dependentsimr: Simulate Omics-Scale Data with Dependency
Using a Gaussian copula approach, this package generates simulated data mimicking a target real dataset. It supports normal, Poisson, empirical, and 'DESeq2' (negative binomial with size factors) marginal distributions. It uses an low-rank plus diagonal covariance matrix to efficiently generate omics-scale data. Methods are described in: Yang, Grant, and Brooks (2025) <doi:10.1101/2025.01.31.634335>.
| Version: | 
1.0.0.0 | 
| Depends: | 
R (≥ 4.2) | 
| Imports: | 
rlang (≥ 1.0.0) | 
| Suggests: | 
DESeq2 (≥ 1.40.0), S4Vectors (≥ 0.44.0), SummarizedExperiment (≥ 1.36.0), MASS (≥ 7.3), corpcor (≥
1.6.0), testthat (≥ 3.0.0), Matrix (≥ 1.7), sparsesvd (≥
0.2), knitr (≥ 1.50), rmarkdown, BiocManager, remotes, tidyverse (≥ 2.0.0) | 
| Published: | 
2025-07-23 | 
| DOI: | 
10.32614/CRAN.package.dependentsimr | 
| Author: | 
Thomas Brooks  
    [aut, cre, cph] | 
| Maintainer: | 
Thomas Brooks  <tgbrooks at gmail.com> | 
| License: | 
MIT + file LICENSE | 
| NeedsCompilation: | 
no | 
| Materials: | 
NEWS  | 
| CRAN checks: | 
dependentsimr results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=dependentsimr
to link to this page.