” in crossfit and crossfit_multi.
Usage

mean_predictor(fs)
median_predictor(fs)

Arguments

fs A list of prediction functions. Each function must accept at least a newdata ar-
gument and return a numeric vector of predictions of the same length as nrow(newdata).

mean_predictor 11

Value

A function of the form function(newdata, ...), which returns a numeric vector of predictions.
If fs is empty, the returned function always returns numeric ().

Examples

Two simple prediction functions of x
f1 <- function(newdata, ...) newdata$x
f2 <- function(newdata, ...) 2 * newdata$x

ens_mean <- mean_predictor(list(f1, f2))

newdata <- data.frame(x = 1:5)
ens_mean(newdata)

Two simple prediction functions of x

f1 <- function(newdata, ...) newdata$x

f2 <- function(newdata, ...) 2 * newdata$x

ens_median <- median_predictor(list(f1, f2))

newdata <- data.frame(x = 1:5)
ens_median(newdata)

Index

* package
crossfit-package, 2

create_method, 2, 5-7
create_nuisance, 3,4, 7
crossfit, 2-4,5,9, 10
crossfit-package, 2
crossfit_multi, 2-6,7,9, 10

mean_estimate, 3, 9
mean_predictor, 3, 10
median_estimate, 3
median_estimate (mean_estimate), 9
median_predictor, 3

median_predictor (mean_predictor), 10

12

	crossfit-package
	create_method
	create_nuisance
	crossfit
	crossfit_multi
	mean_estimate
	mean_predictor
	Index

