---
title: "Validation"
author: "Jakob Schöpe"
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Validation}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
## Test Suite
The following fictitious example of a prospective cohort study will be used to validate the correct estimation of the BSW package in R.
||Exposed|Non-Exposed|
|:--:|:--:|:--:|
|Cases|200|50|
|Non-Cases|50|200|
```{r, echo=TRUE, results='markup', comment=""}
library(testthat)
library(BSW)
df <- data.frame(y = rep(c(0, 1), each = 250),
x = rep(c(0, 1, 0, 1), times = c(200, 50, 50, 200))
)
RR <- (200 * 250) / (50 * 250)
SE <- sqrt((1/200 + 1/50) - (1/250 + 1/250))
fit <- bsw(y ~ x, df)
out <- summary(fit)
```
The relative risk for exposed individuals compared to non-exposed individuals can be calculated from
$RR = \displaystyle\frac{200 * 250}{50*250} = 4$.
```{r, echo=TRUE, results='markup', comment=""}
test_that(desc = "Estimated relative risk is equal to 4",
code = {
expect_equal(object = unname(exp(coef(fit)[2])),
expected = RR)
}
)
```
The standard error of the natural logarithm of the relative risk can be calculated from
$SE(ln(RR)) = \displaystyle\sqrt{\Big(\frac{1}{200} + \frac{1}{50}\Big) - \Big(\frac{1}{250}+\frac{1}{250}\Big)} = 0.130384$.
```{r, echo=TRUE, results='markup', comment=""}
test_that(desc = "Estimated standard error is equal to 0.1303840",
code = {
expect_equal(object = unname(out$std.err[2]),
expected = SE)
}
)
```
The z-value can be calculated from
$z = \displaystyle\frac{1.386294}{0.130384} = 10.63239$.
```{r, echo=TRUE, results='markup', comment=""}
test_that(desc = "Estimated z-value is equal to 10.63239",
code = {
expect_equal(object = unname(out$z.value[2]),
expected = log(RR) / SE)
}
)
```
The 95% confidence interval limits can be calculated from
$exp(1.386294 \pm 1.959964 * 0.1303840) = [3.097968; 5.164676]$.
```{r, echo=TRUE, results='markup', comment=""}
test_that(desc = "Estimated 95% confidence interval limits are equal to 3.097968 and 5.164676",
code = {
expect_equal(object = unname(exp(confint(fit)[2,])),
expected = exp(log(RR) + SE * qnorm(c(0.025, 0.975))))
}
)
```