## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", message = FALSE, warning = FALSE, fig.width = 7 ) CDMConnector::requireEunomia() ## ----------------------------------------------------------------------------- library(MeasurementDiagnostics) library(dplyr) library(omopgenerics) library(ggplot2) cdm <- mockMeasurementDiagnostics() # Example codelist we'll use in the examples alkaline_phosphatase_codes <- list("alkaline_phosphatase" = c(3001467L, 45875977L)) ## ----------------------------------------------------------------------------- result <- summariseMeasurementUse( cdm = cdm, codes = alkaline_phosphatase_codes, bySex = TRUE, byYear = FALSE, byConcept = FALSE, histogram = list( days_between_measurements = list( "0-30" = c(0, 30), "31-90" = c(31, 90), "91-365" = c(91, 365), "366+" = c(366, Inf) ), measurements_per_subject = list( "0" = c(0, 0), "1" = c(1, 1), "2-3" = c(2, 3), "4+" = c(4, 1000) ), value_as_number = list( "low" = c(0, 5.999), "mid" = c(6, 10.999), "high" = c(11, Inf) ) ) ) ## ----------------------------------------------------------------------------- # 1. Measurement summary table (timings / counts) tableMeasurementSummary( result, header = c("codelist_name", "sex"), hide = c("cdm_name", "domain_id") ) # 2. Numeric-value summary table (values recorded as numbers) tableMeasurementValueAsNumber(result) # 3. Concept-value summary table (values recorded as concepts) tableMeasurementValueAsConcept(result) ## ----------------------------------------------------------------------------- result |> plotMeasurementSummary( x = "codelist_name", y = "days_between_measurements", plotType = "boxplot" ) ## ----------------------------------------------------------------------------- result |> plotMeasurementSummary( x = "sex", y = "measurements_per_subject", plotType = "boxplot", colour = "sex", facet = NULL ) + theme(legend.position = "none") ## ----------------------------------------------------------------------------- result |> plotMeasurementSummary( plotType = "densityplot", colour = "sex", facet = NULL ) ## ----------------------------------------------------------------------------- result |> plotMeasurementSummary( y = "measurements_per_subject", plotType = "densityplot", colour = "sex", facet = NULL ) ## ----------------------------------------------------------------------------- result |> plotMeasurementSummary( x = "variable_level", plotType = "barplot", colour = "variable_level", facet = "sex" ) ## ----------------------------------------------------------------------------- result |> plotMeasurementSummary( y = "measurements_per_subject", plotType = "barplot", colour = "sex", facet = "variable_level" ) ## ----------------------------------------------------------------------------- result |> plotMeasurementValueAsNumber( x = "sex", plotType = "boxplot", facet = "unit_concept_name", colour = "sex" ) ## ----------------------------------------------------------------------------- result |> plotMeasurementValueAsNumber( plotType = "densityplot", facet = "unit_concept_name", colour = "sex" ) ## ----------------------------------------------------------------------------- result |> plotMeasurementValueAsNumber( x = "unit_concept_name", plotType = "barplot", facet = c("sex"), colour = "variable_level" ) ## ----------------------------------------------------------------------------- result |> plotMeasurementValueAsConcept( x = "count", y = "variable_level", facet = "cdm_name", colour = "sex" ) + ylab("Value as Concept Name") ## ----------------------------------------------------------------------------- result |> plotMeasurementValueAsConcept( x = "variable_level", y = "percentage", facet = "cdm_name", colour = "sex" ) + xlab("Value as Concept Name") ## ----eval=FALSE--------------------------------------------------------------- # library(OmopViewer) # exportStaticApp(result = result, directory = tempdir())