Package 'fMRItools’

May 30, 2024
Type Package
Title Routines for Common fMRI Processing Tasks
Version 0.4.7
Maintainer Amanda Mejia mandy.mejia@gmail.com
Description Supports fMRI (functional magnetic resonance imaging) analysis tasks including reading in 'CIFTI', 'GIFTI' and 'NIFTI' data, temporal filtering, nuisance regression, and aCompCor (anatomical Components Correction) (Muschelli et al. (2014) doi:10.1016/j.neuroimage.2014.03.028).

Depends R (>= 3.5.0)
License GPL-3
Encoding UTF-8
Imports stats, matrixStats
Suggests ciftiTools, corpcor, expm, gifti, knitr, rmarkdown, robustbase, pesel, RNifti, oro.nifti, gsignal, testthat (>= 3.0.0), covr, fda, quantreg, graphics, grDevices

RoxygenNote 7.3.1
URL https://github.com/mandymejia/fMRItools
BugReports https://github.com/mandymejia/fMRItools/issues
NeedsCompilation no
Author Amanda Mejia [aut, cre],
Damon Pham [aut] (https://orcid.org/0000-0001-7563-4727), Mark Fiecas [ctb]

Repository CRAN

Date/Publication 2024-05-30 05:00:02 UTC

R topics documented:

$$
\begin{aligned}
& \text { all_binary . } \\
& \text { all_integers . } \\
& 3
\end{aligned}
$$

as.matrix_ifti 4
bandstop_filter 5
carpetplot 5
carpetplot_stack 7
colCenter 8
color_palette 8
CompCor 9
CompCor_HCP 11
coordlist_to_vol 13
crop_vol 14
dct bases 14
dct_convert 15
despike_3D 16
detrend 16
dilate_mask_vol 17
dim_reduce 18
dual_reg 18
dual_reg_parc 20
erode_mask_vol 21
fMRItools 22
fsl_bptf 22
hat_matrix 23
infer_format_ifti 24
infer_format_ifti_vec 24
is_1 25
is_constant 25
is_integer 26
is_posNum 26
mat2UT 27
match_exactly 27
match_input 28
mean_squares 29
Mode 29
norm_BOLD 30
nuisance_regression 31
pad_vol 31
PCA 32
pct_sig 33
plot_FC 33
read_nifti 34
scale_design_mat 35
scale_med 36
scale_timeseries 36
sign_flip 37
skew_pos 38
sum_neighbors_vol 38
unmask_mat 39
unvec_mat 39
unvec_vol 40
UT2mat 41
validate_design_mat 41
var_decomp 42
vox_locations 42
Index 43
all_binary All binary?

Description

Check if a data vector or matrix is all zeroes and ones. Option to also accept logical values.

Usage

all_binary(x, logical_ok = TRUE)

Arguments

x	The data vector or matrix
logical_ok	Is a logical vector or matrix also acceptable? Default: TRUE.

Value

Logical. Is x binary data?
all_integers All integers?

Description

Check if a data vector or matrix is all integers.

Usage

all_integers(x)

Arguments

x The data vector or matrix

Value

Logical. Is \times all integers?

```
as.matrix_ifti
```


Description

Convert CIFTI, NIFTI, or GIFTI input to a $T \times V$ matrix by reading it in with the corresponding package and then separating the data from the metadata. Also works with the intermediate R objects created from reading these files: "xifti" objects from ciftiTools, "gifti" objects from gifti, "nifti" or "niftiExtension" objects from oro. nifti, and "niftiImage" objects from RNifti.
For CIFTI files, only intents supported by ciftiTools are supported: dscalar, dtseries, and dlabel. For NIFTI file or NIFTI-intermediate R objects, the data will be vectorized/masked.

Usage

as.matrix_ifti(
x ,
meta $=$ FALSE,
sortSub = FALSE,
TbyV = TRUE,
verbose = FALSE,
)

Arguments

x	The object to coerce to a matrix
meta	Return metadata too? Default: FALSE.
sortSub	For CIFTI format input only. Sort subcortex by labels? Default: FALSE (sort by array index).
TbyV	Return the data matrix in $T \times V$ form? Default: TRUE. If FALSE, return in $V \times T$ form instead. Using this argument may be faster than transposing after the function call.
verbose	Print updates? Default: FALSE.
\ldots	If x is a file path, additional arguments to the function used to read in x can be specified here. For example, if x is a path to a CIFTI file, . . might specify which idx and brainstructures to read in.

Value

If ! meta, x as a matrix. If meta, a list of length two: the first entry is x as a matrix, and the second entry is the metadata of x.

```
bandstop_filter Bandstop filter
```


Description

Filter out frequencies within a given range using a Chebyshev Type II stopband. Essentially a convenience wrapper for the cheby 2 function.

Usage

bandstop_filter (X, TR, f1, f2, Rs = 20)

Arguments

$X \quad$ A numeric matrix, with each column being a timeseries to apply the stopband filter. For fMRI data, X should be T timepoints by V brain locations.
TR The time step between adjacent rows of x, in seconds
f1, f2 The frequency limits for the filter, in Hz. f1 < f2
Rs The amount of attenuation of the stopband ripple, in dB

Value

The filtered data

Examples

```
if (requireNamespace("gsignal", quietly=TRUE)) {
    n_voxels = 1e4
    n_timepoints = 100
    X = cbind(arima.sim(n=100, list(ar=.6)), arima.sim(n=100, list(ar=.6)))
    Y = bandstop_filter(X, .72, .31, .43)
}
```

carpetplot
Carpetplot

Description

Plot a matrix with graphics: :image. For fMRI data, this is the "carpetplot" or grayplot coined by (Power, 2017). The graphics and grDevices packages are required.

```
Usage
    carpetplot(
        x,
        qcut = 0.1,
        fname = NULL,
        center = TRUE,
        scale = FALSE,
        colors = "gray255",
        sortSub = TRUE,
    )
```


Arguments

x
qcut Sets blackpoint at the qcut quantile, and the whitepoint at the 1-qcut quantile. Default: .1. This is equivalent to setting the color range between the 10% and 90% quantiles. The quantiles are computed across the entire data matrix after any centering or scaling.
Must be between 0 and .49. If 0 or NULL (default), do not clamp the data values.
fname A.pdf (highly recommended) or .png file path to write the carpetplot to. If NULL (default), return the plot directly instead of writing a file.
center, scale Center and scale the data? If x is fMRI data which has not otherwise been centered or scaled, it is recommended to center but not scale it (default).
colors "gray255" (default) will use a grayscale color ramp from black to white. Otherwise, this should be a character vector of color names to use.
Colors will be assigned from the lowest to the highest data value, after any clamping of the data values by qcut.
sortSub If x is a "xifti" object with subcortical data, should the voxels be sorted by structure alphabetically? Default: TRUE.
... Additional arguments to pdf or png, such as width and height.

Value
The image or NULL, invisibly if a file was written.

References

- Power, J. D. A simple but useful way to assess fMRI scan qualities. NeuroImage 154, 150-158 (2017).

```
carpetplot_stack Stacked carpetplot
```


Description

Stacks carpetplots on top of one another by rbinding the matrices.

Usage

```
    carpetplot_stack(
        x_list,
        center = TRUE,
        scale = FALSE,
        qcut = 0.1,
        match_scale = TRUE,
        nsep = 0,
    )
```


Arguments

x_list	List of data matrices
center, scale	Center and scale the data? If x is fMRI data which has not otherwise been centered or scaled, it is recommended to center but not scale it (default).
qcut	Sets blackpoint at the qcut quantile, and the whitepoint at the $1-$ qcut quantile. Default: . 1. This is equivalent to setting the color range between the 10% and 90% quantiles. The quantiles are computed across the entire data matrix after any centering or scaling. Must be between 0 and .49. If 0 or NULL (default), do not clamp the data values.
match_scale	Match the scales of the carpetplots? Default: TRUE.
nsep	Equivalent number of data locations for size of gap between carpetplots. De- fault: zero (no gap).
\ldots	Additional arguments to carpetplot

Value

NULL, invisibly

Description

Efficiently center columns of a matrix. (Faster than base: : scale.)

Usage

colCenter (X)

Arguments

X
The data matrix. Its columns will be centered.

Value

The centered data

```
color_palette
Color palette
```


Description

Color palettes for fMRI data analysis tasks

Usage

color_palette(pal = "Beach")

Arguments

pal "Beach" (default; blue to white to red), "Sand" (white to red), or "Water" (white to blue).

Value

A data.frame with two columns: "col" has the hex code of color, and "val" has the placement of colors between zero and one.

Description

The aCompCor algorithm for denoising fMRI data using noise ROIs data

```
Usage
    CompCor(
        X,
        ROI_data = "infer",
        ROI_noise = NULL,
        noise_nPC = 5,
        noise_erosion = NULL,
        center = TRUE,
        scale = TRUE,
        nuisance = NULL
    )
```


Arguments

X
Wide numeric data matrix (Tobservations by Vvariables, $T \ll V$). For example, if X represents an fMRI run, T should be the number of timepoints and V should be the number of brainordinate vertices/voxels.
Or, a 4D array or NIFTI or file path to a NIFTI (I by J by K by T observations), in which case ROI_data must be provided. (The vectorized data will be Ttimepoints by $V_{i n-m a s k}$ voxels)
Or, a ciftiTools "xifti" object or a file path to a CIFTI (The vectorized data will be Ttimepoints by $V_{\text {left+right }+ \text { sub }}$ grayordinates).
ROI_data Indicates the data ROI. Allowed arguments depend on X :
If X is a matrix, this must be a length V logical vector, where the data ROI is indicated by TRUE values. If "infer" (default), all columns of X will be included in the data ROI (rep(TRUE, V)).
If X is an array or NIFTI, this must be either a vector of values to expect for out-of-mask voxels in X, or a (file path to a) 3D NIFTI. In the latter case, each of the volume dimensions should match the first three dimensions of X. Voxels in the data ROI should be indicated by TRUE and all other voxels by FALSE. If "infer" (default), will be set to $\mathrm{c}(0, \mathrm{NA}, \mathrm{NaN})$ (include all voxels which are not constant $0, \mathrm{NA}$, or NaN).
If X is a "xifti" this must be the brainstructures argument to ciftiTools: :read_cifti. If "infer" (default), brainstructures will be set to "all" (use both left and right cortex vertices, and subcortical voxels).
If NULL, the data ROI will be empty. This is useful for obtaining just the noise ROI, if the data and noise are located in separate files.

ROI_noise	Indicates the noise ROIs for aCompCor. Should be a list where each entry cor-
responds to a distinct noise ROI. The names of the list should be the ROI names,	
e.g. "white_matter" and "csf". The expected formats of the list entries de-	
pends on X:	
For all types of X, ROI_noise entries can be a matrix of noise ROI data. The	
matrix should have T rows, with each column being a data location's timeseries.	
If X is a matrix, entries can also indicate a noise ROI within X. These entries must	
be a length V logical vector with TRUE values indicating locations in X within	
that noise ROI. Since the ROIs must not overlap, the masks must be mutually	
exclusive with each other, and with ROI_data.	
If X is an array or NIFTI, entries can also indicate a noise ROI within X. These	
entries must be a logical array or (file path to) a 3D NIFTI with the same spatial	
dimensions as X, and with TRUE values indicating voxels inside the noise ROI.	
Since the ROIs must not overlap, the masks must be mutually exclusive with	
each other, and with ROI_data.	
(If X is a "xifti", entries must be data matrices, since no grayordinate locations	
in X are appropriate noise ROIs).	
The number of principal components to compute for each noise ROI. Alterna-	
noise_nPC	
tively, values between 0 and 1 , in which case they will represent the minimum	
proportion of variance explained by the PCs used for each noise ROI. The small-	
est number of PCs will be used to achieve this proportion of variance explained.	
Should be a list or numeric vector with the same length as ROI_noise. It will	
be matched to each ROI based on the name of each entry, or if the names are	
missing, the order of entries. If it is an unnamed vector, its elements will be	

Details

First, the principal components (PCs) of each noise region of interest (ROI) are calculated. For each ROI, voxels are centered and scaled (can be disabled with the arguments center and scale), and then the PCs are calculated via the singular value decomposition.
Next, aCompCor is performed to remove the shared variation between the noise ROI PCs and each location in the data. This is accomplished by a nuisance regression using a design matrix with the
noise ROI PCs, any additional regressors specified by nuisance, and an intercept term. (To detrend the data and perform aCompCor in the same regression, nuisance can be set to DCT bases obtained with the function dct_bases.)

Value

A list with entries "data", "noise", and potentially "ROI_data".
The entry "data" will be a $V \times T$ matrix where each row corresponds to a data location (if it was originally an array, the locations will be voxels in spatial order). Each row will be a time series with each noise PC regressed from it. This entry will be NULL if there was no data.
The entry "noise" is a list of noise PC scores, their corresponding variance, and their ROI mask, for each noise ROI.
If the data ROI is not all TRUE, the entry "ROI_data" will have the ROI mask for the data.

References

- Behzadi, Y., Restom, K., Liau, J. \& Liu, T. T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37, 90-101 (2007).
- Muschelli, J. et al. Reduction of motion-related artifacts in resting state fMRI using aCompCor. NeuroImage 96, 22-35 (2014).

See Also

CompCor_HCP

Description

Wrapper to CompCor for HCP-format data. Can be used to clean the surface-based CIFTI data with aCompCor using the noise PCs and ROIs calculated from the NIFTI fMRI data and NIFTI mask. Can also be used to just obtain the noise PCs and ROIs without performing aCompCor, if the CIFTI data is not provided.

Usage

CompCor_HCP(
nii,
nii_labels,
ROI_noise = c("wm_cort", "csf"), noise_nPC = 5, noise_erosion = NULL,
idx = NULL,
cii $=$ NULL,
brainstructures = c("left", "right"),

```
    center = TRUE,
    scale = TRUE,
    DCT = 0,
    nuisance_too = NULL,
    verbose = FALSE
)
```


Arguments

I by J by K by T NIFTI object or array (or file path to the NIFTI) which contains whole-brain data, including the noise ROIs. In the HCP, the corresponding file is e.g. "../Results/rfMRI_REST1_LR/rfMRI_REST1_LR.nii.gz"
nii_labels $\quad I$ by J by K NIFTI object or array (or file path to the NIFTI) which contains the corresponding labels to each voxel in nii. Values should be according to this table: https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/AnatomicalROI/FreeSurferColorLUT . In the HCP, the corresponding file is "ROIs/Atlas_wmparc.2.nii.gz".
ROI_noise A list of numeric vectors. Each entry should represent labels in nii_labels belonging to a single noise ROI, named by that entry's name. Or, this can be a character vector of at least one of the following: "wm_cort" (cortical white matter), "wm_cblm" (cerebellar white matter), "csf" (cerebrospinal fluid). In the latter case, these labels will be used:
"wm_cort" c(3000:4035, 5001, 5002)
"wm_cblm" c(7, 46)
"csf" c(4, 5, 14, 15, 24, 31, 43, 44, 63, 250, 251, 252, 253, 254, 255))
These default ROIs are based on this forum post: https://www.mail-archive.com/hcpusers@humanconnectome.org/msg00931.html
Default: c("wm_cort", "csf")
noise_nPC The number of principal components to compute for each noise ROI. Alternatively, values between 0 and 1 , in which case they will represent the minimum proportion of variance explained by the PCs used for each noise ROI. The smallest number of PCs will be used to achieve this proportion of variance explained. Should be a list or numeric vector with the same length as ROI_noise. It will be matched to each ROI based on the name of each entry, or if the names are missing, the order of entries. If it is an unnamed vector, its elements will be recycled. Default: 5 (compute the top 5 PCs for each noise ROI).
noise_erosion The number of voxel layers to erode the noise ROIs by. Should be a list or numeric vector with the same length as ROI_noise. It will be matched to each ROI based on the name of each entry, or if the names are missing, the order of entries. If it is an unnamed vector, its elements will be recycled. Default: NULL, which will use a value of 0 (do not erode the noise ROIs).
idx A numeric vector indicating the timepoints to use, or NULL (default) to use all idx. (Indexing begins with 1 , so the first timepoint has index 1 and the last has the same index as the length of the scan.)
cii "xifti" (or file path to the CIFTI) from which the noise ROI components will be regressed. In the HCP, the corresponding file is e.g. "../Results/rfMRI_REST1_LR/rfMRI_REST1_LR If not provided, only the noise components will be returned (no data will be cleaned).

brainstructures

Choose among "left", "right", and "subcortical". Default: c("left", "right") (cortical data only)
center, scale Center the columns of the data by median, and scale the columns of the data by MAD? Default: TRUE for both. Affects both X and the noise data. center also applies to nuisance_too so if it is FALSE, nuisance_too must already be centered.

DCT Add DCT bases to the nuisance regression? Use an integer to indicate the number of cosine bases. Use 0 (default) to forgo detrending.
The data must be centered, either before input or with center.
nuisance_too A matrix of nuisance signals to add to the nuisance regression. Should have T rows. NULL to not add additional nuisance regressors (default).
verbose \quad Should occasional updates be printed? Default: FALSE.

Value

The noise components, and if cii is provided, the cleaned surface-based data as a "xifti" object.

References

- Behzadi, Y., Restom, K., Liau, J. \& Liu, T. T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37, 90-101 (2007).
- Muschelli, J. et al. Reduction of motion-related artifacts in resting state fMRI using aCompCor. NeuroImage 96, 22-35 (2014).

See Also

CompCor

Description

Converts a sparse coordinate list to its non-sparse volumetric representation.

Usage

coordlist_to_vol(coords, fill = FALSE)

Arguments

coords
fill

The sparse coordinate list. Should be a "data.frame" or matrix with voxels along the rows and three or four columns. The first three columns should be integers indicating the spatial coordinates of the voxel. If the fourth column is present, it will be the value used for that voxel. If it is absent, the value will be TRUE or 1 if fill is not one of those values, and FALSE or 0 if fill is. The data type will be the same as that of fill. The fourth column must be logical or numeric.
Logical or numeric fill value for the volume. Default: FALSE.

Value

The volumetric data
crop_vol Crop a 3D array

Description

Remove empty (zero-valued) edge slices from a 3D array.

Usage

crop_vol(x)

Arguments

$x \quad$ The numeric 3D array to crop.

Value

A list of length two: "data", the cropped array, and "padding", the number of slices removed from each edge of each dimension.

Description

Generate cosine bases for the DCT

Usage

dct_bases(T_, n)

Arguments

T_{-}	Length of timeseries
n	Number of cosine bases

Value

Matrix with cosine bases along columns

```
dct_convert DCT and frequency conversion
```


Description

Convert between number of DCT bases and Hz of highpass filter

Usage

dct_convert(T_, TR, $n=N U L L, f=N U L L)$
$\operatorname{dct2Hz}\left(\mathrm{T}_{-}, \mathrm{TR}, \mathrm{n}\right)$
Hz2dct(T_, TR, f)

Arguments

$T_{-} \quad$ Length of timeseries (number of timepoints)
TR TR of the fMRI scan, in seconds (the time between timepoints)
$n \quad$ Number of cosine bases
$f \quad \mathrm{~Hz}$ of highpass filter

Details

Provide either n or f to calculate the other.
If only the total length of the scan is known, you can set that to TR and use $T_{-}=1$.
$f=n /\left(2 * T_{*} T R\right)$

Value

If n was provided, the highpass filter cutoff (Hz) is returned. Otherwise, if f was provided, the number of cosine bases is returned. The result should be rounded before passing to dct_bases
despike_3D 3dDespike from AFNI

Description

Identify and interpolate outliers. See the AFNI documentation for 3dDespike for additional information.

Usage

despike_3D(Yt, c1 = 2.5, c2 = 4)

Arguments

Yt The data vector.
c1 spike threshold. Default: 2.5.
c2 upper range of the acceptable deviation from the fit. Default: 4.

Examples

```
if (requireNamespace("fda", quietly=TRUE) && requireNamespace("quantreg", quietly=TRUE)) {
    y <- rnorm(99) + cos(seq(99)/15)*3
    y[20] <- 20
    despike_3D(y)
    }
```

 detrend Detrending with DCT or FFT

Description

Detrending with DCT or FFT

Usage

detrend(X, TR, f = 0.008, method = c("DCT", "FFT"))

Arguments

X

TR
f
method

A numeric matrix, with each column being a timeseries to detrend. For fMRI data, X should be T timepoints by V brain locations.
R The time step between adjacent rows of X, in seconds
$f \quad$ The frequency of the highpass filter, in Hertz. Default: . 008
"DCT" (default) or "FFT".

Value

Detrended X

Examples

```
detrend(matrix(rnorm(700), nrow=100), TR=.72)
```

dilate_mask_vol

Dilate 3D mask

Description

Dilate a volumetric mask by a certain number of voxel layers. For each layer, any out-of-mask voxel adjacent to at least one in-mask voxel is added to the mask.

Usage

dilate_mask_vol(vol, n_dilate = 1, out_of_mask_val = NA, new_val = 1)

Arguments

vol The 3D array to dilate. The mask to dilate is defined by all values not in out_of_mask_val.
n_dilate The number of layers to dilate the mask by. Default: 1.
out_of_mask_val
A voxel is not included in the mask if and only if its value is in this vector. Default: NA. If vol is simply a logical array with TRUE values for in-mask voxels, use out_of_mask_val=FALSE.
new_val Value for voxels newly added to the mask. Default: 1. If vol is simply a logical array with TRUE values for in-mask voxels, use new_val=1.

Details

Diagonal voxels are not considered adjacent, i.e. the voxel at $(0,0,0)$ is not adjacent to the voxels at $(1,1,0)$ or $(1,1,1)$, although it is adjacent to $(1,0,0)$.

Value

The dilated vol. It is the same as vol, but dilated voxels are replaced with new_val.

Description

Performs dimension reduction and prewhitening based on probabilistic PCA using SVD. If dimensionality is not specified, it is estimated using the method described in Minka (2008).

Usage

dim_reduce (X, Q = NULL, Q_max = 100)

Arguments

$X \quad$ A numeric matrix, with each column being a centered timeseries. For fMRI data, X should be T timepoints by V brain locations.
Q Number of latent dimensions to estimate. If NULL (default), estimated using PESEL (Sobczyka et al. 2020).

Q_max Maximal number of principal components for automatic dimensionality selection with PESEL. Default: 100.

Value

A list containing the dimension-reduced data (data_reduced, a $V \times Q$ matrix), prewhitening/dimension reduction matrix (H, a $Q x T$ matrix) and its (pseudo-)inverse (Hinv, a $T x Q$ matrix), the noise variance (sigma_sq), the correlation matrix of the dimension-reduced data (C_diag, a $Q x Q$ matrix), and the dimensionality (Q).

Examples

```
nT <- 30
nV <- 400
nQ <- 7
X <- matrix(rnorm(nV*nQ), nrow=nV) %*% diag(seq(nQ, 1)) %*% matrix(rnorm(nQ*nT), nrow=nQ)
dim_reduce(X, Q=nQ)
```

dual_reg Dual Regression

Description

Dual Regression

Usage

```
dual_reg(
    BOLD,
    GICA,
    scale = c("local", "global", "none"),
    scale_sm_xifti = NULL,
    scale_sm_FWHM = 2,
    TR = NULL,
    hpf = 0.01,
    GSR = FALSE
)
```


Arguments

BOLD Subject-level fMRI data matrix $(V \times T)$. Rows will be centered.
GICA Group-level independent components $(V \times Q)$
scale "local" (default), "global", or "none". Local scaling will divide each data location's time series by its estimated standard deviation. Global scaling will divide the entire data matrix by the mean image standard deviation (mean(sqrt(rowVars(BOLD)))).
scale_sm_xifti, scale_sm_FWHM
Only applies if scale=="local" and BOLD represents CIFTI-format data. To smooth the standard deviation estimates used for local scaling, provide a "xifti" object with data locations in alignment with BOLD, as well as the smoothing FWHM (default: 2). If no "xifti" object is provided (default), do not smooth.
TR The temporal resolution of the data, i.e. the time between volumes, in seconds. $T R$ is required for detrending with hpf.
hpf The frequency at which to apply a highpass filter to the data during pre-processing, in Hertz. Default: 0.01 Hertz. Set to 0 to disable the highpass filter.
The highpass filter serves to detrend the data, since low-frequency variance is associated with noise. Highpass filtering is accomplished by nuisance regression of discrete cosine transform (DCT) bases.
Note the TR argument is required for highpass filtering. If TR is not provided, hpf will be ignored.
GSR Center BOLD across columns (each image)? This is equivalent to performing global signal regression. Default: FALSE.

Value

A list containing the subject-level independent components $\mathbf{S}(V \times Q)$, and subject-level mixing matrix $\mathbf{A}(T x Q)$.

Examples

nT <- 30
$n V<-400$
nQ <- 7
$m U$ <- matrix (rnorm(nV*nQ), nrow=nV)

```
mS <- mU %*% diag(seq(nQ, 1)) %*% matrix(rnorm(nQ*nT), nrow=nQ)
BOLD <- mS + rnorm(nV*nT, sd=.05)
GICA <- mU
dual_reg(BOLD=BOLD, GICA=mU, scale="local")
```

dual_reg_parc Multiple regression for parcel data

Description

Multiple regression for parcel data

Usage

```
    dual_reg_parc(
        BOLD,
        parc,
        parc_vals,
        scale = c("local", "global", "none"),
        scale_sm_xifti = NULL,
        scale_sm_FWHM = 2,
        TR = NULL,
        hpf = 0.01,
        GSR = FALSE
    )
```


Arguments

BOLD Subject-level fMRI data matrix $(V \times T)$. Rows will be centered.
parc The parcellation as an integer vector.
parc_vals The parcel values (keys) in desired order, e.g. sort (unique(parc)).
scale "local" (default), "global", or "none". Local scaling will divide each data location's time series by its estimated standard deviation. Global scaling will divide the entire data matrix by the mean image standard deviation (mean(sqrt(rowVars(BOLD)))).
scale_sm_xifti, scale_sm_FWHM
Only applies if scale=="local" and BOLD represents CIFTI-format data. To smooth the standard deviation estimates used for local scaling, provide a "xifti" object with data locations in alignment with BOLD, as well as the smoothing FWHM (default: 2). If no "xifti" object is provided (default), do not smooth.

TR
The temporal resolution of the data, i.e. the time between volumes, in seconds. $T R$ is required for detrending with hpf.
hpf The frequency at which to apply a highpass filter to the data during pre-processing, in Hertz. Default: 0.01 Hertz. Set to 0 to disable the highpass filter.

The highpass filter serves to detrend the data, since low-frequency variance is associated with noise. Highpass filtering is accomplished by nuisance regression of discrete cosine transform (DCT) bases.
Note the TR argument is required for highpass filtering. If TR is not provided, hpf will be ignored.
GSR
Center BOLD across columns (each image)? This is equivalent to performing global signal regression. Default: FALSE.

Value

A list containing the subject-level independent components $\mathbf{S}(Q \times V)$, and subject-level mixing matrix $\mathbf{A}(T x Q)$.

```
erode_mask_vol
```

Erode 3D mask

Description

Erode a volumetric mask by a certain number of voxel layers. For each layer, any in-mask voxel adjacent to at least one out-of-mask voxel is removed from the mask.

Usage

erode_mask_vol(vol, n_erosion = 1, out_of_mask_val = NA)

Arguments

vol The 3D array to erode. The mask to erode is defined by all values not in out_of_mask_val.
n_erosion The number of layers to erode the mask by. Default: 1.
out_of_mask_val
A voxel is not included in the mask if and only if its value is in this vector. The first value of this vector will be used to replace eroded voxels. Default: NA. If vol is simply a logical array with TRUE values for in-mask voxels, use out_of_mask_val=FALSE.

Details

Diagonal voxels are not considered adjacent, i.e. the voxel at $(0,0,0)$ is not adjacent to the voxels at $(1,1,0)$ or $(1,1,1)$, although it is adjacent to $(1,0,0)$.

Value

The eroded vol. It is the same as vol, but eroded voxels are replaced with out_of_mask_val[1].

Description

See help(package="fMRItools") for a list of functions.

Author(s)

Maintainer: Amanda Mejia mandy.mejia@gmail.com
Authors:

- Damon Pham <damondpham@gmail. com> (ORCID)

Other contributors:

- Mark Fiecas mfiecas@umn.edu [contributor]

See Also

Useful links:

- https://github.com/mandymejia/fMRItools
- Report bugs at https://github.com/mandymejia/fMRItools/issues
fsl_bptf bptf function from FSL

Description

Copy of bptf highpass filter from FSL. The results are very similar but not identical.

Usage

fsl_bptf(orig_data, HP_sigma = 2000)

Arguments

orig_data $\quad T \times V$ data matrix whose columns will be detrended
HP_sigma The frequency parameter for the highpass filter

Details

Sources: https://cpb-us-w2.wpmucdn.com/sites.udel.edu/dist/7/4542/files/2016/09/fsl_temporal_filt15sywxn.m https://github.com/rordenlab/niimath/blob/master/src/core32.c

Value

The data with detrended columns

References

- Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. \& Smith, S. M. FSL. NeuroImage 62, 782-790 (2012).

Examples

```
fsl_bptf(matrix(rnorm(700), nrow=100))
```

```
hat_matrix Hat matrix
```


Description

Get the hat matrix from a design matrix.

Usage

hat_matrix(design)

Arguments

design \quad The T by Q design matrix

Details

Uses the QR decomposition.

Value
The T by T hat matrix

Examples

```
hat_matrix(cbind(seq(100), 1))
```

```
infer_format_ifti Infer fMRI data format
```


Description

Infer fMRI data format

Usage

infer_format_ifti(BOLD, verbose = FALSE)

Arguments

BOLD	The fMRI data
verbose	Print the format? Default: FALSE.

Value

A length-two vector. The first element indicates the format: "CIFTI" file path, "xifti" object, "GIFTI" file path, "gifti" object, "NIFTI" file path, "nifti" object, "RDS" file path, or "data". The second element indicates the sub-format if relevant; i.e. the type of CIFTI or GIFTI file/object.
infer_format_ifti_vec Infer fMRI data format for several inputs

Description

Vectorized version of infer_format_ifti. Expects all inputs to have the same format.

Usage

infer_format_ifti_vec(BOLD, verbose = FALSE)

Arguments

BOLD The vector of fMRI data, expected to be of one format
verbose Print the format? Default: FALSE.

Details

Raises an error if the elements of BOLD do not share the same format.

Value

A length-two vector. The first element indicates the format: "CIFTI" file path, "xifti" object, "GIFTI" file path, "gifti" object, "NIFTI" file path, "nifti" object, "RDS" file path, or "data". The second element indicates the sub-format if relevant; i.e. the type of CIFTI or GIFTI file/object.

Description

Is this object the expected data type, and length one?

Usage

is_1(x, dtype = c("numeric", "logical", "character"))

Arguments

x
The value to check
dtype
The data type. Default: "numeric". Also can be "logical" or "character"

Value

TRUE if x is dtype and length one.

Description

Is this numeric vector constant?

Usage

is_constant(x, TOL = 1e-08)

Arguments

x
TOL

The numeric vector
minimum range of x to be considered non-constant. Default: $1 e-8$

Value

Is x constant?
is_integer Is this an integer?

Description

Is this an integer?

Usage

```
is_integer(x, nneg = FALSE)
```


Arguments

x
The putative integer
nneg Require $x>=0$ (non-negative) too?

Value

Logical indicating whether x is an integer
is_posNum Is this object a positive number? (Or non-negative)

Description

Is this object a positive number? (Or non-negative)

Usage

is_posNum(x, zero_ok = FALSE)

Arguments

x	The value to check
zero_ok	Is a value of zero ok?

Value

Logical indicating if x is a single positive or non-negative number

```
    mat2UT Matrix to Upper Triangular Vector
```


Description

Returns the vectorized upper triangle of a square matrix

Usage

mat2UT(x)

Arguments

x
A square matrix

Value

The vectorized upper triangle of x.

```
match_exactly Do these character vectors match exactly?
```


Description

Checks if a user-defined character vector matches an expected character vector. That is, they share the same lengths and entries in the same order. For vectors of the same lengths, the result is all (a $==\mathrm{b}$).

```
Usage
    match_exactly(
        user,
        expected,
        fail_action = c("message", "warning", "stop", "nothing")
    )
```


Arguments

user	Character vector of user input.
expected	Character vector of expected/allowed values.
fail_action	If any value in user could not be matched, or repeated matches occurred, what should happen? Possible values are "message" (default), "warning", "stop", and "nothing".

Details

Attributes are ignored.

Value

Logical. Do user and expected match?

```
match_input Match user inputs to expected values
```


Description

Match each user input to an expected/allowed value. Raise a warning if either several user inputs match the same expected value, or at least one could not be matched to any expected value. ciftiTools uses this function to match keyword arguments for a function call. Another use is to match brainstructure labels ("left", "right", or "subcortical").

Usage

```
    match_input(
        user,
        expected,
        fail_action = c("stop", "warning", "message", "nothing"),
        user_value_label = NULL
    )
```


Arguments

user	Character vector of user input. These will be matched to expected using match. arg.
expected	Character vector of expected/allowed values.
fail_action	If any value in user could not be matched, or repeated matches occurred, what should happen? Possible values are "stop" (default; raises an error), "warning", and "nothing".
user_value_label	

How to refer to the user input in a stop or warning message. If NULL, no label is used.

Value

The matched user inputs.

Description

Compute mean squares from variance decomposition

Usage

```
mean_squares(vd)
```


Arguments

vd The variance decomposition

Value

The mean squares
Mode Mode of data vector

Description

Get mode of a data vector. But use the median instead of the mode if all data values are unique.

Usage

Mode (x)

Arguments

x
The data vector

Value

The mode

Description

Center the data across space and/or time, detrend, and scale, in that order. For dual regression, row centering is required and column centering is not recommended. Scaling and detrending depend on the user preference.

Usage

norm_BOLD (
BOLD,
center_rows = TRUE,
center_cols = FALSE,
scale = c("local", "global", "none"),
scale_sm_xifti = NULL,
scale_sm_FWHM = 2,
TR = NULL,
hpf $=0.01$
)

Arguments

BOLD \quad fMRI numeric data matrix $(V \times T)$
center_rows, center_cols
Center BOLD data across rows (each data location's time series) or columns (each time point's image)? Default: TRUE for row centering, and FALSE for column centering.
scale "global" (default), "local", or "none". Global scaling will divide the entire data matrix by the mean image standard deviation (mean(sqrt(rowVars(BOLD)))). Local scaling will divide each data location's time series by its estimated standard deviation.
scale_sm_xifti, scale_sm_FWHM
Only applies if scale=="local" and BOLD represents CIFTI-format data. To smooth the standard deviation estimates used for local scaling, provide a "xifti" object with data locations in alignment with BOLD, as well as the smoothing FWHM (default: 2). If no "xifti" object is provided (default), do not smooth.
TR The temporal resolution of the data, i.e. the time between volumes, in seconds. $T R$ is required for detrending with hpf.
hpf The frequency at which to apply a highpass filter to the data during pre-processing, in Hertz. Default: 0.01 Hertz. Set to 0 to disable the highpass filter.
The highpass filter serves to detrend the data, since low-frequency variance is associated with noise. Highpass filtering is accomplished by nuisance regression of discrete cosine transform (DCT) bases.
Note the TR argument is required for highpass filtering. If TR is not provided, hpf will be ignored.

Value

Normalized BOLD data matrix $(V \times T)$

```
nuisance_regression Nuisance regression
```


Description

Performs nuisance regression. Important note: the data and design matrix must both be centered, or an intercept must be included in the design matrix.

Usage

nuisance_regression(Y, design)

Arguments

$\begin{array}{ll}\text { Y } & \text { The } T \times V \text { or } V \times T \text { data. } \\ \text { design } & \text { The } T \times Q \text { matrix of nuisance regressors }\end{array}$

Value

The data after nuisance regression.

Examples

Y <- matrix (rnorm(700), nrow=100)
design <- cbind(seq(100), 1)
nuisance_regression(Y, design)

```
pad_vol Pad 3D Array
```


Description

Pad a 3D array by a certain amount in each direction, along each dimension. This operation is like the opposite of cropping.

Usage

pad_vol(x, padding, fill = NA)
uncrop_vol(x, padding, fill = NA)

Arguments

x
padding
fill

A 3D array, e.g. unvec_vol(xifti\$data\$subcort, xifti\$meta\$subcort\$mask).
A 3×2 matrix indicating the number of slices to add at the beginning (first column) and end (second column) of each of dimension, e.g. xifti\$meta\$subcort\$mask_padding. Value to pad with. Default: NA.

Value

The padded array

Examples

```
x <- array(seq(24), dim=c(2,3,4))
y <- pad_vol(x, array(1, dim=c(3,2)), 0)
stopifnot(all(dim(y) == dim(x)+2))
stopifnot(sum(y) == sum(x))
z <- crop_vol(y)$data
stopifnot(identical(dim(x), dim(z)))
stopifnot(max(abs(z - x))==0)
```

```
PCA
PCA for tall matrix
```


Description

Efficient PCA for a tall matrix (many more rows than columns). Uses the SVD of the covariance matrix. The dimensionality of the result can be preset with Q or estimated with PESEL.

Usage

PCA(X, center $=$ TRUE, $\mathrm{Q}=$ NULL, Q_max $=100$, Vdim = 0)

Arguments

X
center Center the columns of X? Default: TRUE. Set to FALSE if already centered. Centered data is required to compute PCA.

Q Number of latent dimensions to estimate. If NULL (default), estimated using PESEL (Sobczyka et al. 2020).
Q_max Maximal number of principal components for automatic dimensionality selection with PESEL. Default: 100.

Vdim Number of principal directions to obtain. Default: 0. Can also be "Q" to set equal to the value of Q. Note that setting this value less than Q does not speed up computation time, but does save on memory. Note that the directions will be with respect to X, not its covariance matrix.

Value

The SVD decomposition

Examples

```
U <- matrix(rnorm(900), nrow=300, ncol=3)
V <- matrix(rnorm(15), nrow=3, ncol=5)
PCA(U %*% V)
```

```
pct_sig
Convert data values to percent signal.
```


Description

Convert data values to percent signal.

Usage

pct_sig(X, center $=$ median, by $=c(" c o l u m n ", ~ " a l l "))$

Arguments

X a T by N numeric matrix. The columns will be normalized to percent signal.
center A function that computes the center of a numeric vector. Default: median. Other common options include mean and mode.
by Should the center be measured individually for each "column" (default), or should the center be the same across "all" columns?

Value

X with its columns normalized to percent signal. (A value of 85 will represent a -15% signal change.)
plot_FC Plot FC

Description

Plot a functional connectivity matrix.

Usage

plot_FC(
FC,
zlim $=c(-1,1)$,
diag_val = NULL,
title = "FC matrix",
cols = color_palette("Beach"),
cleg_ticks_by $=\operatorname{diff}(z l i m) / 2$,
cleg_digits = NULL,
labels = NULL,
lines = NULL,
lines_col = "black",
lines_lwd = 1,
cex $=0.8$
)

Arguments

FC The functional connectivity matrix, a square numeric matrix with values between -1 and 1 .
zlim The minimum and maximum range of the color scale. Default: $c(-1,1)$. If in descending order, the color scale will be reversed.
diag_val Set to NA for white, 1, or NULL (default) to not modify the diagonal values in FC.
title (Optional) Plot title.
cols Character vector of colors for the color scale. Default: color_palette("Beach").
cleg_ticks_by Spacing between ticks on the color legend. Default: range(zlim)/2.
cleg_digits How many decimal digits for the color legend. Default: NULL to set automatically.
labels A character vector of length length(lines)+1, giving row/column labels for the submatrices divided by lines. If NULL (default), do not add labels.
lines Add lines to divide the FC matrix into submatrices? Default: NULL (do not draw lines). Use seq($n \mathrm{~N}$) to delineate each individual row and column.
lines_col, lines_lwd
Color and line width of the lines. Default: black lines of width 1.
cex \quad Text size. Default: 0.8.

$$
\text { read_nifti } \quad \text { Wrapper to functions for reading NIFTIs }
$$

Description

Tries RNifti: :readNifti, then oro.nifti: :readNIfTI. If neither package is available an error is raised.

Usage

read_nifti(nifti_fname)

Arguments

nifti_fname The file name of the NIFTI.

Details

For oro.nifti::readNIFTI the argument reorient=FALSE will be used.

Value

The NIFTI
scale_design_mat Scale a design matrix

Description

Scale the columns of a matrix by dividing each column by its highest-magnitude value, and then subtracting its mean.

Usage

scale_design_mat(x, doRows = FALSE)

Arguments

x
A $T \times K$ numeric matrix. In the context of a design matrix for a GLM analysis of task fMRI, T is the number of time points and K is the number of task covariates.
doRows Scale the rows instead? Default: FALSE.

Value

The scaled design matrix

Examples

```
scale_design_mat(cbind(seq(7), 1, rnorm(7)))
```

scale_med Robust scaling

Description

Centers and scales the columns of a matrix robustly

Usage

scale_med(mat, TOL = 1e-08, drop_const $=$ TRUE, doRows $=$ FALSE)

Arguments

mat A numeric matrix. Its columns will be centered and scaled.
TOL Columns with MAD below this value will be considered constant. Default: 1e-8
drop_const Drop constant columns? Default: TRUE. If FALSE, set to NA instead.
doRows Center and scale the rows instead? Default: FALSE.

Details

Centers each column on its median, and scales each column by its median absolute deviation (MAD). If there are constant-valued columns, they are removed if drop_const or set to NA if !drop_const, and a warning is raised. If all columns are constant, an error is raised.

Value

The input matrix with its columns centered and scaled.

```
scale_timeseries Scale the BOLD timeseries
```


Description

Scale the BOLD timeseries

Usage

```
scale_timeseries(
    BOLD,
    scale = c("auto", "mean", "sd", "none"),
    transpose = TRUE
)
```


Arguments

BOLD \quad fMRI data as a locations by time $(V \times T)$ numeric matrix.
scale Option for scaling the BOLD response.
\code\{"auto"\} (default) will use \code\{"mean"\} scaling except if demeaned
data is detected (if any mean is less than one), in which case "sd" scaling will be used instead.
\code\{"mean"\} scaling will scale the data to percent local signal change.
\code\{"sd"\} scaling will scale the data by local standard deviation.
\code\{"none"\} will only center the data, not scale it.
transpose Transpose BOLD if there are more columns than rows? (Because we usually expect the number of voxels to exceed the number of time points.) Default: TRUE.

Value
Scale to units of percent local signal change and centers
sign_flip Sign match ICA results

Description

Flips all source signal estimates (S) to positive skew

Usage

sign_flip(x)

Arguments

x
The ICA results: a list with entries " S " and " M "

Value

x but with positive skew source signals
skew_pos Positive skew?

Description

Does the vector have a positive skew?

Usage

skew_pos(x)

Arguments

x
The numeric vector for which to calculate the skew. Can also be a matrix, in which case the skew of each column will be calculated.

Value

TRUE if the skew is positive or zero. FALSE if the skew is negative.

Description

For each voxel in a 3D logical or numeric array, sum the values of the six neighboring voxels.

Usage

sum_neighbors_vol(arr, pad = 0)

Arguments

arr The 3D array.
pad In order to compute the sum, the array is temporarily padded along each edge with the value of pad. 0 (default) will mean that edge voxels reflect the sum of 3-5 neighbors whereas non-edge voxels reflect the sum of 6 neighbors. An alternative is to use a value of NA so that edge voxels are NA-valued because they did not have a complete set of six neighbors. Perhaps another option is to use mean (arr).

Details

Diagonal voxels are not considered adjacent, i.e. the voxel at $(0,0,0)$ is not adjacent to the voxels at $(1,1,0)$ or $(1,1,1)$, although it is adjacent to $(1,0,0)$.
unmask_mat

Value

An array with the same dimensions as arr. Each voxel value will be the sum across the immediate neighbors. If arr was a logical array, this value will be between 0 and 6 .

```
unmask_mat Unmask matrix data
```


Description

Insert empty rows or columns to a matrix. For example, medial wall vertices can be added back to the cortex data matrix.

Usage

unmask_mat(x, mask, mask_dim = 1, fill = NA)

Arguments

x
mask
mask_dim
fill

The data matrix to unmask.
The logical mask: the number of TRUE values should match the size of the (mask_dim)th dimension in dat.
Rows, 1 (default), or columns, 2.
The fill value for the inserted rows/columns. Default: NA.

Value

The unmasked matrix.

```
unvec_mat
```

Transform vector data to image

Description

From a $v \times p$ matrix of vectorized data and an $m \times n$ image mask with v in-mask locations, create a list of $p m \times n$ data arrays in which the mask locations are filled in with the vectorized data values.
Consider using abind: : abind to merge the result into a single array.

Usage

unvec_mat(x, mask, fill_value = NA)

Arguments

X
$v \times p$ matrix, where v is the number of voxels within a mask and p is the number of vectors to transform into matrix images.
mask $\quad m \times n$ logical matrix in which v entries are TRUE and the rest are FALSE.
fill_value Out-of-mask value in the output image. Default: NA.

Value

A list of masked values from x

Examples

```
x <- unvec_mat(
    cbind(seq(3), seq(2,4), seq(3,5)),
    matrix(c(rep(TRUE, 3), FALSE), ncol=2),
    0
)
y <- array(c(1,2,3,0,2,3,4,0,3,4,5,0), dim=c(2,2,3))
stopifnot(identical(x[[1]], y[,,1]))
stopifnot(identical(x[[2]], y[,,2]))
stopifnot(identical(x[[3]], y[,,3]))
```

```
unvec_vol Convert vectorized data back to volume
```


Description

Un-applies a mask to vectorized data to yield its volumetric representation. The mask and data should have compatible dimensions: the number of rows in dat should equal the number of locations within the mask.

Usage

unvec_vol(dat, mask, fill = NA)

Arguments

dat Data matrix with locations along the rows and measurements along the columns. If only one set of measurements were made, this may be a vector.
mask Volumetric binary mask. TRUE indicates voxels inside the mask.
fill The value for locations outside the mask. Default: NA.

Value

The 3D or 4D unflattened volume array

UT2mat Upper Triangular Vector to Matrix

Description

Returns the symmatric square matrix from a vector containing the upper triangular elements

Usage

UT2mat (x, diag $=0$, LT = 0)

Arguments

$x \quad$ A vector containing the upper triangular elements of a square, symmetric matrix.
diag A scalar value to use for the diagonal values of the matrix, or " x " if x includes the diagonal values. Default: NA.

LT A scalar value to use for the lower triangular values of the matrix. Default: 0.

Value

A symmetric matrix with the values of x in the upper and lower triangles and the value diag on the diagonal.

```
validate_design_mat Validate design matrix
```


Description

Coerces design to a numeric matrix, and optionally checks that the number of rows is as expected. Sets constant-valued columns to 1 , and scales all other columns.

Usage
 validate_design_mat(design, T_ = NULL)

Arguments

design The design matrix
T_ the expected number of rows in design. Default: NULL (no expected value to validate).

Value

The (modified) design matrix

```
    var_decomp Compute variance decomposition
```


Description

Calculate the various ANOVA sums of squares for repeated measures data.

Usage

var_decomp(x, verbose = FALSE)

Arguments

x
The data as a 3D array: measurements by subjects by variables. (Alternatively, a matrix that is measurements by subjects, if only one variable exists.)
verbose If TRUE, display progress of algorithm. Default: FALSE.

Value

The variance decomposition

```
vox_locations Get coordinates of each voxel in a mask
```


Description

Made for obtaining voxel locations in 3D space from the subcortical metadata of CIFTI data: the volumetric mask, the transformation matrix and the spatial units.

Usage

vox_locations(mask, trans_mat, trans_units = NULL)

Arguments

mask	3D logical mask
trans_mat	Transformation matrix from array indices to spatial coordinates.
trans_units	Units for the spatial coordinates (optional).

Value

A list: coords and trans_units.

Index

```
all_binary, 3
all_integers, 3
as.matrix_ifti,4
bandstop_filter,5
carpetplot, 5
carpetplot_stack,7
cheby2,5
colCenter,8
color_palette, 8
CompCor, 9, 11
CompCor_HCP, 11
coordlist_to_vol, 13
crop_vol,14
dct2Hz (dct_convert), 15
dct_bases, 11, 14, 15
dct_convert, 15
despike_3D,16
detrend, 16
dilate_mask_vol, 17
dim_reduce, 18
dual_reg, 18
dual_reg_parc, 20
erode_mask_vol,21
fMRItools, 22
fMRItools-package (fMRItools), 22
fsl_bptf, 22
hat_matrix, 23
Hz2dct(dct_convert), 15
infer_format_ifti, 24, 24
infer_format_ifti_vec, 24
is_1,25
is_constant, 25
is_integer, 26
is_posNum, 26
```

mat2UT, 27
match.arg, 28
match_exactly, 27
match_input, 28
mean_squares, 29
Mode, 29
norm_BOLD, 30
nuisance_regression, 31
pad_vol, 31
PCA, 32
pct_sig, 33
plot_FC, 33
read_nifti, 34
scale_design_mat, 35
scale_med, 36
scale_timeseries, 36
sign_flip, 37
skew_pos, 38
sum_neighbors_vol, 38
uncrop_vol (pad_vol), 31
unmask_mat, 39
unvec_mat, 39
unvec_vol, 40
UT2mat, 41
validate_design_mat, 41
var_decomp, 42
vox_locations, 42

