This document serves as an overview for measuring the performance of
RcppAlgos
against other tools for generating combinations,
permutations, and partitions. This stackoverflow post: How to generate
permutations or combinations of object in R? has some benchmarks.
You will note that the examples in that post are relatively small. The
benchmarks below will focus on larger examples where performance really
matters and for this reason we only consider the packages arrangements,
partitions,
and RcppAlgos.
For the benchmarks below, we used a
2022 Macbook Air Apple M2 24 GB
machine.
library(RcppAlgos)
library(partitions)
library(arrangements)
#>
#> Attaching package: 'arrangements'
#> The following object is masked from 'package:partitions':
#>
#> compositions
library(microbenchmark)
options(digits = 4)
options(width = 90)
pertinent_output <- capture.output(sessionInfo())
cat(paste(pertinent_output[1:3], collapse = "\n"))
#> R version 4.4.2 (2024-10-31)
#> Platform: aarch64-apple-darwin20
#> Running under: macOS Sonoma 14.5
pkgs <- c("RcppAlgos", "arrangements", "partitions", "microbenchmark")
sapply(pkgs, packageVersion, simplify = FALSE)
#> $RcppAlgos
#> [1] '2.9.2'
#>
#> $arrangements
#> [1] '1.1.9'
#>
#> $partitions
#> [1] '1.10.7'
#>
#> $microbenchmark
#> [1] '1.4.10'
numThreads <- min(as.integer(RcppAlgos::stdThreadMax() / 2), 6)
numThreads
#> [1] 4
set.seed(13)
v1 <- sort(sample(100, 30))
m <- 21
t1 <- comboGeneral(v1, m, Parallel = T)
t2 <- combinations(v1, m)
stopifnot(identical(t1, t2))
dim(t1)
#> [1] 14307150 21
rm(t1, t2)
invisible(gc())
microbenchmark(cbRcppAlgosPar = comboGeneral(v1, m, nThreads = numThreads),
cbRcppAlgosSer = comboGeneral(v1, m),
cbArrangements = combinations(v1, m),
times = 15, unit = "relative")
#> Warning in microbenchmark(cbRcppAlgosPar = comboGeneral(v1, m, nThreads = numThreads), :
#> less accurate nanosecond times to avoid potential integer overflows
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.000 15
#> cbRcppAlgosSer 2.666 2.427 2.432 2.423 2.402 2.401 15
#> cbArrangements 2.517 2.290 2.292 2.282 2.263 2.252 15
v2 <- v1[1:10]
m <- 20
t1 <- comboGeneral(v2, m, repetition = TRUE, nThreads = numThreads)
t2 <- combinations(v2, m, replace = TRUE)
stopifnot(identical(t1, t2))
dim(t1)
#> [1] 10015005 20
rm(t1, t2)
invisible(gc())
microbenchmark(cbRcppAlgosPar = comboGeneral(v2, m, TRUE, nThreads = numThreads),
cbRcppAlgosSer = comboGeneral(v2, m, TRUE),
cbArrangements = combinations(v2, m, replace = TRUE),
times = 15, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.000 15
#> cbRcppAlgosSer 3.014 2.937 2.910 2.921 2.850 2.844 15
#> cbArrangements 2.771 2.782 2.766 2.762 2.689 2.944 15
myFreqs <- c(2, 4, 4, 5, 3, 2, 2, 2, 3, 4, 1, 4, 2, 5)
v3 <- as.integer(c(1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610))
t1 <- comboGeneral(v3, 20, freqs = myFreqs, nThreads = numThreads)
t2 <- combinations(freq = myFreqs, k = 20, x = v3)
stopifnot(identical(t1, t2))
dim(t1)
#> [1] 14594082 20
rm(t1, t2)
invisible(gc())
microbenchmark(cbRcppAlgosPar = comboGeneral(v3, 20, freqs = myFreqs, nThreads = numThreads),
cbRcppAlgosSer = comboGeneral(v3, 20, freqs = myFreqs),
cbArrangements = combinations(freq = myFreqs, k = 20, x = v3),
times = 10, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.000 10
#> cbRcppAlgosSer 3.105 3.069 3.058 3.040 2.996 3.170 10
#> cbArrangements 5.664 5.726 5.662 5.672 5.598 5.604 10
v4 <- as.integer(c(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59))
t1 <- permuteGeneral(v4, 6, nThreads = numThreads)
t2 <- permutations(v4, 6)
stopifnot(identical(t1, t2))
dim(t1)
#> [1] 8910720 6
rm(t1, t2)
invisible(gc())
microbenchmark(cbRcppAlgosPar = permuteGeneral(v4, 6, nThreads = numThreads),
cbRcppAlgosSer = permuteGeneral(v4, 6),
cbArrangements = permutations(v4, 6),
times = 15, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.000 15
#> cbRcppAlgosSer 1.167 1.174 1.090 1.160 1.132 1.056 15
#> cbArrangements 2.042 2.052 1.953 2.025 2.167 1.656 15
## Indexing permutation example with the partitions package
t1 <- permuteGeneral(11, nThreads = 4)
t2 <- permutations(11)
t3 <- perms(11)
dim(t1)
#> [1] 39916800 11
stopifnot(identical(t1, t2), identical(t1, t(as.matrix(t3))))
rm(t1, t2, t3)
invisible(gc())
microbenchmark(cbRcppAlgosPar = permuteGeneral(11, nThreads = 4),
cbRcppAlgosSer = permuteGeneral(11),
cbArrangements = permutations(11),
cbPartitions = perms(11),
times = 5, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.000 5
#> cbRcppAlgosSer 2.540 2.477 2.434 2.841 2.825 1.867 5
#> cbArrangements 3.915 4.136 3.692 4.158 4.246 2.684 5
#> cbPartitions 10.436 10.282 9.375 10.392 10.990 6.637 5
v5 <- v3[1:5]
t1 <- permuteGeneral(v5, 10, repetition = TRUE, nThreads = numThreads)
t2 <- permutations(v5, 10, replace = TRUE)
stopifnot(identical(t1, t2))
dim(t1)
#> [1] 9765625 10
rm(t1, t2)
invisible(gc())
microbenchmark(cbRcppAlgosPar = permuteGeneral(v5, 10, TRUE, nThreads = numThreads),
cbRcppAlgosSer = permuteGeneral(v5, 10, TRUE),
cbArrangements = permutations(x = v5, k = 10, replace = TRUE),
times = 10, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.000 10
#> cbRcppAlgosSer 3.002 2.803 2.334 2.778 2.780 0.937 10
#> cbArrangements 3.289 3.055 2.739 3.077 3.077 1.668 10
v6 <- sort(runif(12))
t1 <- permuteGeneral(v6, 7, freqs = rep(1:3, 4), nThreads = numThreads)
t2 <- permutations(freq = rep(1:3, 4), k = 7, x = v6)
stopifnot(identical(t1, t2))
dim(t1)
#> [1] 19520760 7
rm(t1, t2)
invisible(gc())
microbenchmark(cbRcppAlgosPar = permuteGeneral(v6, 7, freqs = rep(1:3, 4), nThreads = numThreads),
cbRcppAlgosSer = permuteGeneral(v6, 7, freqs = rep(1:3, 4)),
cbArrangements = permutations(freq = rep(1:3, 4), k = 7, x = v6),
times = 10, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.000 10
#> cbRcppAlgosSer 3.531 3.460 3.217 3.437 2.758 2.815 10
#> cbArrangements 3.901 3.824 3.591 3.816 3.128 3.084 10
t1 <- comboGeneral(0:140, freqs=c(140, rep(1, 140)),
constraintFun = "sum", comparisonFun = "==",
limitConstraints = 140)
t2 <- partitions(140, distinct = TRUE)
t3 <- diffparts(140)
# Each package has different output formats... we only examine dimensions
# and that each result is a partition of 140
stopifnot(identical(dim(t1), dim(t2)), identical(dim(t1), dim(t(t3))),
all(rowSums(t1) == 140), all(rowSums(t2) == 140),
all(colSums(t3) == 140))
dim(t1)
#> [1] 9617150 16
rm(t1, t2, t3)
invisible(gc())
microbenchmark(cbRcppAlgosPar = partitionsGeneral(0:140, freqs=c(140, rep(1, 140)), nThreads = numThreads),
cbRcppAlgosSer = partitionsGeneral(0:140, freqs=c(140, rep(1, 140))),
cbArrangements = partitions(140, distinct = TRUE),
cbPartitions = diffparts(140),
times = 10, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.000 10
#> cbRcppAlgosSer 3.172 3.178 2.887 3.098 2.696 2.539 10
#> cbArrangements 2.510 2.528 2.316 2.488 2.205 2.173 10
#> cbPartitions 16.918 17.160 15.042 17.001 13.310 12.298 10
t1 <- comboGeneral(160, 10,
constraintFun = "sum", comparisonFun = "==",
limitConstraints = 160)
t2 <- partitions(160, 10, distinct = TRUE)
stopifnot(identical(t1, t2))
dim(t1)
#> [1] 8942920 10
rm(t1, t2)
invisible(gc())
microbenchmark(cbRcppAlgosPar = partitionsGeneral(160, 10, nThreads = numThreads),
cbRcppAlgosSer = partitionsGeneral(160, 10),
cbArrangements = partitions(160, 10, distinct = TRUE),
times = 10, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.000 10
#> cbRcppAlgosSer 3.428 3.401 3.013 3.220 3.200 2.316 10
#> cbArrangements 4.657 4.587 3.951 4.307 4.274 2.936 10
t1 <- comboGeneral(0:65, repetition = TRUE, constraintFun = "sum",
comparisonFun = "==", limitConstraints = 65)
t2 <- partitions(65)
t3 <- parts(65)
# Each package has different output formats... we only examine dimensions
# and that each result is a partition of 65
stopifnot(identical(dim(t1), dim(t2)), identical(dim(t1), dim(t(t3))),
all(rowSums(t1) == 65), all(rowSums(t2) == 65),
all(colSums(t3) == 65))
dim(t1)
#> [1] 2012558 65
rm(t1, t2, t3)
invisible(gc())
microbenchmark(cbRcppAlgosPar = partitionsGeneral(0:65, repetition = TRUE,
nThreads = numThreads),
cbRcppAlgosSer = partitionsGeneral(0:65, repetition = TRUE),
cbArrangements = partitions(65),
cbPartitions = parts(65),
times = 20, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.000 20
#> cbRcppAlgosSer 2.849 2.767 2.311 2.461 2.313 1.751 20
#> cbArrangements 2.122 2.047 1.712 1.834 1.794 1.130 20
#> cbPartitions 8.855 8.639 6.886 7.736 6.792 4.217 20
t1 <- comboGeneral(100, 15, TRUE, constraintFun = "sum",
comparisonFun = "==", limitConstraints = 100)
t2 <- partitions(100, 15)
stopifnot(identical(t1, t2))
dim(t1)
#> [1] 9921212 15
rm(t1, t2)
# This takes a really long time... not because of restrictedparts,
# but because apply is not that fast. This transformation is
# needed for proper comparisons. As a result, we will compare
# a smaller example
# t3 <- t(apply(as.matrix(restrictedparts(100, 15, include.zero = F)), 2, sort))
t3 <- t(apply(as.matrix(restrictedparts(50, 15, include.zero = F)), 2, sort))
stopifnot(identical(partitions(50, 15), t3))
rm(t3)
invisible(gc())
microbenchmark(cbRcppAlgosPar = partitionsGeneral(100, 15, TRUE,
nThreads = numThreads),
cbRcppAlgosSer = partitionsGeneral(100, 15, TRUE),
cbArrangements = partitions(100, 15),
cbPartitions = restrictedparts(100, 15,
include.zero = FALSE),
times = 10, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.00 1.000 10
#> cbRcppAlgosSer 3.402 3.281 3.055 3.150 2.85 2.827 10
#> cbArrangements 4.194 4.045 3.884 4.087 3.51 3.985 10
#> cbPartitions 14.250 14.076 12.877 13.534 11.57 11.824 10
Currenlty, RcppAlgos
is the only package capable of
efficiently generating partitions of multisets. Therefore, we will only
time RcppAlgos
and use this as a reference for future
improvements.
t1 <- comboGeneral(120, 10, freqs=rep(1:8, 15),
constraintFun = "sum", comparisonFun = "==",
limitConstraints = 120)
dim(t1)
#> [1] 7340225 10
stopifnot(all(rowSums(t1) == 120))
microbenchmark(cbRcppAlgos = partitionsGeneral(120, 10, freqs=rep(1:8, 15)),
times = 10)
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> cbRcppAlgos 246.8 250.6 255.3 252.6 256.4 269.3 10
t1 <- compositionsGeneral(0:15, repetition = TRUE)
t2 <- arrangements::compositions(15)
t3 <- partitions::compositions(15)
# Each package has different output formats... we only examine dimensions
# and that each result is a partition of 15
stopifnot(identical(dim(t1), dim(t2)), identical(dim(t1), dim(t(t3))),
all(rowSums(t1) == 15), all(rowSums(t2) == 15),
all(colSums(t3) == 15))
dim(t1)
#> [1] 16384 15
rm(t1, t2, t3)
invisible(gc())
microbenchmark(cbRcppAlgosSer = compositionsGeneral(0:15, repetition = TRUE),
cbArrangements = arrangements::compositions(15),
cbPartitions = partitions::compositions(15),
times = 20, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgosSer 1.000 1.000 1.00 1.000 1.000 1.000 20
#> cbArrangements 1.182 1.205 1.18 1.194 1.179 1.054 20
#> cbPartitions 129.267 145.992 186.50 192.884 219.196 230.413 20
For the next two examples, we will exclude the
partitions
package for efficiency reasons.
t1 <- compositionsGeneral(0:23, repetition = TRUE)
t2 <- arrangements::compositions(23)
# Each package has different output formats... we only examine dimensions
# and that each result is a partition of 23
stopifnot(identical(dim(t1), dim(t2)), all(rowSums(t1) == 23),
all(rowSums(t2) == 23))
dim(t1)
#> [1] 4194304 23
rm(t1, t2)
invisible(gc())
microbenchmark(cbRcppAlgosPar = compositionsGeneral(0:23, repetition = TRUE,
nThreads = numThreads),
cbRcppAlgosSer = compositionsGeneral(0:23, repetition = TRUE),
cbArrangements = arrangements::compositions(23),
times = 20, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.000 20
#> cbRcppAlgosSer 3.410 3.329 3.331 3.327 3.324 3.397 20
#> cbArrangements 3.797 3.699 3.691 3.698 3.689 3.611 20
t1 <- compositionsGeneral(30, 10, repetition = TRUE)
t2 <- arrangements::compositions(30, 10)
stopifnot(identical(t1, t2), all(rowSums(t1) == 30))
dim(t1)
#> [1] 10015005 10
rm(t1, t2)
invisible(gc())
microbenchmark(cbRcppAlgosPar = compositionsGeneral(30, 10, repetition = TRUE,
nThreads = numThreads),
cbRcppAlgosSer = compositionsGeneral(30, 10, repetition = TRUE),
cbArrangements = arrangements::compositions(30, 10),
times = 20, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.000 20
#> cbRcppAlgosSer 2.988 3.077 2.952 3.020 3.082 1.924 20
#> cbArrangements 3.199 3.170 3.036 3.113 3.074 2.213 20
We will show one example from each category to demonstrate the
efficiency of the iterators in RcppAlgos
. The results are
similar for the rest of the cases not shown.
pkg_arrangements <- function(n, total) {
a <- icombinations(n, as.integer(n / 2))
for (i in 1:total) a$getnext()
}
pkg_RcppAlgos <- function(n, total) {
a <- comboIter(n, as.integer(n / 2))
for (i in 1:total) a@nextIter()
}
total <- comboCount(18, 9)
total
#> [1] 48620
microbenchmark(cbRcppAlgos = pkg_RcppAlgos(18, total),
cbArrangements = pkg_arrangements(18, total),
times = 15, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgos 1.00 1.00 1.00 1.00 1.0 1.00 15
#> cbArrangements 19.31 19.12 18.91 18.81 18.6 18.81 15
pkg_arrangements <- function(n, total) {
a <- ipermutations(n)
for (i in 1:total) a$getnext()
}
pkg_RcppAlgos <- function(n, total) {
a <- permuteIter(n)
for (i in 1:total) a@nextIter()
}
total <- permuteCount(8)
total
#> [1] 40320
microbenchmark(cbRcppAlgos = pkg_RcppAlgos(8, total),
cbArrangements = pkg_arrangements(8, total),
times = 15, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgos 1.00 1.00 1.00 1.00 1.00 1.00 15
#> cbArrangements 19.61 19.41 18.93 19.14 18.66 17.41 15
pkg_partitions <- function(n, total) {
a <- firstpart(n)
for (i in 1:(total - 1)) a <- nextpart(a)
}
pkg_arrangements <- function(n, total) {
a <- ipartitions(n)
for (i in 1:total) a$getnext()
}
pkg_RcppAlgos <- function(n, total) {
a <- partitionsIter(0:n, repetition = TRUE)
for (i in 1:total) a@nextIter()
}
total <- partitionsCount(0:40, repetition = TRUE)
total
#> [1] 37338
microbenchmark(cbRcppAlgos = pkg_RcppAlgos(40, total),
cbArrangements = pkg_arrangements(40, total),
cbPartitions = pkg_partitions(40, total),
times = 15, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgos 1.00 1.00 1.00 1.00 1.00 1.00 15
#> cbArrangements 15.40 15.11 14.18 14.50 13.21 13.74 15
#> cbPartitions 24.79 24.45 23.08 23.48 21.81 21.54 15
pkg_partitions <- function(n, total) {
a <- firstcomposition(n)
for (i in 1:(total - 1)) a <- nextcomposition(a, FALSE)
}
pkg_arrangements <- function(n, total) {
a <- icompositions(n)
for (i in 1:total) a$getnext()
}
pkg_RcppAlgos <- function(n, total) {
a <- compositionsIter(0:n, repetition = TRUE)
for (i in 1:total) a@nextIter()
}
total <- compositionsCount(0:15, repetition = TRUE)
total
#> [1] 16384
microbenchmark(cbRcppAlgos = pkg_RcppAlgos(15, total),
cbArrangements = pkg_arrangements(15, total),
cbPartitions = pkg_partitions(15, total),
times = 15, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval
#> cbRcppAlgos 1.00 1.00 1.00 1.00 1.00 1.00 15
#> cbArrangements 14.23 14.15 13.45 14.01 12.98 12.10 15
#> cbPartitions 43.88 43.91 41.42 43.40 40.17 34.25 15