Package ‘addScales’

October 12, 2022

Type Package

Title Adds Labeled Center Line and Scale Lines/Regions to Trellis
Plots

Version 1.0-1
Author Bert Gunter
Maintainer Bert Gunter<bgunter.4567@gmail.com>

Description Modifies trellis objects by adding horizontal and/or vertical
reference lines or shaded regions that provide visual scaling information.
This is mostly useful in multi-panel plots that use the relation = 'free’
option in their 'scales' argument list.

Depends lattice (>= 0.20-38), R(>=3.5.0)
Imports grid, stats, grDevices

Suggests knitr, rmarkdown

License MIT + file LICENSE

Encoding UTF-8

LazyData true

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2020-06-11 04:30:02 UTC

R topics documented:

addScales-package 2
addScales L e 3
CHITemps o e e e e e e e 11
NYCTemPS . . . o o o o e e e e e e e e e e e e e e e 11
panel.addScales e e 12
prepanel.trim e 14
TEVEIT . o o v it e e e e e e e e e e e e e e e e e e 15
scaleline L 17

2 addScales-package

SETemps o e e e e e e e e e 18
update.scaledTrellis L 19
USACIime o e e e e e e e e e e 21
Index 23
addScales-package Adds Labeled Center Line and Scale Lines/Regions to Trellis Plots
Description

Modifies trellis objects by adding horizontal and/or vertical reference lines or shaded regions that
provide visual scaling information. This is mostly useful in multi-panel plots that use the relation =
“free’ option in their *scales’ argument list.

Details
The DESCRIPTION file:
Package: addScales
Type: Package
Title: Adds Labeled Center Line and Scale Lines/Regions to Trellis Plots
Version: 1.0-1
Author: Bert Gunter
Maintainer: Bert Gunter<bgunter.4567 @ gmail.com>
Description: Modifies trellis objects by adding horizontal and/or vertical reference lines or shaded regions that provide
Depends: lattice (>= 0.20-38), R(>=3.5.0)
Imports: grid, stats, grDevices
Suggests: knitr, rmarkdown
License: MIT + file LICENSE
Encoding: UTF-8
LazyData: true

VignetteBuilder: knitr

Index of help topics:

CHITemps Daily Chicago High and Low Temperatures in °F

NYCTemps Daily New York City High and Low Temperatures
in °F

SFTemps Daily San Francisco High and Low Temperatures
in °F

USAcrime USA Property and Violent Crime Data, 1960 -
2014

addScales Add Scaling Information to Panels in
Multi-Panel Trellis Plots

addScales-package Adds Labeled Center Line and Scale

Lines/Regions to Trellis Plots

addScales 3

panel.addScales Default panelFUN For addScales.trellis

prepanel.trim Lattice Prepanel Function to Trim Panel Limits

revert Revert A Scaled Trellis Plot To Its Previous
Unscaled Form

scaleline Extract scaleline list from 'scaledTrellis'
object

update.scaledTrellis Update Method for scaledTrellis Objects

Further information is available in the following vignettes:

addScales The addScales Package (source)

Trellised displays are powerful tools for exploring and comparing data. However, one challenge
is how to handle plots in which the data in different panels have different locations and, more
importantly, different scales/variability. Different locations can be dealt with via the relation =
"sliced” option in lattice functions’ scales argument. But different scaling sometimes causes
plot details in panels with relatively little variability to be obscured because the data are “squashed”
to accommodate the limits needed to show more variable data in others.

The addScales function unsquashes such data by varying the panel limits so that each panel fits just
its data. This can easily be done by using the relation = "free” option in the scales argument.
Unfortunately, with more then just a few panels, the separate axis scales for the different panels
takes up too much display space and are difficult to read.

addScales addresses this problem by layering minimal location/scale information directly onto the
panels. The intent is to save axis space without obscuring the panel data, but still allow the viewer
to decode the information to compare the panels.

A simple API facilitates this task. In addition to the main addScales functions, a generic with
an addScales. trellis method, there is an update method to allow the user to easily experiment
with and customize the display. A few other functions provide some additional flexibility. Users
desiring other capabilities should contact the author/maintainer with their requests.

Author(s)

Bert Gunter
Maintainer: Bert Gunter<bgunter.4567 @ gmail.com>

addScales Add Scaling Information to Panels in Multi-Panel Trellis Plots

Description

Adds a midline and upper and lower horizontal and/or vertical scale lines or shaded regions to all
panels. Mostly useful when the relation = "free" option is used in the scales list to avoid loss
of detail in plots from data that vary in location and scale from panel to panel.

Usage

addScales

addScales(obj, ...)

S3 method for class 'trellis'

addScales(obj,

scaleline = list(h = TRUE, v = FALSE),

legend = list(h = TRUE, v = TRUE),

ndig.legend = c(h = 2, v = 2),

legend.aes = list(),

legend.loc = c("top”, "bottom”,"right”,"left"),
panelFUN = panel.addScales,

.2

Arguments

obj

scaleline

legend

ndig.legend

legend. aes

legend. loc

Object on which method dispatch is carried out. Currently only a trellis
method exists.

A two component list with component names "h" and "v". The "h" component
is for (h)orizontal scale lines/regions and "v" is for(v)ertical. Each of these must
be a single logical or numeric value (and can be mixed in the list, of course).
TRUE means: use a calculated default; FALSE means: don’t plot scale lines for
this component; and a numeric value means: use this value. The calculated or
user-supplied value is the distance between the midline and scale lines = 1/2 the
height/width of the shaded region. A numeric value of 0 is interpreted as FALSE
— don’t draw. However, see the Details section below for abbreviated versions
that are also accepted.

Note: Scale lines/regions are only meaningful for "numeric” data as defined by
isTRUE(is.numeric()). The corresponding scaleline component — "h" for
y-axis data and "v" for x-axis data — is silently set to FALSE for anything else.

A two component list as in scaleline for logical values; or non-logical values
that must either be quoted UTF-8 character strings (which can include special
characters such as +, which is unicode U + 00B1, or °, unicode U + 00B0, math
symbols, non-ascii language characters, etc.); or R language objects. See the
Legend Details section for further details.

Named or unnamed pair of integer arguments, or a single integer that will be
replicated. The names must be (and are assumed to be if unnamed) "h" and "v"
in that order and give the number of significant digits to show in the default
legend for the corresponding scale lines/region. Non-integer values are rounded
to integer, and values outside the range of 0 to 15 digits are converted to 2.

List of aesthetics of the legend text: cex, font, fontface, col, etc.. See
panel. text for details.

One of "top”, "bottom”, "left”, or "right"” specifying where the legend
will be placed outside the the trellised panels on the page. See the legend
section of the xyplot man page for details, but note that addScales will turn the
legend argument into a list of the required form, so that part of the specification
on the man page can be ignored.

addScales 5

panelFUN The function used to add scaling details to the panels. Should use standard
trellis/grid functionality.

Further arguments, controlling aesthetics of the lines, labels, and/or fill regions
such as color, line width, color palette, line type, etc., passed down to the
panelFUN function. See panel.addScales for details for the default panel func-
tion.

Details

As a convenience, abbreviated versions of scaleline and legend logical arguments can be used
instead of the full versions described above.The abbreviated versions will be translated into the full
versions for use by other functions such as scaleline and update.scaledTrellis.

Specifically, a single value of TRUE or FALSE is replicated to both components of the argument. Thus
scaleline = FALSE aborts the function, since it says not to add scales in either direction. legend
= FALSE is fine, because it specifies only that legends be omitted. See the Legend Specification
Details section below for why this might be useful.

If an unnamed list with two components (of the correct form) are given, they are assumed to be in
the order c("h"”,"v"). If a single named component with name "h" or "v" is given, the missing
component is assumed to be FALSE. Thus, 1ist(v =TRUE), 1ist(FALSE, TRUE), and list(h =
FALSE, v = TRUE) are all equivalent. A list with a single unnamed component raises an error.

The default scaleline calculation assures that all lines/regions fall within the axis limits of all
panels. A (typically user-supplied) scaleline that fails this criterion will raise a warning and
result in some panels with missing scale lines when scaleType = "line"”.

Value

An object of class c("scaledTrellis”,"trellis") if successful. Because it inherits from class
"trellis”, it can be saved and/or (automatically) plotted as usual.

NULL invisibly if an error occurs.

The scaledTrellis object is the original trellis object list with its panel and legend compo-
nents modified to add the scaling information. A new addScales component is also added that is
itself a list with (at least) two components named "orig" and "args". The first of these contains the
original panel and legend components of obj. The second contains either the names and values of
the arguments in the call or the computed values of those arguments. The most important of these
is the scaleline value, which can be extracted using the scaleline function by users who wish
to construct their own scale line legends.The remaining values are used by the update method for
scaledTrellis objects.

Legend Specification Details

The default legend is meant to be simple but serviceable. If there are scale lines in both directions,
it will space them horizontally for "top” and "bottom” locations and vertically for "right"” and
"left” to minimize the space they occupy.

A user-supplied legend component can be given in two forms: either as a (quoted) UTF-8 character
string, like this: "Scale lines are at £10° "; or as a so-called language object. The latter allows the

6 addScales

legend to use the (shortened to the ndig. legend number of digits) scaleline value. The former
does not.

A detailed discussion of language objects is beyond the scope of this Help page, but a simple
example provides a template that should usually suffice. Suppose, instead of the default, the desired
legend is:

Scale lines are at + xxx°,

where the scaleline value computed by addScales is to be substituted for the xxx. If xxx were
available in the environment of the call (the addScales invocation), then one could use something
like (as in the previous paragraph):

paste@(”Scale lines are at+",xxx,"”°")

as the legend argument. But xxx is not known, because addScales hasn’t calculated it yet. So
instead, wrap the pasteQ call by the quote function like this:
quote(paste@(”Scale lines are at+",sl,”°"))

‘sI’ (unquoted) must be used to replace the not-yet-known scaleline value. The quote function
will pass the whole unevaluated paste@ expression into addScales where the scaleline value
will be calculated and substituted for s1 and the whole expression then evaluated. Of course, any
R expression instead of paste@... can be used as long as sl is substituted wherever the actual
scaleline value is wanted.

Another, perhaps slightly clumsier, way to do this — but which generalizes to arbitrary scaleline
displays as text or graphical objects (so-called grobs) of any kind — is simply to run addScales with
legend = FALSE and extract the scaleline value(s) from the resulting object with the scaleline()
function. The value(s) can then be used in any construction the user wishes to create.

Author(s)

Bert Gunter <bgunter.4567@gmail.com>

See Also

xyplot, panel.refline, panel.text, scaleline, panel.addScales

Examples
#i##HH#H Artificial example to show why addScales() might be useful and
how it works
##
#iHH#HH Create a data set whose panels have different
#i#t#### centers and scales for y
X <- rep(0:10, 4)
scaling <- rep(c(1, 2, 5, 10), e = 11)
y <- sin(pi*x/1@)*scaling + scaling ## add some structure

f <- factor(rep(LETTERS[1:4], e = 11))

Now add noise proportional to data mean (= constant CV)
set.seed(91834)

addScales

y <-y + rnorm(44,sd = scaling/3)
Plot this with the default "same"” scaling and a loess curve

xyplot(y ~ x| f, layout = c(4,1), col = "darkblue”,
scales = list(alternating = 1, tck = c(1,0)),
panel = function(...){
panel.points(...)

panel.loess(..., span = .6, col.line = "blue")
»
##
Because of the different scaling, it's somewhat difficult to
see the common panel data behavior. With relation = "free”, it
becomes clearer:
##

trellis.par.set(plot.symbol = list(col = "darkblue"),
plot.line = list(col = "darkblue"))

xyplot(y ~ x| f, layout = c(4,1),
scales = list(alternating = 1, tck = c(1,0),
y = list(relation = "free")),
panel = function(...){
panel.points(...)
panel.loess(..., span = .6, col.line = "blue")

D

##
Unfortunately, the y-scales take up a lot of space and are
difficult to read. With more panels, they would completely
mess things up. To avoid this, don't draw them and use addScales
to layer visual scaling onto the panels.
##
freeplot <- xyplot(y ~ x| f, layout = c(4,1),
scales = list(alternating = 1, tck = ¢(1,0),
y = list(relation = "free", draw = FALSE)),
panel = function(...){
panel.points(...)
panel.loess(..., span = .6, col.line = "blue")

»
addScales(freeplot) ## using defaults

#H#

The labeled midline allows location comparison among the panels.

The fixed distance from the dashed scale lines to the midline are given
by the legend at top. This allows scaling among the panels to be

compared, because the more y varies within a panel, the closer together
these fixed scale lines become.

#H#

NOTE:

The addScales object inherits from class "trellis”, so can be

addScales

saved and plotted in the same way as 'freeplot' was. That is, the
following also works:
#H#

enhanced <- addScales(freeplot)

enhanced

Further panel options, which we use the update() method to change,

allow for color coded scale regions and midlines:

#H#

Warning: Nothing may display if your graphics device does not support
alpha transparency

update(enhanced, scaleType = "region”, colCode = "r")
#H
cleanup
rm(scaling, x, y, f, freeplot, enhanced)
#H

HHHEHE Some real examples #HHHHHEHEHEHE
B S S

Historical daily temperatures for Chicago, New York, and San Francisco.
data(CHITemps, NYCTemps, SFTemps)

preprocess.temps <- function(d){

meanTemp <- with(d, (TMAX + TMIN)/2)

Month <- months(as.Date(d$DATE))

z<- aggregate(meanTemp, list(
Month = factor(Month, levels = unique(Month)),
Year = as.numeric(substring(d$DATE,1,4))

), FUN = mean)

names(z)[3] <- "meanTemp"

z

}

Create a list containing the preprocessed data for all 3 cities
plotdat <- lapply(
list(CHI = CHITemps, NYC = NYCTemps, SF = SFTemps),
preprocess.temps)

Consider NYC. Because of monthly temperature variation, monthly temperature
histories are mostly whitespace with the default relation = "same".
Note also the use of the prepanel.trim function with defaults to remove
extreme y values.
#H#
Consider New York City
nyctemps <-
xyplot(meanTemp ~ Year|Month, type = "1", layout = c(3,4),
data = plotdat[[2]],
as.table = TRUE,
between = list(x=1, y=0),
reduce strip size
par.strip.text = list(lines = .8, cex = .7),

addScales

remove blank space for top axis
par.settings = list(layout.heights = list(axis.top = 0)),
prepanel = prepanel.trim, ## to remove possible extreme values
panel = function(...){

panel.grid(v = -1, h = @, col = "gray70")

panel.xyplot(...)

panel.loess(..., span = .5, col = "darkred”,
lwd = 1.5)
3
scales = list(axs = "i", alternating = 1, tck = c(1,0)),
xlab = "Year”,
ylab = "Average Temperature (\u@@BoF)",
main = "Mean Monthly Historical Temperatures in NYC”
)
nyctemps

Now try it with y-scale = "free' and addScales
##
nyctemps <- update(nyctemps,

scales = list(axs = "i", alternating =1,
tck = ¢(1,0),y = list(relation = "free”, draw = FALSE)))

addScales(nyctemps)

The historical temperature trend as the city

built up and modernized (more concrete and asphalt,people,

heat sources, etc.) is clearer and quantified by the

legend and scale lines; and the scale lines also show

that winter temperatures are clearly more variable than summer.
This was almost undetectable in the previous plot.

The same plot using region shading instead of scale lines.
Warning: May not display if your graphics device does not support
alpha transparency

addScales(nyctemps, scaleType = "region”)

... and using color coding for midlines and regions to better visually
distinguish their values...

#H#

addScales(nyctemps, scaleType = "region”, colCode = "r")

You can repeat the exercise with the other two cities if you like.
cleanup

rm(nyctemps, preprocess.temps, plotdat)

###HH#E Historical Crime Data #i#t###

data(USAcrime)

We explore the relationship beween property and violent crime over time.
Point transparency via the 'alpha' setting is used to code year

addScales

and the violent vs. property crime relationship is trellised by state
for a selection of states.

#H#

First with scales = "same”, the default..

state.smpl <= c("CA","TX","GA","CO" "VA","FL" "NY" "OH" "MO" "UT" "MA" "TN")
wh <- USAcrime$State %in% state.smpl
pcols <- hcl.colors(55, rev = TRUE)

crm <-xyplot(allViolent ~ allProperty|State, data = USAcrime[wh,],
subscripts = TRUE, as.table = TRUE,
layout = c(4,3), type = c("p", "g"),
cex= .75, pch =19,
col = pcols[USAcrime[wh, 'Year'] -1959],
par.strip.text = list(lines = .8, cex = .7),
between = list(x = 1),
scales = list(axs="i",alternating =1, tck = c(1,0)),
xlab = "Property Crime Rate (incidents/100,000 population)”,
ylab = "Violent Crime Rate (incidents/100,000 population)”,
main = paste@("Violent vs. Property Crime Rates from 1960-2014 For 12 States"”),

sub = "Point Darkness Codes Years: Darker = Later Years",
panel = function(subscripts,col,...)
panel.xyplot(col = col[subscripts],...)
)
crm

remove the grid and update with
"free" scales and no axes for both x and y

crm2 <- update(crm, type = "p",
scales = list(axs="i", relation = "free”, draw = FALSE))

Add scales for both x and y and color code midlines
addScales(crm2, scaleline = TRUE, colCode = "m")

Some features to note:

1. As one might expect, violent and property crime rates are

correlated.

##

2. Crime rates first increased, peaked, and then decreased over time.
#H#

3. For most states there appears to be a kind of 'hysteresis':

the trajectory of the crime decrease is shifted up (higher violent
crime rate for the same property rate) from when it increased.

This could have been due to a change in reporting procedures,

over time, for example.

#H#

4. The midline colors and labels show that NY has the highest

violent crime rate, but a modest property crime rate: Tennessee

has a middling violent crime rate but the lowest (with VA) property
crime rate.

##

cleanup

CHITemps 11

rm(state.smpl, wh, pcols, crm, crm2)

CHITemps Daily Chicago High and Low Temperatures in °F

Description
Chicago Midway Airport daily high and low temperatures from 1 March 1928 to 31 December
2019. There are some missing values, and the data are listed in chronological order.

Usage
CHITemps

Format
A data frame with 32152 observations on the following 3 variables.

DATE character vector of form "YYYY-MM-DD"
TMAX numeric, daily high temperature

TMIN numeric, daily low temperature

Source

NOAA National Centers for Environmental Information: Climate Data Online

https://www.ncdc.noaa.gov/cdo-web/

NYCTemps Daily New York City High and Low Temperatures in °F

Description
New York City Central Park daily high and low temperatures from 1 January 1870 to 12 December
2019. There are no missing values, and the data are listed in chronological order.

Usage
NYCTemps

Format
A data frame with 54786 observations on the following 3 variables.

DATE character vector of form "YYYY-MM-DD"
TMAX numeric, daily high temperature

TMIN numeric, daily low temperature

https://www.ncdc.noaa.gov/cdo-web/

12

Source

panel.addScales

NOAA National Centers for Environmental Information: Climate Data Online

https://www.ncdc.noaa.gov/cdo-web/

panel.addScales Default panelFUN For addScales.trellis

Description

Adds Labeled Midline and (Unlabeled) Lines or Shaded Regions Showing Plot Scaling to Trellis
Panels.

Usage

panel.addScales(

scaleline = c(0,0),

scaleType = c("line”, "region"),

ndig.midline = c(h = 2, v = 2),

col.midline "red",

adj.midline = c(-0.1, -0.25),

midline.aes = list(lwd = if(colCode == "n") 1.5 else 3),
midline.label.aes =list(

col = if(colCode == "n")col.midline else "black”,
fontface = "bold”,
cex = .8),

scaleline.aes = list(lty = "dashed”, col = "purple”),
region.aes = list(fill = "tan”, alpha = .20),
COlCOde = C(Ilnll, Ilmll’ Ilr.ll)’

palette = hcl.colors(n = 100, "Viridis"),

)

Arguments

scaleline A numeric vector of length 1 or 2 giving the distance from the scalelines to
the midline(s); or equivalently, the half width(s) of the shaded scale regions.
Signs are ignored. If two values are given, the first is the (vertical) distance to
the horizontal midline and the second is the (horizontal) distance to the vertical
midline. If a single value is given,it is assumed to be the first and the second is
0. 0 or NA mean: don’t add that scaleline/region and midline.

scaleType Whether the scale distance from the midline is shown by scale lines or as a

shaded region. Note: Use of shaded regions requires that the graphics device
support alpha transparency. Regions will not be shown properly — or at all — if it
does not.

https://www.ncdc.noaa.gov/cdo-web/

panel.addScales 13

ndig.midline Named or unnamed pair of integer arguments, or a single integer that will be
replicated. The names must be (and are assumed to be if unnamed) "h" and
"v" in that order and give the number of significant digits to show in the midline
labels for the corresponding midlines. Non-integer values are rounded to integer,
and values outside the range of 0 to 15digits are converted to 2. However, see
the Details section below for a caveat.

col.midline Midline color. Can be given in any form suitable for the base col parameter of
par.
adj.midline numeric: The adj vector of length two that will be fed to panel. text to posi-

tion the midline label with respect to the midline. c(.5, .5) centers the label on
the midline and lower limit of the relevant axis (x-axis for a horizontal midline,
so left-center; and y-axis for a vertical midline, so bottom-center). See the base
text function for details.

midline.aes List of aesthetics of midline: 1wd, 1ty, alpha, but not col, as this is already
specified in the col.midline argument.

midline.label.aes
List of aesthetics of the midline label: col, cex, font, fontface, etc., but
not adj, as this is handled by adj.midline. See panel.text for argument
details.

scaleline.aes List of aesthetics of the scale lines. Same as for midline. aes except that col
can be specified.

region.aes fill and alpha parameters for shaded scale region.

colCode character: Should the midlines and possibly also the scale regions be color
coded by the midline value in the range of all midline values? Doing this in
addition to labeling their values can improve visual comparison of midline levels

among the panels. "m" means color code just the midlines; "r" means color code
both midlines and scale regions; "n", the default, means do not color code.

palette A vector of colors to use for color coding from low to high values. See heat.colors
for how to conveniently specify color palettes.

Additional arguments passed down to the panel function, mostly ignored here.
But see the note below for an exception.

Details

Midline values with significant digits that change precision by “small” amounts relative to the
scaleline values are zapped by the zapsmall () function to remove extra digits in the display to
improve readability. For example, amidline value of 1.23 would be shown as 1 when ndig.midline
=2 and scaleline = 100.

Value

No value is returned. This panel function is added to the existing panel function component of the
trellis object on which addScales dispatches. It adds midline(s) and scale lines or regions to the
panels when they are plotted.

14 prepanel.trim

Note

Alist,all.panel.limits = list(h=obj$y.limits, v =o0bj$x.limits) with these components
of the trellis object list is always passed to the panel function (as part of the ...list). This makes
available all panel limits to the panel function, not just those of its own panel. This list is used
for color coding midlines and/or scale regions, but is ignored otherwise here. Alternative panel
functions may choose to use this information in other ways.

Note

For the xxx . aes arguments, when the user explicitly specifies the list, any component not specified
will default to its formal panel.addScales argument value if that exists, or to the relevant panel
function default if not, i.e. panel.refline for the lines and panel. text for the labels.

Author(s)

Bert Gunter <bgunter.4567@gmail.com>

See Also

colors, par, panel.refline, panel. text, text

prepanel.trim Lattice Prepanel Function to Trim Panel Limits

Description

Trims numeric x and or y limits to specified quantiles. May be useful when unusual extreme values
distort the scales and obscure informative features of the data. Scales for factors are not affected.

Usage

prepanel.trim(x, y, trim.x = @, trim.y = 0.05, min.trim = 20, ...)
Arguments

X,y x and y values, numeric or factor.

trim.x, trim.y Numeric trimming proportions, p, with0 <=p < .5.
trim.x and trim.y can be different.

min.trim The minimum number of data values needed before trimming after removing
‘NAs’ and ‘Infs’. Otherwise the range of the data is returned (min and max of
all the remaining finite values).

Other arguments, usually ignored

revert 15

Details

If the trimming proportion is p, the limits returned are essentially quantile(p, 1-p, type = 8).
See quantile for details. So, for example if p = .1, roughly 10% of the lowest and 10% of the
highest values are removed, and the range of the middle 80% of the data are returned. More pre-
cisely (quoting from xyplot), “... the actual limits of the panels are guaranteed to include the limits
returned by the prepanel function” —i.e., these quantiles.
Value

For numeric data, a numeric vector of length 2, as would be returned by range. For a factor, a list
with components yat and ylim, as described in the prepanel section of xyplot

Note

No banking calculations are done.

Author(s)

Bert Gunter <bgunter.4567@gmail.com>

See Also

xyplot, prepanel.default.xyplot, quantile

revert Revert A Scaled Trellis Plot To Its Previous Unscaled Form

Description
S3 generic and scaledTrellis method to remove all scaling information from a scaledTrellis ob-
ject, returning the prior unscaled trellis object.

Usage

revert(obj,...)
S3 method for class 'scaledTrellis'

revert(obj, ...)
Arguments
obj An object inheriting from class scaledTrellis.

Currently ignored

Details

Returns the last version of the trellis object with all addScales scales and legends removed.
Note that this is not the original trellis object if that was subsequently modified by update calls.
See the examples.

16 revert

Value

A trellis object that can be printed/plotted as usual.

Author(s)

Bert Gunter <bgunter.4567@gmail.com>

See Also

update.scaledTrellis

Examples

Using simple artificial data
set.seed (2233)
X <- rep(1:10,4)
y <= rnorm(40, mean = rep(seq(10, 25, by = 5), each
sd = rep(1:4, each = 10))
f <- rep(c("AA","BB","CC","DD"), each = 10)
##
trellis plot the data with "free” y axis sxaling
orig <- xyplot(y ~ x|f, type = c("1","p"), col.line = "black”,
scales = list(alternating =1,
y = list(relation = "free")),
as.table = TRUE,
layout = c(2,2),

10),

main = "revert() Example”
)
Plot it
orig

Remove the y axis scales and add horizontal scalelines
orig <- update(orig, scales = list(alternating =1,

y = list(relation = "free”, draw = FALSE)))
updl <- addScales(orig)
Plot it
upd1
class(upd1)

revert

upd2 <- revert(updl)
Plot it

upd?2

class(upd2)

clean up
rm(x, y, f, orig, updl, upd2)

scaleline 17

scaleline Extract scaleline list from scaledTrellis object

Description

Extracts the scaleline list from an object inheriting from class scaledTrellis. This is useful if the
user wants to create their own legend rather than using that generated by addScales.

Usage

scaleline(obj, ...)

S3 method for class 'scaledTrellis'

scaleline(obj, ...)
Arguments

obj scaledTrellis object

Possible further arguments for future methods. Ignored at present.

Details

Extracts the scaleline list from a scaledTrellis object. Note that the actual calculated values
are returned, not the rounded/formatted values that would be shown in the legend.

Value

A list with components:

h numeric: distance between horizontal scalelines and midline

v numeric: distance between vertical scalelines and midline

Author(s)

Bert Gunter <bgunter.4567@gmail.com>

See Also
addScales

Examples

set.seed(8763)

simp <- xyplot(rnorm(1@) ~ runif(10))
Plot it

simp

Add horizontal and vertical scale lines
ad <-addScales(simp,

18 SFTemps

scaleline = TRUE,,

ndig.midline = 1 ## only 1 digit will be shown
)

Plot it

ad

But here are the actual values

(shown to default number of digits given
by "digits” argument of print.default)
scaleline(ad)

cleanup
rm(simp, ad)

SFTemps Daily San Francisco High and Low Temperatures in °F

Description

San Francisco daily high and low temperatures from 1 March 1949 to 28 February 2020. There are
some missing values, and the data are listed in chronological order.

Usage

SFTemps

Format

A data frame with 22406 observations on the following 3 variables.

DATE character vector of form "YYYY-MM-DD"
TMAX numeric, daily high temperature

TMIN numeric, daily low temperature

Source

NOAA National Centers for Environmental Information: Climate Data Online

https://www.ncdc.noaa.gov/cdo-web/

https://www.ncdc.noaa.gov/cdo-web/

update.scaledTrellis 19

update.scaledTrellis Update Method for scaledTrellis Objects

Description

Updates both addScale parameters, including those passed to the panelFUN, and components of
the original trellis object. Note that this may produce undesirable results if the axis limits are
changed via updating trellis parameters without updating scaleline limits. See the examples.

Usage
S3 method for class 'scaledTrellis'
update(object, ...)
Arguments
object scaledTrellis object: The object on which method dispatch is carried out.

Any number of name = value pairs giving arguments that will be used to update
object
Details

Arguments to addScales and those to (the most recent version of) the original trellis object are
separated and update. trellis is first called on the latter. This means that any trellis argument
changes must satisfy the restrictions on what update.trellis can change, basically, anything but
the data used for plotting. All addScales and panelFUN parameters can be changed as long as such
changes are possible (e.g. no scale lines can be added for factors.

Value
The updated object of class c("scaledTrellis”, "trellis") if successful.
The unmodified object if an error occurs.

Author(s)

Bert Gunter <bgunter.4567@gmail.com>

See Also

update.trellis, addScales, panel.addScales

Examples

Replicate the USAcrimes example in ?addScales

#H#

data(USAcrime)

state.smpl <- c("CA","TX","GA","CO","VA","FL","NY","OH","MO","UT", "MA" ,"TN")
wh <- USAcrime$State %in% state.smpl

20

pcols <- hcl.colors(n = 55, rev = TRUE)

crm <-xyplot(allViolent ~ allProperty|State, data = USAcrimel[wh,],

)

crm

subscripts = TRUE,

as.table = TRUE,

layout = c(4,3), type = c("p", "g"),
cex= .75, pch =19,

col = pcols[USAcrime[wh, 'Year'] -1959],

par.strip.text = list(lines = .7, cex
between = list(x = 1),

scales = list(axs="i",relation = "free"”, draw = FALSE),

update.scaledTrellis

xlab = "Property Crime Rate (incidents/100,000 population)”,
ylab = "Violent Crime Rate (incidents/100,000 population)”,

panel = function(subscripts,col,...)

panel.xyplot(col = col[subscripts],...)

ads.1 <- addScales(crm, scaleline = TRUE)
ads.1 ## plot it

Change the plotting symbol, add a fitted line to the panel,

remove the grid, change the layout,

color code the midline and use shaded scale regions instead

of lines, and put the legend on the right.

##

Note that the arguments can be given in any order.

(automatically plotted since no return value)

update(ads.1, pch = 19,layout = c(3,4), type = "p",

)

nan

non

colCode = "m", scaleType = "reg"”, legend.loc
panel = function(x, y, ...){
panel.xyplot(x, y,...)
panel.abline(reg = Im(y ~ x), col = "darkred”, 1lwd = 2)

main = paste@("Violent vs. Property Crime Rates from 1960-2014 For 12 States"”),
sub = "Point Darkness Codes Years: Darker = Later Years",

example of problems that can occur when updating trellis scales without
updating addScales.

#it

Example from addScales() help:
X <- rep(0:10, 4)
scaling <- rep(c(1, 2, 5, 10), e = 11)

y <- sin(pi*x/10@)*scaling + scaling ## add some structure

f <- factor(rep(LETTERS[1:4], e = 11))

Now add noise proportional to data mean (= constant CV)

set.seed(91834)
y <=y + rnorm(44,sd = scaling/3)

Plot this with the default "same" scaling and a loess curve

samescale <- xyplot(y ~ x| f, layout = c(4,1), col = "darkblue"”,
scales = list(alternating = 1, tck = c(1,0)),

USAcrime 21

panel = function(...){
panel.points(...)
panel.loess(..., span = .6, col.line = "blue")

b))

samescale
Call addScales and then update scale. This uses update.scaledTrellis:

update(addScales(samescale, scaleType = "region”),
scales = list(y = list(relation = "free”, draw = FALSE)))

This will generate a warning message, shown after the examples complete,
and useless scaleline regions.

##

Repeat, but now update the scaleline argument of addScales() also:

update(addScales(samescale, scaleType = "region”),

scaleline = list(h = TRUE, v = FALSE),

scales = list(y = list(relation = "free", draw = FALSE))
)

The updated scale regions are now appropriate.

This could also have been done by first updating the trellis object
(which would use the update.trellis method) and **then*x calling
addScales() on that, i.e.

addScales(update(samescale, scales =
list(y = list(relation = "free"”, draw = FALSE))),
scaleType = "region")
cleanup
rm(ads.1, crm, pcols, wh, state.smpl, samescale,
scaling, x, y, f)

USAcrime USA Property and Violent Crime Data, 1960 - 2014

Description

USA crime rates as incidents/100,000 population by state for several categories of property and
violent crimes from 1960 - 2014 (except for New York, which starts in 1965).

Usage

data("USAcrime")

Format

A data frame with 2745 observations on the following 12 variables.

22 USAcrime

Year numeric

State afactor with state.abb as its levels

Population estimated population, numeric

allViolent overall estimated violent crime rate, numeric
Homicide numeric

Rape numeric

Robbery numeric

Assault numeric

allProperty overall estimated property crime rate, numeric
Burglary numeric

Larceny numeric

vehicleTheft numeric

Details
Note that these are estimates, and there are various caveats and inconsistencies in definitions and
reporting methods among states and over time. Consult the source for details.

Note

The data are ordered by state and year within state. The levels of the (unordered) State factor are
state.abb but in the full state name order of state.name. Hence, for example, AL will procede
AK and AZ will precede AR in the default ordering of the levels, because Alabama precedes Alaska
and Arizona precedes Arkansas in lexicographic order.

Source

FBI Uniform Crime Reporting Statistics https://www.ucrdatatool.gov/Search/Crime/State/
StatebyState.cfm

https://www.ucrdatatool.gov/Search/Crime/State/StatebyState.cfm
https://www.ucrdatatool.gov/Search/Crime/State/StatebyState.cfm

Index

* aplot
addScales, 3
panel.addScales, 12
revert, 15
scaleline, 17
update.scaledTrellis, 19
+ datasets
CHITemps, 11
NYCTemps, 11
SFTemps, 18
USAcrime, 21
* dplot
prepanel.trim, 14
* hplot
addScales, 3
panel.addScales, 12
prepanel.trim, 14
revert, 15
scaleline, 17
update.scaledTrellis, 19
* iplot
revert, 15
+ methods
revert, 15
scaleline, 17
update.scaledTrellis, 19
* package
addScales-package, 2

addScales, 3,17, 19
addScales-package, 2

CHITemps, 11
colors, 14

heat.colors, 13
NYCTemps, 11

panel.addScales, 5, 6, 12, 19
panel.refline, 6, 14

23

panel.text, 4,6, 13, 14
par, 14
prepanel.default.xyplot, 15
prepanel.trim, 14

quantile, 15
quote, 6

revert, 15

scaleline, 5, 6, 17
SFTemps, 18

text, 13, 14

update.scaledTrellis, 16, 19
update.trellis, 19
USAcrime, 21

xyplot, 4, 6, 15

	addScales-package
	addScales
	CHITemps
	NYCTemps
	panel.addScales
	prepanel.trim
	revert
	scaleline
	SFTemps
	update.scaledTrellis
	USAcrime
	Index

