Package ‘aae.pop’

January 31, 2026
Type Package

Title Flexible Population Dynamics Simulations
Version 0.2.0

Date 2026-01-27

Maintainer Jian Yen <jdl.yen@gmail.com>

Description Simulate population dynamics from realistically complex matrix
population models in a plug-and-play fashion. Supports aspatial and
spatially implicit models with one or more species and time-varying
covariates, stochasticity, density dependence, additions or removals of
individuals, interspecific interactions, and metapopulations.

License Apache License 2.0

URL https://aae-stats.github.io/aae.pop/,
https://github.com/aae-stats/aae.pop

BugReports https://github.com/aae-stats/aae.pop/issues
Encoding UTF-8

Depends R (>=4.1.0)

Imports stats, abind, cubature, future.apply, mc2d, nlegslv, rlang
Suggests knitr, DiagrammeR, testthat, covr, rmarkdown, remotes, scales
VignetteBuilder knitr

RoxygenNote 7.3.2

Language en-GB

NeedsCompilation no

Author Jian Yen [aut, cre, cph],
Arthur Rylah Institute for Environmental Research [fnd]

Repository CRAN
Date/Publication 2026-01-31 18:40:08 UTC

https://aae-stats.github.io/aae.pop/
https://github.com/aae-stats/aae.pop
https://github.com/aae-stats/aae.pop/issues

2 add_remove
Contents
add_remove e 2
COVAMIALES . . . v v o v v e e e e e e e e e e e e e e e e 4
density_dependence e 6
density_functions e 7
dispersal 8
dynamics e e e e e e e 10
CIMPS « v v v v v e 11
BXPS vt e e e e e e e e e e e e e e e e 12
get_cdf ..o e 14
get_pdf . .o e 16
masks e e e 17
metapopulation L. L e e 18
MUItiSPECICS v v e e e e e 21
pairwise_interaction L. e e e e e e e 23
Pr_eXtnCt o L e e e e e 23
replicated_covariates 25
TiSK_Curve e 26
TOZ o o v o o e e e e e e e e e e e e e e e e 28
simulate e e e e 30
stochasticity L e e e e e 33
UPdaterS e e e e 35
Index 37
add_remove Specify additions or removals in models of population dynamics
Description
Specify additions or removals from the population vector that occur before (add_remove_pre) or
after the update step (add_remove_post).
Usage
add_remove_pre(masks, funs)
add_remove_post(masks, funs)
Arguments

masks a logical matrix or vector (or list of these) defining cells affected by funs. See

Details and masks

funs a function or list of functions with one element for each element of masks. See

Details

add_remove 3

Details

add_remove_pre specifies a function that operates on the population vector prior to the popula-
tion update step. Examples might include fatalities (recorded in absolute numbers), removals, or
additions to the population that occur prior to the update (shifting from one generation to the next).

add_remove_post is the same as add_remove_pre but operates on the population vector after the
population update step.

masks are logical vectors with one element for each class. Additional details on masks are provided
in masks.

funs takes only one argument, the population abundances n prior (add_remove_pre) or following
(add_remove_post) all other updates in a given iteration/generation. This allows direct additions
or removals to the population vector, potentially based on external arguments (e.g., mass mortality
events or harvesting).

Additional arguments to functions are supported and can be passed to simulate with the args
argument.

Value

add_remove_pre or add_remove_post object specifying an additions/removals process for use
with dynamics

Examples

define a population matrix (columns move to rows)
nclass <- 5

popmat <- matrix(@, nrow = nclass, ncol = nclass)
popmat[reproduction(popmat, dims = 4:5)] <- c(10, 20)
popmat[transition(popmat)] <- c(@.25, 0.3, 0.5, 0.65)

define a dynamics object
dyn <- dynamics(popmat)

remove up to 10 individuals from stages 4 and 5 prior to the
matrix update
removals <- add_remove_pre(
masks = all_classes(popmat, dims = 4:5),
funs = \(x) ifelse(x > 10, x - 10, @)
)

update the dynamics object
dyn <- update(dyn, removals)

simulate trajectories
sims <- simulate(dyn, nsim = 100, options = list(ntime = 50))

and plot
plot(sims)

remove up to 10 individuals from stages 4 and 5 after to the
matrix update

4 covariates

removals <- add_remove_post(
masks = all_classes(popmat, dims = 4:5),
funs = \(x) ifelse(x > 10, x - 10, @)

)

update the dynamics object (can't update because that will
include the add_remove_pre as well)
dyn <- dynamics(popmat, removals)

simulate trajectories
sims <- simulate(dyn, nsim = 100, options = list(ntime = 50))

and plot
plot(sims)

covariates Specify covariate dependence in models of population dynamics

Description

Specify relationship between a vector or matrix of covariates and vital rates.

Usage

covariates(masks, funs)

format_covariates(x, aux = NULL, names = NULL)

Arguments
masks a logical matrix or vector (or list of these) defining cells affected by funs. See
Details and masks
funs a function or list of functions with one element for each element of masks. See
Details
X a vector, matrix, or data.frame of time-varying covariate values with one element
or row per time step
aux additional, static arguments to be passed to a covariates function
names optional vector of names for each covariate included in x
Details

Masks must be of the same dimension as the population dynamics matrix and specify cells influ-
enced by covariates according to funs. Additional details on masks are provided in masks.

Functions must take at least one argument, a vector or matrix representing the masked elements
of the population dynamics matrix. Incorporating covariate values requires a second argument.
Functions must return a vector or matrix with the same dimensions as the input, modified to reflect
the effects of covariates on vital rates.

covariates 5

Additional arguments to functions are supported and can be passed to simulate with the args,
args.dyn, or args. fn arguments.

format_covariates is a helper function that takes covariates and auxiliary values as inputs and
returns a correctly formatted list that can be passed as args to simulate.

Value

covariates object specifying covariate effects on a matrix population model; for use with dynamics

Examples

define a population matrix (columns move to rows)
nclass <- 5

popmat <- matrix(@, nrow = nclass, ncol = nclass)
popmat[reproduction(popmat, dims = 4:5)] <- c(10, 20)
popmat[transition(popmat)] <- c(@.25, 0.3, 0.5, 0.65)

define a dynamics object
dyn <- dynamics(popmat)

can add covariates that influence vital rates
e.g., a logistic function
covars <- covariates(
masks = transition(popmat),
funs = function(mat, x) mat * (1 / (1 + exp(-10 * x)))

simulate 50 random covariate values
xvals <- matrix(runif(50), ncol = 1)

update the dynamics object and simulate from it.

Note that ntime is now captured in the 50 values
of xvals, assuming we pass xvals as an argument
to the covariates functions

dyn <- update(dyn, covars)

sims <- simulate(

dyn,
init = c(50, 20, 10, 10, 5),
nsim = 100,

args = list(
covariates = format_covariates(xvals)

and can plot these simulated trajectories
plot(sims)

6 density_dependence

density_dependence Specify density dependence in models of population dynamics

Description

Specify density dependence in vital rates (density_dependence) and in total abundances (density_dependence_n).

Usage

density_dependence(masks, funs, nmask = NULL)

density_dependence_n(masks, funs)

Arguments
masks a logical matrix or vector (or list of these) defining cells affected by funs. See
Details and masks
funs a function or list of functions with one element for each element of masks. See
Details
nmask logical vector or list of vectors defining elements of the population vector af-
fected by each mask-function pair. Intended primarily for internal use when
scaling up processes in metapopulation
Details

density_dependence specifies standard density dependence on vital rates, such as scramble or
contest competition or allee effects.

density_dependence_n is an alternative parameterisation of density dependence that acts directly
on population abundances. Note that density_dependence_n has been superseded by add_remove_post.

Masks must be of the same dimension as the population dynamics matrix and specify cells influ-
enced by density dependence according to funs. In the case of density_dependence_n, masks are
logical vectors with one element for each class. Additional details on masks are provided in masks.

If using density_depenence, functions must take at least two arguments, a matrix x and a vector
n, which represent the population dynamics matrix and the population abundances. Functions must
return a matrix with the same dimensions as x, modified to reflect the effects of current abundances
(n) on vital rates.

In the case of density_dependence_n, funs takes only one argument, the population abundances
n following all other updates in a given iteration/generation. This allows rescaling of population
abundances based on total abundance or through more complicated functions that depend on exter-
nal arguments (e.g., mass mortality events or harvesting).

Additional arguments to functions are supported and can be passed to simulate with the args,
args.dyn, or args. fn arguments.

density_functions 7

Value

density_dependence object specifying covariate effects on a matrix population model; for use
with dynamics

Examples

define a population matrix (columns move to rows)
nclass <- 5

popmat <- matrix(@, nrow = nclass, ncol = nclass)
popmat[reproduction(popmat, dims = 4:5)] <- c(10, 20)
popmat[transition(popmat)] <- c(@.25, 0.3, 0.5, 0.65)

define a dynamics object
dyn <- dynamics(popmat)

add some density dependence

dd <- density_dependence(
masks = reproduction(popmat, dims = 4:5),
funs = ricker(1000)

)

update the dynamics object
dyn <- update(dyn, dd)

simulate trajectories
sims <- simulate(dyn, nsim = 100, options = list(ntime = 50))

and plot
plot(sims)

density_functions Common forms of density dependence

Description

Use pre-defined forms of density dependence based on common density-dependence functions.

Usage

beverton_holt(k, exclude = NULL)

ricker(k, exclude = NULL)

Arguments
k carrying capacity used to define models of density dependence. See details for
currently implemented models and their parameters.
exclude vector of classes to exclude from calculation of total population density. De-

faults to NULL, in which case all classes are used

8 dispersal

Details

Additional functions are provided to define common forms of density dependence. Currently im-
plemented models are the Ricker model and Beverton-Holt model, both with a single parameter
k.

Value

functions that can be used with density_dependence to specify common models of density depen-
dence

Examples

define a population matrix (columns move to rows)
nclass <- 5

popmat <- matrix(@, nrow = nclass, ncol = nclass)
popmat[reproduction(popmat, dims = 4:5)] <- c(10, 20)
popmat[transition(popmat)] <- c(0.25, 0.3, 0.5, 0.65)

define a dynamics object
dyn <- dynamics(popmat)

add some density dependence

dd <- density_dependence(
masks = reproduction(popmat, dims = 4:5),
funs = ricker(1000)

)

update the dynamics object
dyn <- update(dyn, dd)

simulate trajectories
sims <- simulate(dyn, nsim = 100, options = list(ntime = 50))

and plot
plot(sims)

dispersal Specify dispersal between populations in a metapopulation model

Description
Specify dispersal between populations, including stochasticity and density dependence in dispersal
parameters

Usage

dispersal(
kernel,
stochasticity_masks = NULL,

dispersal 9

stochasticity_funs = NULL,
density_masks = NULL,
density_funs = NULL,
proportion = FALSE

Arguments

kernel numeric matrix specifying the probability of specific classes moving between
two populations. Matrices have the same columns-move-to-rows structure as in
the population dynamics matrices described in dynamics, so a non-zero value
in cell (a, b) denotes a transition from class b in the source population to class a
in the receiving population
stochasticity_masks
alogical matrix or list of logical matrices defining cells affected by stochasticity_funs.
See Details and masks
stochasticity_funs
a function or list of functions with one element for each element of stochasticity_masks.
See Details

density_masks alogical matrix or list of logical matrices defining cells affected by density_funs.
See Details and masks

density_funs a function or list of functions with one element for each element of density_masks.
See Details

proportion logical indicating whether kernel is specified in absolute probabilities or as
a proportion of the source population (defaults to FALSE). If TRUE, values in
kernel are calculated as a proportion of the total probability an individual exits
that class at any given time step

Value

dispersal object specifying probabilities of movement between populations in a metapopulation
matrix model; for use with metapopulation

Examples

define some populations, all with identical vital rates
nclass <- 5

popmat <- matrix(@, nrow = nclass, ncol = nclass)
popmat[reproduction(popmat, dims = 4:5)] <- c(10, 20)
popmat[transition(popmat)] <- c(@.25, 0.3, 0.5, 0.65)

define a dynamics object
dyn <- lapply(

1:3,

function(i) dynamics(popmat)

)

define metapopulation structure with populations
1 and 3 dispersing into population 2

10 dynamics

pop_structure <- matrix(@, nrow = 3, ncol = 3)
pop_structure[1, 2] <- 1
pop_structure[3, 2] <- 1

define dispersal between populations

dispersal_matrix <- matrix(@, nrow = nclass, ncol = nclass)
dispersal_matrix[survival(dispersal_matrix, dims = 20:25)] <- 0.2
pop_dispersall <- dispersal(dispersal_matrix, proportion = TRUE)
pop_dispersal2 <- dispersal(dispersal_matrix, proportion = FALSE)
pop_dispersal <- list(pop_dispersall, pop_dispersal2)

create metapopulation object
metapop <- metapopulation(pop_structure, dyn, pop_dispersal)

simulate without covariates
sims <- simulate(metapop, nsim = 10)

and plot the simulated trajectories
plot(sims)

dynamics Create and update population dynamics objects

Description

Define population dynamics from a matrix and additional objects that determine covariate effects,
density dependence, and forms of stochasticity.

Usage

dynamics(matrix, ...)

S3 method for class 'dynamics'
update(object, ...)

is.dynamics(x)

Arguments

matrix a matrix of vital rates specifying transitions between ages or stages. Specified
in the format ntpl = A A is the matrix and nt is the vector of abundances, so that
values in a given column and row denote a transition from that column to that
row

additional objects used to define population dynamics. Must be one or more

of covariates, replicated_covariates, environmental_stochasticity,
demographic_stochasticity, density_dependence, add_remove_pre, or add_remove_post.
Note that density_dependence_n is equivalent to add_remove_post.

object a dynamics object

X an object to pass to is.dynamics

emps 11

Details

A call to dynamics defines an object of class dynamics, which can be used to simulate population
trajectories with the simulate function. The plot function is supported and will generate a general
life-cycle diagram based on the defined population dynamics.

A compiled dynamics object can be updated to change any of the included processes with the
update function.

Value

dynamics object containing a matrix population model and all associated processes

Examples

define a population

nclass <- 5

popmat <- matrix(@, nrow = nclass, ncol = nclass)
popmat[reproduction(popmat, dims = 4:5)] <- c(10, 20)
popmat[transition(popmat)] <- c(0.25, 0.3, 0.5, 0.65)

define a dynamics object
dyn <- dynamics(popmat)

and plot this
if (rlang::is_installed("DiagrammeR")) {

plot(dyn)
3
emps Calculate expected minimum population size (EMPS) for a simulate
object
Description

Calculate expected minimum population size (EMPS) for a simulate object

Usage
emps(sims, subset = NULL, times = NULL, fun = mean, ...)
Arguments
sims an object returned from simulate
subset integer vector denoting the population classes to include in calculation of pop-
ulation abundance. Defaults to all classes
times integer vector specifying generations to include in calculation of extinction
risk. Defaults to all simulated generations
fun function used to calculate average over all replicate trajectories. Defaults to

mean. Alternatives might include median or min
additional arguments passed to fun

12 exps

Details

Expected minimum population size (EMPS) is the average minimum value of all replicate trajec-
tories. This value represents an expected lower bound on population sizes over all generations,
accounting for variation among replicates. Abundances can be specified for all population classes
or for a subset of classes.

Value

a single value representing the expected minimum population size for a simulation

Examples

define a basic population

nstage <- 5

popmat <- matrix(@, nrow = nstage, ncol = nstage)
popmat[reproduction(popmat, dims = 4:5)] <- c(10, 20)
popmat[transition(popmat)] <- c(@.25, 0.3, 0.5, 0.65)

define a dynamics object
dyn <- dynamics(popmat)

simulate with the default updater
sims <- simulate(dyn, nsim = 1000)

calculate expected minimum population size
emps(sims)

calculate expected minimum population size for 4 and 5 year
olds only
emps(sims, subset = 4:5)

calculate expected minimum population size but ignore first 10 years
emps(sims, times = 11:51)

calculate expected minimum population size based on median
emps(sims, fun = median)

exps Calculate expected population size for a simulate object based on
generic functions (ExPS)

Description

Calculate expected population size for a simulate object based on generic functions (ExPS)

exps
Usage
exps(
sims,
subset = NULL,
times = NULL,

)
Arguments
sims an object returned from simulate
subset integer vector denoting the population classes to include in calculation of pop-
ulation abundance. Defaults to all classes
times integer vector specifying generations to include in calculation of extinction
risk. Defaults to all simulated generations
fun_within function used to summarise a single trajectory. Must return a single value.
Defaults to mean
fun_among function used to summarise over all replicate trajectories. Defaults to mean.
Alternatives might include median or min
additional arguments passed to fun_within and fun_among. If these conflict, a
wrapper function could be used to define expected arguments for each function
Details

fun_within = mean,
fun_among = mean,

Expected population size (ExPS) is a highly flexible generalisation of emps and represents a two-

13

level summary that first summarises individual population trajectories and then summarises these
values over all replicates. Abundances can be specified for all population classes or for a subset of

classes.

Value

a single value representing the expected statistic applied to the population sizes generated with

simulate

Examples

define a basic population

nstage <- 5

popmat <- matrix(@, nrow = nstage, ncol = nstage)
popmat[reproduction(popmat, dims = 4:5)] <- c(10, 20)
popmat[transition(popmat)] <- c(0.25, 0.3, 0.5, 0.65)

define a dynamics object
dyn <- dynamics(popmat)

simulate with the default updater

14 get_cdf

sims <- simulate(dyn, nsim = 1000)

calculate expected population size
exps(sims)

calculate expected population size for 4 and 5 year
olds only
exps(sims, subset = 4:5)

calculate expected population size but ignore first 10 years
exps(sims, times = 11:51)

calculate expected population size based on median
exps(sims, fun_among = median)

calculate expected maximum population size based on median
exps(sims, fun_within = max, fun_among = median)

calculate exps with conflicting quantile functions, handling
conflicting arguments with wrapper functions

quant1 <- function(x, p1, ...) {
quantile(x, prob = p1)
3
quant2 <- function(x, p2, ...) {
quantile(x, prob = p2)
3
exps(
sims,
fun_within = quantl, fun_among = quant2, p1 = 0.25, p2 = 0.75
)
get_cdf Calculate the cumulative distribution function of a summary statistic

across all iterations of a simulate object

Description

Calculate the cumulative distribution function of a summary statistic across all iterations of a
simulate object

Usage
get_cdf(sims, subset = NULL, times = NULL, n = 100, fn = min, ...)
Arguments
sims an object returned from simulate
subset integer vector denoting the population classes to include in calculation of pop-

ulation abundance. Defaults to all classes

get_cdf 15

times integer vector specifying generations to include in calculation of extinction
risk. Defaults to all simulated generations

n integer specifying number of threshold values to use in default case when
threshold is not specified. Defaults to 100

fn function to apply to each iteration. Defaults to min

additional arguments passed to fn

Details

get_cdf is a faster and more general alternative to the risk_curve function. get_cdf can be
used to calculate the cumulative distribution of any summary statistic. For example, the camulative
distribution of the minimum population size is equivalent to a risk curve. Summary statistics for
get_cdf are extracted from a simulate object and represent the cumulative distribution of that
statistic over all replicate trajectories at any time step within a set period. Abundances can be
specified for all population classes or for a subset of classes.

Value

a data.frame containing a prob column that indicates the probability the population will fall below
the threshold value in the value column

Examples

define a basic population

nstage <- 5

popmat <- matrix(@, nrow = nstage, ncol = nstage)
popmat[reproduction(popmat, dims = 4:5)] <- c(10, 20)
popmat[transition(popmat)] <- c(0.25, 0.3, 0.5, 0.65)

define a dynamics object
dyn <- dynamics(popmat)

simulate with the default updater
sims <- simulate(dyn, nsim = 1000)

calculate distribution of minimum population sizes (default)
get_cdf(sims)

calculate distribution of maximum population sizes
get_cdf(sims, fn = max)

calculate distribution of the 90th percentile of
population sizes
get_cdf(sims, fn = quantile, prob = 0.9)

calculate distribution of minimum population sizes
but ignore first 10 years
get_cdf(sims, fn = max, times = 11:51)

16 get_pdf

get_pdf Calculate the probability density of a summary statistic across all it-
erations of a simulate object

Description

Calculate the probability density of a summary statistic across all iterations of a simulate object

Usage
get_pdf(sims, subset = NULL, times = NULL, n = 100, fn = min, ...)
Arguments
sims an object returned from simulate
subset integer vector denoting the population classes to include in calculation of pop-
ulation abundance. Defaults to all classes
times integer vector specifying generations to include in calculation of extinction
risk. Defaults to all simulated generations
n integer specifying number of threshold values to use in default case when
threshold is not specified. Defaults to 100
fn function to apply to each iteration. Defaults to min
additional arguments passed to fn
Details

get_pdf and get_cdf are faster and more general alternatives to the risk_curve function. get_pdf
can be used to calculate the probability distribution of any summary statistic. For example, the prob-
ability distribution of the minimum population size is the density-based equivalent of a risk curve
(the function get_cdf can be used to get the true equivalent). Summary statistics for get_pdf are
extracted from a simulate object and represent the distribution of that statistic over all replicate
trajectories at any time step within a set period. Abundances can be specified for all population
classes or for a subset of classes.

Value

a data.frame containing a prob column that indicates the probability density that abundances will
be in the vicinity of the threshold value in the value column

Examples

define a basic population

nstage <- 5

popmat <- matrix(@, nrow = nstage, ncol = nstage)
popmat[reproduction(popmat, dims = 4:5)] <- c(10, 20)
popmat[transition(popmat)] <- c(@.25, 0.3, 0.5, 0.65)

masks 17

define a dynamics object
dyn <- dynamics(popmat)

simulate with the default updater
sims <- simulate(dyn, nsim = 1000)

calculate distribution of minimum population sizes (default)
get_pdf (sims)

calculate distribution of maximum population sizes
get_pdf(sims, fn = max)

calculate distribution of the 90th percentile of
population sizes
get_pdf(sims, fn = quantile, prob = 0.9)

calculate distribution of minimum population sizes
but ignore first 10 years
get_pdf(sims, fn = max, times = 11:51)

masks Isolate elements of population dynamics models

Description

Helper functions to isolate particular components of a population dynamics model, such as the
reproduction terms, transition/growth terms, or particular life stages from an abundance vector,
such as pre- or post-reproductive stages.

Usage

reproduction(matrix, dims = NULL)
survival(matrix, dims = NULL)
transition(matrix, dims = NULL)
all_cells(matrix, dims = NULL)
all_classes(matrix, dims = NULL)

combine(...)

Arguments

matrix a population dynamics matrix for which a particular mask is required. Only
used to determine mask dimensions, so can be any matrix with appropriate di-
mensions

18 metapopulation

dims a numeric value or vector identifying subsets of cells to include in a given mask

a set of masks or masking functions to be combined into a single mask by one
of the combine methods

Value

mask object used to define the cells affected by a process included in dynamics

Examples

define a population

nclass <- 5

popmat <- matrix(@, nrow = nclass, ncol = nclass)
popmat[reproduction(popmat, dims = 4:5)] <- c(10, 20)
popmat[transition(popmat)] <- c(0.25, 0.3, 0.5, 0.65)

pull out reproductive elements
reproduction(popmat)

what if only 4 and 5 year olds reproduce?
reproduction(popmat, dims = 4:5)

define survival elements
survival(popmat)

what if 1 and 2 year olds always transition?
survival(popmat, dims = 3:5)

and transitions
transition(popmat)

combine transitions and reproduction of 4 and 5 year olds
combine(reproduction(popmat, dims = 4:5), transition(popmat))

can also mask the population vector in this way
pull out all classes
all_classes(popmat)

and just 3-5 year olds
all_classes(popmat, dims = 3:5)

metapopulation Create a metapopulation dynamics object

Description

Define population dynamics for multiple populations of a single species linked by dispersal (a
metapopulation).

metapopulation 19

Usage

metapopulation(structure, dynamics, dispersal)

is.metapopulation(x)

Arguments
structure binary or logical matrix denoting dispersal links between populations. Columns
move to rows, so a 1 or TRUE in cell (a, b) denotes movement from population b
to population a
dynamics a dynamics object or list of dynamics objects with one element for each popula-
tion (each column/row of structure). If a single dynamics object is provided,
it is recycled over all required populations
dispersal object created with dispersal. dispersal objects describe movements be-
tween populations and can include class-specific movements and density-dependent
movements. dispersal objects must be a list with one element for each link in
structure. These links are interpreted in column-major order, so that dispersal
objects must be ordered by links in column 1, then column 2, and so on
X an object to pass to is.metapopulation
Details

The metapopulation function connects multiple populations through known dispersal probabili-
ties, handling standardisations of dispersal probabilities (if required) and updating masks and func-
tions for all processes defined within each population. Further details on the definition of dispersal
terms are provided in dispersal.

Covariates can be included in metapopulation models. The default behaviour is for all populations
to share a single set of covariates, with covariate associations and masks defined separately for
each population. A workaround to the assumption of shared covariates is included in the examples,
below. Including covariates on dispersal probabilities requires covariate associations and masks
defined on the combined metapopulation model. This approach is possible but currently untested.

Value

metapopulation object containing a matrix metapopulation model; for use with simulate

Examples

define some populations, all with identical vital rates
nclass <- 5

popmat <- matrix(@, nrow = nclass, ncol = nclass)
popmat[reproduction(popmat, dims = 4:5)] <- c(10, 20)
popmat[transition(popmat)] <- c(0.25, 0.3, 0.5, 0.65)

define a dynamics object
dyn <- lapply(

1:3,

function(i) dynamics(popmat)

20

metapopulation

define metapopulation structure with populations
1 and 3 dispersing into population 2
pop_structure <- matrix(@, nrow = 3, ncol = 3)
pop_structure[1, 2] <- 1

pop_structure[3, 2] <- 1

define dispersal between populations

dispersal_matrix <- matrix(@, nrow = nclass, ncol = nclass)
dispersal_matrix[survival(dispersal_matrix, dims = 20:25)] <- 0.2
pop_dispersall <- dispersal(dispersal_matrix, proportion = TRUE)
pop_dispersal2 <- dispersal(dispersal_matrix, proportion = FALSE)
pop_dispersal <- list(pop_dispersall, pop_dispersal2)

create metapopulation object
metapop <- metapopulation(pop_structure, dyn, pop_dispersal)

simulate without covariates
sims <- simulate(metapop, nsim = 2)

simulate with shared covariates
define a covariates function
covar_fn <- function(mat, x) {
mat * (1 / (1 + exp(-0.5 * (x + 10))))
3

and some covariates
xsim <- matrix(rnorm(20), ncol = 1)

update the population dynamics objects with covariates
dyn <- lapply(
dyn,
update,
covariates(masks = transition(dyn[[1]1$matrix), funs = covar_fn)

)

(re)create metapopulation object
metapop <- metapopulation(pop_structure, dyn, pop_dispersal)
sims <- simulate(

metapop,
nsim = 2,
args = list(covariates = format_covariates(xsim))

)

simulate with separate covariates
(requires re-definition of covariate functions)
new_fn <- function(i) {

force(i)

function(mat, x) {

mat * (1 / (1 + exp(-0.5 x (x[i] + 10))))

}

3

multispecies 21

new_fn <- lapply(
1:3,
new_fn

)

update the population dynamics objects with covariates
dyn <- lapply(
dyn,
update,
covariates(masks = transition(dyn[[1]]$matrix), funs = covar_fn)

)

(re)create metapopulation object
metapop <- metapopulation(pop_structure, dyn, pop_dispersal)

and simulate with one column of predictors for each population
xsim <- matrix(rnorm(60), ncol = 3)
sims <- simulate(

metapop,
nsim = 2,
args = list(covariates = format_covariates(xsim))
)
multispecies Create a population dynamics object with multiple species
Description

Define population dynamics for multiple species from a set of single-species dynamics objects and
defined pairwise interactions.

Usage
multispecies(...)
is.multispecies(x)

is.interaction(x)

Arguments
pairwise_interaction objects defining a set of pairwise interactions between
species
X an object to pass to is.multispecies
Value

multispecies object containing a multispecies matrix population model; for use with simulate

22

Examples

define population matrices for three species

spl_mat <- rbind(
c(o, @, 2, 4, 7), # reproduction from 3-5 year olds
c(0.25, 0, 0, @, @), # survival from age 1 to 2
c(0, 0.45, 0, @9, @), # survival from age 2 to 3
c(o, 0, 0.70, 0, @), # survival from age 3 to 4
c(o, 0, 0, 0.85, @) # survival from age 4 to 5

)

sp2_mat <- rbind(
c(0, 0, 4), # reproduction from 3 year olds
c(0.25, 0, @), # survival from age 1 to 2
c(0, 0.45, @) # survival from age 2 to 3

)

sp3_mat <- rbind(
c(o, 0, 2, 4, 7, 10), # reproduction from 3-6 year olds
c(0.25, 0, 0, 0, @0, @), # survival from age 1 to 2
c(o, 0.45, 0, @9, @0, @), # survival from age 2 to 3
c(o, 0, 0.70, 0, @, @), # survival from age 3 to 4
c(o, 0, 0, 0.85, @, @), # survival from age 4 to 5
c(o, 0, 0, 0, 0.75, @) # survival from age 5 to 6

)

define population dynamics objects for each species
spl_dyn <- dynamics(spl_mat)
sp2_dyn <- dynamics(sp2_mat)
sp3_dyn <- dynamics(sp3_mat)

define multispecies interactions as masks/functions
- species 1 influencing transition probabilities of species 3
mask_1v3 <- transition(sp3_mat)

basic Beverton-Holt function

fun_1v3 <- function(x, n) {
n is the population vector of the source population (sp 1)
x / (1 + x * sum(n[3:5]) / 100) # focus on adults

3

- species 3 influencing reproduction of species 2
mask_3v2 <- reproduction(sp2_mat, dims = 3)

basic Ricker function
fun_3v2 <- function(x, n) {
n is the population vector of the source population (sp 3)
x * exp(1 - sum(n[1:2]) / 50) / exp(1) # focus on juveniles
3

combine masks and functions into pairwise_interaction objects

sp_int1v3 <- pairwise_interaction(sp3_dyn, spl_dyn, mask_1v3, fun_1v3)
sp_int3v2 <- pairwise_interaction(sp2_dyn, sp3_dyn, mask_3v2, fun_3v2)

compile a multispecies dynamics object

multispecies

pairwise_interaction 23

multisp_dyn <- multispecies(sp_intl1v3, sp_int3v2)

simulate
sims <- simulate(multisp_dyn, nsim = 100)

and can plot these simulated trajectories for each species
plot(sims, which = 1)

pairwise_interaction Specify interactions between two species

Description
Define population dynamics for multiple species from a set of single-species dynamics objects and
defined pairwise interactions.

Usage

pairwise_interaction(target, source, masks, funs)

Arguments
target population whose vital rates are affected by the pairwise interaction
source population whose abundances affect the vital rates of target
masks masks defining which vital rates are influenced by each function
funs functions that take vital rates and abundances of the source population as inputs
and return scaled vital rates
Value

pairwise_interaction object specifying links between species; for use with multispecies

pr_extinct Calculate (quasi-)extinction risk for a simulate object

Description

Calculate (quasi-)extinction risk for a simulate object

Usage

pr_extinct(sims, threshold = @, subset = NULL, times = NULL)

24

Arguments
sims

threshold

subset

times

Details

pr_extinct

an object returned from simulate

integer or numeric denoting the threshold population size below which a pop-
ulation is considered functionally extinct. Defaults to @

integer vector denoting the population classes to include in calculation of pop-
ulation abundance. Defaults to all classes

integer vector specifying generations to include in calculation of extinction
risk. Defaults to all simulated generations

Quasi-extinction risk is the probability of decline below some specified abundance threshold. This
probability is extracted from a simulate object as the proportion of replicate trajectories that fall
below this threshold at any time step within a set period. Abundances can be specified for all
population classes or for a subset of classes.

Value

a single numeric value representing the probability a population will decline below the threshold

size

Examples

define a basic population

nstage <- 5

popmat <- matrix(@, nrow = nstage, ncol = nstage)
popmat[reproduction(popmat, dims = 4:5)] <- c(10, 20)
popmat[transition(popmat)] <- c(@.25, 0.3, 0.5, 0.65)

define a dynamics object
dyn <- dynamics(popmat)

simulate with the default updater
sims <- simulate(dyn, nsim = 1000)

calculate quasi-extinction risk at a threshold population size
of 100 individuals
pr_extinct(sims, threshold = 100)

repeat previous but focused on 4 and 5 year olds only
pr_extinct(sims, threshold = 100, subset = 4:5)

repeat previous but ignore first 10 years
pr_extinct(sims, threshold = 100, times = 11:51)

replicated_covariates 25

replicated_covariates Specify replicate-specific covariate dependence in models of popula-
tion dynamics

Description

Specify relationship between a vector or matrix of covariates and vital rates, but with a different
covariate value for each replicate (i.e., each value of nsimin simulate)

Usage

replicated_covariates(masks, funs)

Arguments
masks a logical matrix or vector (or list of these) defining cells affected by funs. See
Details and masks
funs a function or list of functions with one element for each element of masks. See
Details
Details

Masks must be of the same dimension as the population dynamics matrix and specify cells influ-
enced by covariates according to funs. Additional details on masks are provided in masks.

Functions must take at least one argument, a vector or matrix representing the masked elements
of the population dynamics matrix. Incorporating covariate values requires a second argument.
Functions must return a vector or matrix with the same dimensions as the input, modified to reflect
the effects of covariates on vital rates.

Additional arguments to functions are supported and can be passed to simulate with the args
argument.

format_covariates is a helper function that takes covariates and auxiliary values as inputs and
returns a correctly formatted list that can be passed as args to simulate.

replicated_covariates operates identically to covariates except that it allows for a different
value of the covariate applied to each replicate trajectory. This specification can incorporate com-
plex structures, such as temporal dynamics in environmental stochasticity and correlated uncertainty
in vital rates.

Value

replicated_covariates object specifying replicate-specific covariate effects on a matrix popula-
tion model; for use with dynamics

26 risk_curve

Examples

define a population matrix (columns move to rows)
nclass <- 5

popmat <- matrix(@, nrow = nclass, ncol = nclass)
popmat[reproduction(popmat, dims = 4:5)] <- c(10, 20)
popmat[transition(popmat)] <- c(@.25, 0.3, 0.5, 0.65)

define a dynamics object
dyn <- dynamics(popmat)

can add covariates that influence vital rates
e.g., a logistic function
covars <- replicated_covariates(

masks = transition(popmat),

funs = \(mat, x) mat *» (1 / (1 + exp(-10 * x)))
)

simulate 50 random covariate values for each replicate (each
value of nsim, set to 100 below)
xvals <- matrix(runif(50 * 100), ncol = 100)

update the dynamics object and simulate from it.

Note that ntime is now captured in the 50 values
of xvals, assuming we pass xvals as an argument
to the covariates functions

dyn <- update(dyn, covars)

sims <- simulate(

dyn,
init = c(50, 20, 10, 10, 5),
nsim = 100,
args = list(
replicated_covariates = format_covariates(xvals)

)

)

and can plot these simulated trajectories

plot(sims)

risk_curve Calculate (quasi-)extinction risk at multiple thresholds for a simulate
object
Description

Calculate (quasi-)extinction risk at multiple thresholds for a simulate object

Usage

risk_curve(sims, threshold = NULL, subset = NULL, times = NULL, n = 100)

risk_curve

Arguments
sims

threshold

subset

times

Details

27

an object returned from simulate

integer or numeric vector denoting the set of threshold population sizes used
to define the risk curve. Defaults to n evenly spaced values from O to the maxi-
mum observed abundance

integer vector denoting the population classes to include in calculation of pop-
ulation abundance. Defaults to all classes

integer vector specifying generations to include in calculation of extinction
risk. Defaults to all simulated generations

integer specifying number of threshold values to use in default case when
threshold is not specified. Defaults to 100

Risk curves represent pr_extinct at multiple threshold population sizes simultaneously. This gives
an expression of risk of population declines below a range of values. Risk curves are extracted from
a simulate object as the proportion of replicate trajectories that fall below each threshold value at
any time step within a set period. Abundances can be specified for all population classes or for a

subset of classes.

The get_cdf function is a much faster way to generate risk curves for almost all use cases. The
exception is when the threshold argument is used to specify threshold values that are not evenly

spaced.

Value

a named vector containing the threshold values (names) and the probability the population will fall
below these threshold values

Examples

define a basic population

nstage <- 5

popmat <- matrix(@, nrow = nstage, ncol = nstage)
popmat[reproduction(popmat, dims = 4:5)] <- c(10, 20)
popmat[transition(popmat)] <- c(0.25, 0.3, 0.5, 0.65)

define a dynamics object
dyn <- dynamics(popmat)

simulate with the default updater
sims <- simulate(dyn, nsim = 100)

calculate risk curve
risk_curve(sims, n = 10)

28 g

rng Random number generators not available in existing R packages

Description

Draw random numbers from unusual distributions, such as on the unit or non-negative real line with
known means and standard deviations.

Usage
rmultiunit(
n,
mean,
sd,
Sigma = NULL,
Omega = NULL,
perfect_correlation = FALSE
)
rmultiunit_from_real(
n,
mean_real,

sd_real = NULL,

Sigma_chol = NULL,

perfect_correlation = FALSE
runit_from_real(n, mean_real, sd_real)

runit(n, mean, sd)

unit_to_real(unit_mean, unit_sd)

Arguments

n number of random draws to simulate. Each draw is a vector of values with
length equal to length(mean) and length(sd) and the resulting output has n
rows and length(mean) columns

mean vector of mean values on the unit scale

sd vector of positive standard deviations

Sigma optional covariance matrix with dimensions of length(mean) by length(mean)
defining covariances between each pair of values in mean. Note that only the
correlation structure is retained from Sigma, so that standard deviations are still
required

Omega optional correlation matrix with dimensions of length(mean) by length(mean)

defining correlations between each pair of values in mean

mg

29

perfect_correlation
logical, if TRUE and Sigma and Omega are NULL, then all values in each repli-
cate (row) are perfectly correlated with known mean and standard deviation. If
FALSE, then all values in each replicate are completely uncorrelated

mean_real vector of mean values converted to real-line equivalents

sd_real vector of standard deviations converted to real-line equivalents

Sigma_chol Cholesky decomposition of covariance matrix converted to real-line equivalent
unit_mean vector of mean values on the unit interval

unit_sd vector of standard deviations on the unit interval

Details

The r*unit family of functions support simulation of values on the unit interval based on a known
mean, sd, and correlation structure. runit and runit_from_real are vectorised univariate func-
tions, and rmultiunit and rmultiunit_from_real are multivariate versions of these same func-
tions. runit and rmultiunit provide simulated values on the unit line with specified means,
standard deviations, and correlation/covariance structure (in the case of rmultiunit).

The *_from_real versions of these functions are helpers that use pre-transformed estimates of pa-
rameters on the real line, calculated with unit_to_real. These functions are exported because
unit_to_real, called within runit and rmultiunit, is slow. Separating this into a separate step
allows less frequent calculations of this transformation using function or dynamic versions of args
in simulate.

unit_to_real converts means and standard deviations from their values on the unit line to their
equivalent values on the real line.

The use of the different versions of these functions is illustrated in the Macquarie perch example on
the package [website](https://aae-stats.github.io/aae.pop/).

Value

a vector or matrix of random draws from the r*unit set of functions

Examples

rmultiunit generates multivariate draws constrained to

the unit interval, with known mean, standard deviation,

and (optionally) covariance/correlation structure

rmultiunit(n = 10, mean = c(0.25, 0.5, 0.75), sd = c(0.1, 0.4, 0.25))

add in a correlation structure
omega_set <- cbind(
c(1, 0.25, 0.01),
c(0.25, 1, 0.5),
c(0.01, 0.5, 1)
)
rmultiunit(
n =10,
mean = c(0.25, 0.5, 0.75),
sd = c(0.1, 0.4, 0.25),

30 simulate

Omega = omega_set

)

simulate Simulate single or multispecies population dynamics in R

Description

Simulate population dynamics for one or more species defined by dynamics objects.

Usage

S3 method for class 'dynamics'
simulate(

object,

nsim = 1,

seed = NULL,

init = NULL,

options = list(),

args = list(),

.future = FALSE

is.simulation(x)

is.simulation_list(x)

Arguments

object adynamics object created with dynamics or from a subsequent call tomultispecies
ormetapopulation. Alternatively, object can be the output of a call to simulate
in the case of summary

nsim the number of replicate simulations (default = 1)

seed optional seed used prior to initialisation and simulation to give reproducible
results
ignored; included for consistency with simulate generic method

init an array of initial conditions with one row per replicate and one column per

population stage. If obj has been created with multispecies, initial conditions
can be provided as a list or array with one element or slice per species, or as a
matrix, in which case all species are assumed to share the same initial condi-
tions. Defaults to NULL, in which case initial conditions are generated randomly
according to options()$aae.pop_initialisation

simulate 31

options anamed list of simulation options. Currently accepted values are:

- ntime the number of time steps to simulate, ignored if obj includes a covariates
(default = 50)

- keep_slices logical defining whether to keep intermediate population abun-
dances or (if FALSE) to return only the final time slice

- tidy_abundances a function to handle predicted abundance data that may be
non-integer. Defaults to identity; suggested alternatives are floor, round, or
ceiling

- initialise_args a list of arguments passed to the function used to initialise
abundance trajectories. Only used if init = NULL. Defaults to options () $aae.pop_lambda,
which specifies lambda for Poisson random draws. The default initialisation
function is defined by options()$aae.pop_initialisation.

- update a function to update abundances from one time step to the next. De-
faults to options()$aae.pop_update.

args named list of lists passing arguments to processes defined in object, includ-
ing interaction for multispecies objects. Lists (up to one per process) can
contain a mix of static, dynamic, and function arguments. Dynamic arguments
must be lists with one element per time step. Function arguments must be func-
tions that calculate arguments dynamically in each generation based on from the
population dynamics object, population abundances, and time step in each gen-
eration. All other classes (e.g., single values, matrices, data frames) are treated
as static arguments. Covariates contained in numeric vectors, matrices, or data
frames can be formatted as dynamic arguments with the format_covariates
function.

args for multispecies objects must have one element per species (defaults
will expand automatically if not provided)

.future flag to determine whether the future package should be used to manage updates
for multispecies models (an embarrassingly parallel problem)
X an object to pass to is.simulation or is.simulation.list
Value

simulation object containing replicate simulations from a matrix population model. plot and
subset methods are defined for simulation objects

Examples

define a population matrix (columns move to rows)
nclass <- 5

popmat <- matrix(@, nrow = nclass, ncol = nclass)
popmat[reproduction(popmat, dims = 4:5)] <- c(10, 20)
popmat[transition(popmat)] <- c(@.25, 0.3, 0.5, 0.65)

can extract standard population matrix summary stats
lambda <- Re(eigen(popmat)$values[1])

define a dynamics object
dyn <- dynamics(popmat)

simulate

simulate from this (50 time steps, 100 replicates)
sims <- simulate(dyn, nsim = 100, options = list(ntime = 50))

plot the simulated trajectories
plot(sims)

add some density dependence

dd <- density_dependence(
masks = reproduction(popmat, dims = 4:5),
funs = ricker(1000)

)

update the dynamics object
dyn <- update(dyn, dd)

simulate again
sims <- simulate(dyn, nsim = 100, options = list(ntime = 50))

and plot
plot(sims)

what if we want to add initial conditions?
sims <- simulate(

dyn,

init = c(50, 20, 10, 10, 5),
nsim = 100,

options = list(ntime = 50),

)

and plot again
plot(sims)

note that there is only one trajectory now because
this simulation is deterministic.
#
let's change that by adding some environmental stochasticity
envstoch <- environmental_stochasticity(
masks = list(
reproduction(popmat, dims = 4:5),

transition(popmat)
),
funs = list(

\(x) rpois(n = length(x), lambda = x),

\(x) runif(n = length(x), min = 0.9 x x, max = pmin(1.1 * x, 1))
)

)

update the dynamics object and simulate from it
dyn <- update(dyn, envstoch)
sims <- simulate(

dyn,

init = c(50, 20, 10, 10, 5),

stochasticity 33

nsim = 100,
options = list(ntime = 50),
)

can also add covariates that influence vital rates
e.g., a logistic function
covars <- covariates(

masks = transition(popmat),

funs = \(mat, x) mat *x (1 / (1 + exp(-10 * x)))

simulate 50 random covariate values
xvals <- matrix(runif(50), ncol = 1)

update the dynamics object and simulate from it.

Note that ntime is now captured in the 50 values
of xvals, assuming we pass xvals as an argument
to the covariates functions

dyn <- update(dyn, covars)

sims <- simulate(

dyn,
init = c(50, 20, 10, 10, 5),
nsim = 100,
args = list(covariates = format_covariates(xvals))
)
a simple way to add demographic stochasticity is to change
the "updater” that converts the population at time t
to its value at time t + 1. The default in aae.pop
uses matrix multiplication of the vital rates matrix
and current population. A simple tweak is to update
with binomial draws. Note that this also requires a
change to the "tidy_abundances” option so that population
abundances are always integer values.
sims <- simulate(
dyn,
init = c(50, 20, 10, 10, 5),
nsim = 100,

options = list(
update = update_binomial_leslie,
tidy_abundances = floor

)?

args = list(covariates = format_covariates(xvals))

and can plot these again
plot(sims)

34 stochasticity

stochasticity Specify environmental and demographic stochasticity in models of
population dynamics

Description

Specify environmental stochasticity (random variation in vital rates) and demographic stochasticity
(random variation in population outcomes).

Usage

environmental_stochasticity(masks, funs)

demographic_stochasticity(masks, funs)

Arguments
masks a logical matrix or vector (or list of these) defining cells affected by funs. See
Details and masks
funs a function or list of functions with one element for each element of masks. See
Details
Details

Masks must be of the same dimension as the population dynamics matrix (in the case of environ-
mental stochasticity) or have one element for each class (in the case of demographic stochasticity).
Masks specify cells influenced by stochasticity according to funs. Additional details on masks are
provided in masks.

Functions must have at least one argument, a population dynamics matrix for environmental stochas-
ticity or a vector of population abundances for demographic stochasticity. Functions must return an
output of the same dimensions as the input, modified to reflect the effects of stochasticity on vital
rates or population abundances.

Additional arguments to functions are supported and can be passed to simulate with the args,
args.dyn, or args. fn arguments.

Value

environmental_stochasticity or demographic_stochasticity object specifying the way in
which stochasticity should be included in a matrix population model; for use with dynamics

Examples

define a population matrix (columns move to rows)
nclass <- 5

popmat <- matrix(@, nrow = nclass, ncol = nclass)
popmat[reproduction(popmat, dims = 4:5)] <- c(10, 20)
popmat[transition(popmat)] <- c(0.25, 0.3, 0.5, 0.65)

define a dynamics object

updaters 35

dyn <- dynamics(popmat)

note that there is only one trajectory now because
this simulation is deterministic.
#
let's change that by adding some environmental stochasticity
envstoch <- environmental_stochasticity(
masks = list(
reproduction(popmat, dims = 4:5),

transition(popmat)
),
funs = list(

\(x) rpois(n = length(x), lambda = x),

\(x) runif(n = length(x), min = 0.9 * x, max = pmin(1.1 *x x, 1))
)

)

update the dynamics object and simulate from it
dyn <- update(dyn, envstoch)
sims <- simulate(

dyn,
init = c(50, 20, 10, 10, 5),
nsim = 100,
options = list(ntime = 50),
)
a simple way to add demographic stochasticity is to change
the "updater” that converts the population at time t
to its value at time t + 1. The default in aae.pop
uses matrix multiplication of the vital rates matrix
and current population. A simple tweak is to update
with binomial draws. Note that this also requires a
change to the "tidy_abundances” option so that population
abundances are always integer values.
sims <- simulate(
dyn,
init = c(50, 20, 10, 10, 5),
nsim = 100,

options = list(
update = update_binomial_leslie,
tidy_abundances = floor
)
)

updaters Functions for a single time-step update

Description

Define how population abundances are updated from one time step to the next. Functions can take
any form but will only be vectorised across replicates in limited situations.

36 updaters

Usage
update_crossprod(pop, mat)

update_binomial_leslie(pop, mat)

update_multinomial (pop, mat)

Arguments

pop current state of the population

mat matrix of vital rates used to update population state
Details

Updaters can be changed through the options argument to simulate and can also be changed
globally for an R session by changing the global option with, e.g., options(aae.pop_update =
update_binomial_leslie)

update_crossprod updates abundances with a direct matrix multiplication that does not include
any form of demographic stochasticity. This is the fastest update option and will vectorise across
replicates if the population matrix is not expanded by environmental_stochasticity or density_dependence.

update_binomial_leslie updates abundances with a direct RNG draw that combines update with
demographic stochasticity, assuming a Leslie matrix.

update_multinomial updates abundances with a direct RNG draw that combines update with de-
mographic stochasticity, allowing for general matrix forms (slower than update_binomial_leslie).

Value

a matrix containing population abundances in each stage of a matrix population model. Contains
one row for each replicate population trajectory and one column for each population stage

Examples

define a basic population

nstage <- 5

popmat <- matrix(@, nrow = nstage, ncol = nstage)
popmat[reproduction(popmat, dims = 4:5)] <- c(10, 20)
popmat[transition(popmat)] <- c(@.25, 0.3, 0.5, 0.65)

define a dynamics object
dyn <- dynamics(popmat)

simulate with the default updater
sims <- simulate(dyn)

simulate with a multinomial updater
sims <- simulate(dyn, options = list(update = update_multinomial))

Index

add_remove, 2
add_remove_post, 6, 10
add_remove_post (add_remove), 2
add_remove_pre, 10
add_remove_pre (add_remove), 2
all_cells (masks), 17
all_classes (masks), 17

beverton_holt (density_functions), 7

combine (masks), 17
covariates, 4, 10, 25, 31

demographic_stochasticity, /10
demographic_stochasticity
(stochasticity), 34
density_dependence, 6, 8, 10, 36
density_dependence_n, 10
density_dependence_n
(density_dependence), 6
density_functions, 7
dispersal, 8, 19
dynamics, 3, 5,7,9,10, 18, 19, 21, 23, 25, 30,
34

emps, 11, 13
environmental_stochasticity, 10, 36
environmental_stochasticity

(stochasticity), 34
exps, 12

format_covariates (covariates), 4

get_cdf, 14, 27
get_pdf, 16

is.dynamics (dynamics), 10
is.interaction (multispecies), 21
is.metapopulation (metapopulation), 18
is.multispecies (multispecies), 21
is.simulation (simulate), 30

37

is.simulation_list (simulate), 30

masks, 24, 6, 9, 17, 25, 34
metapopulation, 6, 9, 18, 30
multispecies, 21, 23, 30, 31

pairwise_interaction, 23
pr_extinct, 23, 27

replicated_covariates, 10, 25
reproduction (masks), 17
ricker (density_functions), 7
risk_curve, 26

rmultiunit (rng), 28
rmultiunit_from_real (rng), 28
rng, 28

runit (rng), 28
runit_from_real (rng), 28

simulate, 3,5, 6, 11-16, 19, 21, 23-27, 29,
30, 34

stochasticity, 33

survival (masks), 17

transition (masks), 17

unit_to_real (rng), 28
update.dynamics (dynamics), 10
update_binomial_leslie (updaters), 35
update_crossprod (updaters), 35
update_multinomial (updaters), 35
updaters, 35

	add_remove
	covariates
	density_dependence
	density_functions
	dispersal
	dynamics
	emps
	exps
	get_cdf
	get_pdf
	masks
	metapopulation
	multispecies
	pairwise_interaction
	pr_extinct
	replicated_covariates
	risk_curve
	rng
	simulate
	stochasticity
	updaters
	Index

