## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----echo = FALSE------------------------------------------------------------- from <- c(1, 1, 1, 2, 3, 4) to <- c(2, 3, 4, 4, 4, 5) label <- c("A", "B", "C", "D", "E", "F") time <- c(3, 2, 5, 1, 1, 3) knitr::kable(cbind(as.numeric(from), to, label, time), col.names = c("Start. node", "End. node", "Name", "Duration"), align = "cccc", caption = "Tab. 1. Data for the CPM model") ## ----echo = FALSE, include = FALSE-------------------------------------------- library(critpath) plot_graphAOA(cpmexample1) ## ----fig.align = 'center', fig.cap = "Fig. 1. Graph for the cpmexample1 dataset"---- plot_graphAOA(cpmexample1) ## ----------------------------------------------------------------------------- x <- solve_pathAOA(cpmexample1, deterministic = TRUE) ## ----------------------------------------------------------------------------- # Schedule x[2] # Directive deadline x[3] # Critical activities x[4] # Free float and conditional float values x[5] ## ----fig.align = 'center', fig.cap = "Fig. 2. Critical path for the cpmexample1 dataset"---- plot_graphAOA(solved = x) ## ----fig.align = 'center', fig.width = 6, fig.cap = "Fig. 3. Gantt chart for the cpmexample1 dataset"---- plot_gantt(x) ## ----fig.align = 'center', fig.width = 6, fig.cap = "Fig. 4. ASAP chart for the cpmexample1 dataset"---- plot_asap(x) ## ----fig.align = 'center', fig.width = 6, fig.cap = "Fig. 5. ALAP chart for the cpmexample1 dataset"---- plot_alap(x) ## ----echo = FALSE------------------------------------------------------------- from <- c(1, 2, 3, 3, 3, 4, 5, 6, 7) to <- c(2, 3, 4, 5, 6, 7, 7, 7, 8) label <- c("A", "B", "C", "D", "E", "F", "G", "H", "I") opt_time <- c(3, 5, 5, 1, 6, 2, 5, 3, 4) likely_time <- c(5, 7, 5, 6, 8, 6, 6, 5, 6) pes_time <- c(7, 9, 8, 8, 10, 7, 7, 7, 8) knitr::kable(cbind(as.numeric(from), to, label, opt_time, likely_time, pes_time), col.names = c("Start. node", "End. node", "Name", "Optimistic dur.", "Most likely dur.", "Pessimistic dur."), align = "cccccc", caption = "Tab. 2. Data for the PERT model") ## ----------------------------------------------------------------------------- y <- solve_pathAOA(pertexample1, deterministic = FALSE) ## ----------------------------------------------------------------------------- # Schedule y[2] # Expected completion time y[3] # Standard deviation of the completion time y[4] # Critical activities y[5] # Free float and conditional float values y[6] ## ----fig.align = 'center', fig.width = 6, fig.cap = "Fig. 6. Critical path for the pertexample1 dataset"---- plot_graphAOA(solved = y) ## ----fig.align = 'center', fig.width = 6, fig.cap = "Fig. 7. Gantt chart for the pertexample1 dataset"---- plot_gantt(y) ## ----fig.align = 'center', fig.width = 6, fig.cap = "Fig. 8. ASAP chart for the pertexample1 dataset"---- plot_asap(y) ## ----fig.align = 'center', fig.width = 6, fig.cap = "Fig. 9. ALAP chart for the pertexample1 dataset"---- plot_alap(y) ## ----------------------------------------------------------------------------- # Risk-taker's schedule PERT_newtime(new_prob = 0.3, y) # Belayer's schedule PERT_newtime(new_prob = 0.6, y) ## ----------------------------------------------------------------------------- PERT_newprob(new_DT = 30, y) ## ----fig.align = 'center', fig.width = 6, fig.cap = "Fig. 10. Normal distribution for the pertexample1 dataset"---- plot_norm(y)