## ----echo = FALSE, results = "asis", message = FALSE, warning = FALSE--------- robu_available <- requireNamespace("robumeta", quietly = TRUE) meta_available <- requireNamespace("metafor", quietly = TRUE) knitr::opts_chunk$set(eval = robu_available & meta_available) if (!robu_available) cat("## Building this vignette requires the robumeta package. Please install it. {-} \n") if (!meta_available) cat("## Building this vignette requires the metafor package. Please install it. {-} \n") ## ----include=FALSE-------------------------------------------------------------------------------- options(width = 100) ## ----message = FALSE------------------------------------------------------------------------------ library(clubSandwich) library(robumeta) data(dropoutPrevention) # clean formatting names(dropoutPrevention)[7:8] <- c("eval","implement") levels(dropoutPrevention$eval) <- c("independent","indirect","planning","delivery") levels(dropoutPrevention$implement) <- c("low","medium","high") levels(dropoutPrevention$program_site) <- c("community","mixed","classroom","school") levels(dropoutPrevention$study_design) <- c("matched","unmatched","RCT") levels(dropoutPrevention$adjusted) <- c("no","yes") m3_robu <- robu(LOR1 ~ study_design + attrition + group_equivalence + adjusted + outcome + eval + male_pct + white_pct + average_age + implement + program_site + duration + service_hrs, data = dropoutPrevention, studynum = studyID, var.eff.size = varLOR, modelweights = "HIER") print(m3_robu) ## ------------------------------------------------------------------------------------------------- Wald_test(m3_robu, constraints = constrain_zero(10:12), vcov = "CR2") ## ------------------------------------------------------------------------------------------------- table(dropoutPrevention$eval) ## ----message = FALSE------------------------------------------------------------------------------ library(metafor) m3_metafor <- rma.mv(LOR1 ~ study_design + attrition + group_equivalence + adjusted + outcome + eval + male_pct + white_pct + average_age + implement + program_site + duration + service_hrs, V = varLOR, random = list(~ 1 | studyID, ~ 1 | studySample), data = dropoutPrevention) summary(m3_metafor) ## ------------------------------------------------------------------------------------------------- coef_test(m3_metafor, vcov = "CR2") ## ------------------------------------------------------------------------------------------------- Wald_test(m3_metafor, constraints = constrain_zero(10:12), vcov = "CR2")