--- title: "Model-Assisted Estimators" output: rmarkdown::html_vignette description: > Learn how to calculate population estimates and their sampling errors using model-assisted survey estimators from the `mase` R package (McConville, et al. 2018). vignette: > %\VignetteIndexEntry{Model-Assisted Estimators} %\VignetteEngine{knitr::rmarkdown} \usepackage[utf8]{inputenc} --- ```{r setup, include=FALSE} knitr::opts_chunk$set(warning = FALSE, message = FALSE) ``` ```{r, include=FALSE} # Sets up output folding hooks = knitr::knit_hooks$get() hook_foldable = function(type) { force(type) function(x, options) { res = hooks[[type]](x, options) if (isFALSE(options[[paste0("fold.", type)]])) return(res) paste0( "
", type, "\n\n", res, "\n\n
" ) } } knitr::knit_hooks$set( output = hook_foldable("output"), plot = hook_foldable("plot") ) ``` ```{r, echo=-1} data.table::setDTthreads(2) ``` ## Model-Assisted (MA) module overview `FIESTA`'s Model-Assisted (MA) module calculates population estimates and their sampling errors by taking advantage of available model-assisted survey estimators from the `mase` R package (McConville, et al. 2018). These estimators can use a variety of auxiliary data to build models and predict over a response variable of interest, while using a bias-correction term so that the bias of the model does not depend on model misspecification. Functions in `FIESTA` used for fitting model-assisted estimators include the `modMAarea` function for area estimates and `modMAtree` for tree estimates. The `modMApop` function is used to get population data needed for model-assisted estimation. Below is a description and table of contents for the sections related to these functions: FUNCTION | DESCRIPTION -------------- | --------------------------------------------------------------- [modMApop](#modMApop) | Creates population data for model-assisted estimation. [modMAarea](#modMAarea) | Produces area level estimates through model-assisted estimation. [modMAtree](#modMAtree) | Produces tree level estimates through model-assisted estimation. ## Objective of tutorial The main objective of this tutorial is to demonstrate how to use `FIESTA` for generating estimates using estimators from `mase`. The model-assisted estimators can be used with FIA's standard state-level population data (i.e, Evaluation) from the FIA database (FIADB) and also population data from a custom boundary. The following examples are for generating estimates and estimated variances using standard FIA Evaluation data from FIA's National database, with custom Estimation unit and Stratification information. The examples use data from three inventory years of field measurements in the state of Wyoming, from FIADB_1.7.2.00, last updated June 20, 2018, downloaded on June 25, 2018 and stored as internal data objects in `FIESTA`. ## Example data - Wyoming (WY), Inventory Years 2011-2012
View MA Example Data Data Frame | Description -----------| -------------------------------------------------------------------------------- WYplt | WY plot-level data WYcond | WY condition-level data WYtree | WY tree-level data External data | Description -------------------------| ------------------------------------------------------------------ WYbighorn_adminbnd.shp | Polygon shapefile of WY Bighorn National Forest Administrative boundary* WYbighorn_districtbnd.shp| Polygon shapefile of WY Bighorn National Forest District boundaries** WYbighorn_forest_nonforest_250m.tif| GeoTIFF raster of predicted forest/nonforest (1/0) for stratification*** WYbighorn_dem_250m.img | Erdas Imagine raster of elevation change, in meters**** *USDA Forest Service, Automated Lands Program (ALP). 2018. S_USA.AdministrativeForest (http://data.fs.usda.gov/geodata/edw). Description: An area encompassing all the National Forest System lands administered by an administrative unit. The area encompasses private lands, other governmental agency lands, and may contain National Forest System lands within the proclaimed boundaries of another administrative unit. All National Forest System lands fall within one and only one Administrative Forest Area. **USDA Forest Service, Automated Lands Program (ALP). 2018. S_USA.RangerDistrict (http://data.fs.usda.gov/geodata/edw). Description: A depiction of the boundary that encompasses a Ranger District. ***Based on MODIS-based classified map resampled from 250m to 500m resolution and reclassified from 3 to 2 classes: 1:forest; 2:nonforest. Projected in Albers Conical Equal Area, Datum NAD27 (Ruefenacht et al. 2008). Clipped to extent of WYbighorn_adminbnd.shp. ****USGS National Elevation Dataset (NED), resampled from 30m resolution to 250m. Projected in Albers Conical Equal Area, Datum NAD27 (U.S. Geological Survey 2017). Clipped to boundary of WYbighorn_adminbnd.shp.
### Set up First, you'll need to load the `FIESTA` library: ```{r, warning = F, message = F} library(FIESTA) ``` Next, you'll need to set up an "outfolder". This is just a file path to a folder where you'd like `FIESTA` to send your data output. For this vignette, we have set our outfolder file path as a temporary directory. ```{r} outfolder <- tempdir() ``` ### Get data for examples
View Getting Data Now that we've loaded `FIESTA` and setup our outfolder, we can retrieve the data needed to run the examples. First, we point to some external data and predictor layers stored in `FIESTA` and derive new predictor layers using the `terra` package. ```{r} # File names for external spatial data WYbhfn <- system.file("extdata", "sp_data/WYbighorn_adminbnd.shp", package = "FIESTA") WYbhdistfn <- system.file("extdata", "sp_data/WYbighorn_districtbnd.shp", package = "FIESTA") ## predictor variables fornffn <- system.file("extdata", "sp_data/WYbighorn_forest_nonforest_250m.tif", package = "FIESTA") demfn <- system.file("extdata", "sp_data/WYbighorn_dem_250m.img", package = "FIESTA") # Derive new predictor layers from dem library(terra) dem <- rast(demfn) slpfn <- paste0(outfolder, "/WYbh_slp.img") slp <- terra::terrain(dem, v = "slope", unit = "degrees", filename = slpfn, overwrite = TRUE, NAflag = -99999.0) aspfn <- paste0(outfolder, "/WYbh_asp.img") asp <- terra::terrain(dem, v = "aspect", unit = "degrees", filename = aspfn, overwrite = TRUE, NAflag = -99999.0) ``` Next, we can get our FIA plot data and set up our auxiliary data. We can get our FIA plot data with the `spMakeSpatialPoints` function from `FIESTA`. ```{r} WYspplt <- spMakeSpatialPoints(xyplt = WYplt, xy.uniqueid = "CN", xvar = "LON_PUBLIC", yvar = "LAT_PUBLIC", xy.crs = 4269) rastlst.cont <- c(demfn, slpfn, aspfn) rastlst.cont.name <- c("dem", "slp", "asp") rastlst.cat <- fornffn rastlst.cat.name <- "fornf" ``` Next, we must prepare auxiliary data for model-assisted estimation. We can do this with the `spGetAuxiliary` function from `FIESTA`. See the `sp` vignette for further information on this function. ```{r, results='hide'} modeldat <- spGetAuxiliary(xyplt = WYspplt, uniqueid = "CN", unit_layer = WYbhfn, unitvar = NULL, rastlst.cont = rastlst.cont, rastlst.cont.name = rastlst.cont.name, rastlst.cat = rastlst.cat, rastlst.cat.name = rastlst.cat.name, rastlst.cont.stat = "mean", asptransform = TRUE, rast.asp = aspfn, keepNA = FALSE, showext = FALSE, savedata = FALSE) ``` ```{r} str(modeldat, max.level = 1) ```
## Examples ### `modMApop` #### Example 1: Creating our population dataset with `modMApop`
View Example We can create our population data for model-assisted estimation. To do so, we use the `modMApop` function in `FIESTA`. We must assign our population tables with the `popTabs` argument (and unique identifiers for these tables with the `popTabIDs` argument if they are not the default). Because we used `spGetAuxiliary` to create our model data we can simply pass the object returned by that function into the `auxdat` argument in `modMApop`. This is a shortcut that allows you to avoid manually specifying all of the necessary tables as function arguments in `modMApop`. ```{r} MApopdat <- modMApop(popTabs = popTables(tree = WYtree, cond = WYcond, plt = WYplt), auxdat = modeldat) ``` Note that the `modMApop` function returns a list with lots of information and data for us to use. For a quick look at what this list includes we can use the `str` function: ```{r} str(MApopdat, max.level = 1) ``` Now that we've created our population data set, we can move on to estimation.
### `modMAarea` #### Example 2: Area of forest land, Wyoming, 2011-2013
View Example In this example, we look at estimating the area of forest land in Wyoming from 2011 to 2013 with the generalized regression estimator (`MAmethod = "greg"`). We can specify a set of auxiliary variables that we want to use in the model using the `prednames` argument. ```{r} area1 <- modMAarea(MApopdat = MApopdat, # pop - population calculations for WY MAmethod = "greg", # est - model-assisted method prednames = c("dem", "fornf"), # est - predictors to use in model landarea = "FOREST") # est - forest land filter ``` We can look at the structure of this output with `str` and the estimates below. Note that again `FIESTA` outputs a list. ```{r} str(area1, max.level = 2) area1$est ```
#### Example 3: Area of forest land, Wyoming, 2011-2013, using the Elastic Net for variable selection
View Example Here, we fit the same model as the above example, but we don't specify predictors and instead include `modelselect = TRUE` which internally uses an elastic net model for variable selection. ```{r} area2 <- modMAarea(MApopdat = MApopdat, # pop - population calculations for WY MAmethod = "greg", modelselect = TRUE, # est - model-assisted method landarea = "FOREST") # est - forest land filter ``` We can again see that the structure of the list is very similar to that in the above example: ```{r} str(area2, max.level = 2) ``` However now the `raw` list has an item called `predselectlst` which stores information on the predictors that were selected. ```{r} area2$raw$predselectlst$totest ``` And finally we can view the actual estimate: ```{r} area2$est ```
#### Example 4: Area by forest type on forest land, Wyoming, 2011-2013
View Example In this example, we look at adding rows to the output and include `returntitle = TRUE` to return title information. Note that when we do not explicitly supply `prednames` and do not set `modelselect` to TRUE, FIESTA defaults to using all of the available predictors. ```{r} area3 <- modMAarea(MApopdat = MApopdat, # pop - population calculations for WY, post-stratification MAmethod = "greg", # est - model-assisted method landarea = "FOREST", # est - forest land filter rowvar = "FORTYPCD", # est - row domain returntitle = TRUE) # out - return title information ``` Again, we can look at the contents of the output list. The output now includes titlelst, a list of associated titles. ```{r} str(area3, max.level = 1) ``` And the estimates: ```{r} area3$est ``` Along with raw data and titles: ```{r} raw3 <- area3$raw # extract raw data list object from output names(raw3) head(raw3$unit_totest) # estimates by estimation unit (i.e., ESTN_UNIT) head(raw3$unit_rowest) # estimates by row, by estimation unit (i.e., ESTN_UNIT) # Titles (list object) for estimate titlelst3 <- area3$titlelst names(titlelst3) titlelst3 ```
#### Example 5: Area by forest type and stand-size class on forest land, Wyoming, 2011-2013
View Example In this example, we look at adding rows and columns to output, including FIA names. We also output estimates and percent standard error in the same cell with the `allin1` argument in `table_options` and save data to an outfolder with the `outfolder` argument in `savedata_options`. ```{r} area4 <- modMAarea(MApopdat = MApopdat, # pop - population calculations for WY, post-stratification MAmethod = "greg", # est - model-assisted method landarea = "FOREST", # est - forest land filter rowvar = "FORTYPCD", # est - row domain colvar = "STDSZCD", # est - column domain savedata = TRUE, # out - save data to outfolder returntitle = TRUE, # out - return title information table_opts = table_options( row.FIAname = TRUE, # table - row domain names col.FIAname = TRUE, # table - column domain names allin1 = TRUE # table - return output with est(pse) ), savedata_opts = savedata_options( outfolder = outfolder, # save - outfolder for saving data outfn.pre = "WY" # save - prefix for output files )) ``` We can again look at the output list, estimates, raw data, and titles: ```{r} # Look at output list names(area4) # Estimate and percent sampling error of estimate head(area4$est) # Raw data (list object) for estimate raw4 <- area4$raw # extract raw data list object from output names(raw4) head(raw4$unit_totest) # estimates by estimation unit (i.e., ESTN_UNIT) head(raw4$unit_rowest) # estimates by row, by estimation unit (i.e., ESTN_UNIT) head(raw4$unit_colest) # estimates by column, by estimation unit (i.e., ESTN_UNIT) head(raw4$unit_grpest) # estimates by row and column, by estimation unit (i.e., ESTN_UNIT) # Titles (list object) for estimate titlelst4 <- area4$titlelst names(titlelst4) titlelst4 # List output files in outfolder list.files(outfolder, pattern = "WY_area") list.files(paste0(outfolder, "/rawdata"), pattern = "WY_area") ```
### `modMAtree` We now transition to from generating estimates of area to estimates of tree attributes using the `modMAtree` function. This requires that we set our estimate variable and filter. We set `estvar` to `"VOLCFNET"` for net cubic foot volume, and filter with `estvar.filter` set to `"STATUSCD == 1"` so we only consider live trees in our estimation. ```{r} estvar <- "VOLCFNET" live_trees <- "STATUSCD == 1" ``` #### Example 6: Net cubic-foot volume of live trees, Wyoming, 2011-2013
View Example ```{r} tree1 <- modMAtree(MApopdat = MApopdat, # pop - population calculations MAmethod = "greg", # est - model-assisted method landarea = "FOREST", # est - forest land filter prednames = c("dem", "fornf"), # est - predictors to use in model estvar = estvar, # est - net cubic-foot volume estvar.filter = live_trees, # est - live trees only returntitle = TRUE) # out - return title information tree1$est ```
#### Example 7: Net cubic-foot volume of live trees, Wyoming, 2011-2013, using the Elastic Net for variable selection
View Example Here, we fit the same model as the above example, but rather than using `"greg"` are our model-assisted method, we can use `"gregEN"` where the EN stands for "elastic net". The elastic net performs variable selection for us, grabbing predictors it finds to be most useful in the model. ```{r} tree2 <- modMAtree(MApopdat = MApopdat, # pop - population calculations MAmethod = "greg", # est - model-assisted method modelselect = TRUE, # est - perform variable selection internally landarea = "FOREST", # est - forest land filter estvar = estvar, # est - net cubic-foot volume estvar.filter = live_trees, # est - live trees only returntitle = TRUE) # out - return title information ``` We can again see that the structure of the list is very similar to that in the above example: ```{r} str(tree2, max.level = 2) ``` However now the `raw` list has an item call `predselectlst`. We can look at this item now: ```{r} tree2$raw$predselectlst ``` And finally, we can look at the estimate ```{r} tree2$est ```
#### Example 8: Net cubic-foot volume of live trees by forest type, Wyoming, 2011-2013
View Example This example adds rows to the output for net cubic-foot volume of live trees (at least 5 inches diameter) by forest type, Wyoming, 2011-2013. We also choose to return titles with `returntitle = TRUE`. ```{r} tree3 <- modMAtree(MApopdat = MApopdat, # pop - population calculations MAmethod = "greg", # est - model-assisted method prednames = c("dem", "fornf"), # est - predictors to use in model landarea = "FOREST", # est - forest land filter estvar = "VOLCFNET", # est - net cubic-foot volume estvar.filter = "STATUSCD == 1", # est - live trees only rowvar = "FORTYPCD", # est - row domain returntitle = TRUE) # out - return title information ``` Again, we investigate the output: ```{r} # Look at output list names(tree3) # Estimate and percent sampling error of estimate tree3$est ``` We can also create a simple barplot from the output: ```{r} datBarplot(raw3$unit_rowest, xvar = titlelst3$title.rowvar, yvar = "est") ``` And a fancier barplot: ```{r} datBarplot(raw3$unit_rowest, xvar = titlelst3$title.rowvar, yvar = "est", errbars = TRUE, sevar = "est.se", main = FIESTAutils::wraptitle(titlelst3$title.row, 75), ylabel = titlelst3$title.yvar, divideby = "million") ```
#### Example 9: Net cubic-foot volume of live trees by forest type and stand-size class, Wyoming, 2011-2013
View Example This examples adds rows and columns to the output, including FIA names, for net cubic-foot volume of live trees (at least 5 inches diameter) by forest type and stand-size class, Wyoming, 2011-2013. We also use the `*_options` functions to return output with estimates (est) and percent standard error (pse) in same cell - est(pse) with `allin1 = TRUE` and save data to an outfolder with `savedata = TRUE` and `outfolder = outfolder`. ```{r} tree4 <- modMAtree(MApopdat = MApopdat, # pop - population calculations MAmethod = "greg", # est - model-assisted method landarea = "FOREST", # est - forest land filter prednames = c("dem", "slp"), # est - predictors to use in model estvar = "VOLCFNET", # est - net cubic-foot volume estvar.filter = "STATUSCD == 1", # est - live trees only rowvar = "FORTYPCD", # est - row domain colvar = "STDSZCD", # est - column domain returntitle = TRUE, # out - return title information savedata = TRUE, # out - save data to outfolder table_opts = table_options( row.FIAname = TRUE, # est - row domain names col.FIAname = TRUE, # est - column domain names allin1 = TRUE # out - return output with est(pse) ), savedata_opts = savedata_options( outfolder = outfolder, # out - outfolder for saving data outfn.pre = "WY" # out - prefix for output files )) ``` Again, we investigate the output of the returned list: ```{r} # Look at output list from modGBarea() names(tree4) # Estimate and percent sampling error of estimate tree4$est ## Raw data (list object) for estimate raw4 <- tree4$raw # extract raw data list object from output names(raw4) head(raw4$unit_totest) # estimates by estimation unit (i.e., ESTN_UNIT) head(raw4$unit_rowest) # estimates by row, by estimation unit (i.e., ESTN_UNIT) head(raw4$unit_colest) # estimates by column, by estimation unit (i.e., ESTN_UNIT) head(raw4$unit_grpest) # estimates by row and column, by estimation unit (i.e., ESTN_UNIT) # Titles (list object) for estimate titlelst4 <- tree4$titlelst names(titlelst4) titlelst4 # List output files in outfolder list.files(outfolder, pattern = "WY_tree") list.files(paste0(outfolder, "/rawdata"), pattern = "WY_tree") ```
#### Example 10: Number of live trees (plus seedlings) by species, Wyoming, 2011-2013
View Example We can also add seedlings. Note: seedling data are only available for number of trees (estvar = TPA_UNADJ). Note: must include seedling data in population data calculations. ```{r} MApopdat_seed <- modMApop(popTabs = popTables(tree = WYtree, cond = WYcond, seed = WYseed), pltassgn = WYpltassgn, auxdat = modeldat) ``` ```{r} tree5 <- modMAtree(MApopdat = MApopdat_seed, # pop - population calculations MAmethod = "greg", # est - model-assisted method prednames = c("dem", "slp", "fornf"), estseed = "add", # est - add seedling data landarea = "FOREST", # est - forest land filter estvar = "TPA_UNADJ", # est - number of trees per acre estvar.filter = "STATUSCD == 1", # est - live trees only rowvar = "SPCD", # est - row domain returntitle = TRUE, # out - return title information table_opts = table_options( row.FIAname = TRUE, # est - row domain names allin1 = FALSE # out - return output with est and pse )) ``` And again we can look at our outputs and compare estimates: ```{r} # Look at output list names(tree5) # Estimate and percent sampling error of estimate tree5$est ```