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CDatanet-package The CDatanet package

Description

The CDatanet package simulates and estimates peer effect models and network formation models.
The class of peer effect models includes linear-in-means models (Lee, 2004; Lee et al., 2010),
Tobit models (Xu and Lee, 2015), and discrete numerical data models (Houndetoungan, 2024). The
network formation models include pair-wise regressions with degree heterogeneity (Graham, 2017;
Yan et al., 2019) and exponential random graph models (Mele, 2017). To make the computations
faster CDatanet uses C++ through the Rcpp package (Eddelbuettel et al., 2011).

Author(s)

Maintainer: Aristide Houndetoungan <ahoundetoungan@gmail.com>

References

Eddelbuettel, D., & Francois, R. (2011). Rcpp: Seamless R and C++ integration. Journal of Statis-
tical Software, 40(8), 1-18, doi:10.18637/jss.v040.i08.

Houndetoungan, E. A. (2024). Count Data Models with Social Interactions under Rational Expec-
tations. Available at SSRN 3721250, doi:10.2139/ssrn.3721250.

Lee, L. F. (2004). Asymptotic distributions of quasi-maximum likelihood estimators for spatial
autoregressive models. Econometrica, 72(6), 1899-1925, doi:10.1111/j.14680262.2004.00558.x.
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https://doi.org/10.1111/j.1468-0262.2004.00558.x
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Lee, L. F., Liu, X., & Lin, X. (2010). Specification and estimation of social interaction models with
network structures. The Econometrics Journal, 13(2), 145-176, doi:10.1111/j.1368423X.2010.00310.x

Xu, X., & Lee, L. F. (2015). Maximum likelihood estimation of a spatial autoregressive Tobit
model. Journal of Econometrics, 188(1), 264-280, doi:10.1016/j.jeconom.2015.05.004.

Graham, B. S. (2017). An econometric model of network formation with degree heterogeneity.
Econometrica, 85(4), 1033-1063, doi:10.3982/ECTA12679.

Mele, A. (2017). A structural model of dense network formation. Econometrica, 85(3), 825-850,
doi:10.3982/ECTA10400.

Yan, T., Jiang, B., Fienberg, S. E., & Leng, C. (2019). Statistical inference in a directed net-
work model with covariates. Journal of the American Statistical Association, 114(526), 857-868,
doi:10.1080/01621459.2018.1448829.

See Also

Useful links:

• https://github.com/ahoundetoungan/CDatanet

• Report bugs at https://github.com/ahoundetoungan/CDatanet/issues

cdnet Estimating count data models with social interactions under rational
expectations using the NPL method

Description

cdnet estimates count data models with social interactions under rational expectations using the
NPL algorithm (see Houndetoungan, 2024).

Usage

cdnet(
formula,
Glist,
group,
Rmax,
Rbar,
starting = list(lambda = NULL, Gamma = NULL, delta = NULL),
Ey0 = NULL,
ubslambda = 1L,
optimizer = "fastlbfgs",
npl.ctr = list(),
opt.ctr = list(),
cov = TRUE,
data

)

https://doi.org/10.1111/j.1368-423X.2010.00310.x
https://doi.org/10.1016/j.jeconom.2015.05.004
https://doi.org/10.3982/ECTA12679
https://doi.org/10.3982/ECTA10400
https://doi.org/10.1080/01621459.2018.1448829
https://github.com/ahoundetoungan/CDatanet
https://github.com/ahoundetoungan/CDatanet/issues
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Arguments

formula a class object formula: a symbolic description of the model. formula must
be as, for example, y ~ x1 + x2 + gx1 + gx2 where y is the endogenous vector
and x1, x2, gx1 and gx2 are control variables, which can include contextual
variables, i.e. averages among the peers. Peer averages can be computed using
the function peer.avg.

Glist adjacency matrix. For networks consisting of multiple subnets, Glist can be a
list of subnets with the m-th element being an ns × ns-adjacency matrix, where
ns is the number of nodes in the m-th subnet. For heterogeneous peer effects
(length(unique(group)) = h > 1), the m-th element must be a list of h2 ns ×
ns-adjacency matrices corresponding to the different network specifications (see
Houndetoungan, 2024). For heterogeneous peer effects in the case of a single
large network, Glist must be a one-item list. This item must be a list of h2

network specifications. The order in which the networks in are specified are
important and must match sort(unique(group)) (see examples).

group the vector indicating the individual groups. The default assumes a common
group. For 2 groups; that is, length(unique(group)) = 2, (e.g., A and B), four
types of peer effects are defined: peer effects of A on A, of A on B, of B on A, and
of B on B.

Rmax an integer indicating the theoretical upper bound of y. (see the model specifica-
tion in details).

Rbar an L-vector, where L is the number of groups. For large Rmax the cost function
is assumed to be semi-parametric (i.e., nonparametric from 0 to R̄ and quadratic
beyond R̄).

starting (optional) a starting value for θ = (λ,Γ′, δ′)′, where λ, Γ, and δ are the param-
eters to be estimated (see details).

Ey0 (optional) a starting value for E(y).

ubslambda a positive value indicating the upper bound of
∑S

s=1 λs > 0.

optimizer is either fastlbfgs (L-BFGS optimization method of the package RcppNu-
merical), nlm (referring to the function nlm), or optim (referring to the function
optim). Arguments for these functions such as, control and method can be set
via the argument opt.ctr.

npl.ctr a list of controls for the NPL method (see details).

opt.ctr a list of arguments to be passed in optim_lbfgs of the package RcppNumeri-
cal, nlm or optim (the solver set in optimizer), such as maxit, eps_f, eps_g,
control, method, etc.

cov a Boolean indicating if the covariance should be computed.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which cdnet is called.

Details

Model:
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The count variable yi take the value r with probability.

Pir = F (

S∑
s=1

λsȳ
e,s
i + z′iΓ− ah(i),r)− F (

S∑
s=1

λsȳ
e,s
i + z′iΓ− ah(i),r+1).

In this equation, zi is a vector of control variables; F is the distribution function of the standard
normal distribution; ȳe,si is the average of E(y) among peers using the s-th network definition;
ah(i),r is the r-th cut-point in the cost group h(i).

The following identification conditions have been introduced:
∑S

s=1 λs > 0, ah(i),0 = −∞,
ah(i),1 = 0, and ah(i),r = ∞ for any r ≥ Rmax + 1. The last condition implies that Pir = 0
for any r ≥ Rmax + 1. For any r ≥ 1, the distance between two cut-points is ah(i),r+1 −
ah(i),r = δh(i),r +

∑S
s=1 λs As the number of cut-point can be large, a quadratic cost function

is considered for r ≥ R̄h(i), where R̄ = (R̄1, ..., R̄L). With the semi-parametric cost-function,
ah(i),r+1 − ah(i),r = δ̄h(i) +

∑S
s=1 λs.

The model parameters are: λ = (λ1, ..., λS)′, Γ, and δ = (δ′1, ..., δ
′
L)′, where δl = (δl,2, ..., δl,R̄l

, δ̄l)
′

for l = 1, ..., L. The number of single parameters in δl depends on Rmax and R̄l. The components
δl,2, ..., δl,R̄l

or/and δ̄l must be removed in certain cases.
If Rmax = R̄l ≥ 2, then δl = (δl,2, ..., δl,R̄l

)′.
If Rmax = R̄l = 1 (binary models), then δl must be empty.
If Rmax > R̄l = 1, then δl = δ̄l.

npl.ctr:
The model parameters are estimated using the Nested Partial Likelihood (NPL) method. This
approach starts with a guess of θ and E(y) and constructs iteratively a sequence of θ and E(y).
The solution converges when the `1-distance between two consecutive θ and E(y) is less than a
tolerance.
The argument npl.ctr must include

tol the tolerance of the NPL algorithm (default 1e-4),
maxit the maximal number of iterations allowed (default 500),
print a boolean indicating if the estimate should be printed at each step.
S the number of simulations performed use to compute integral in the covariance by important

sampling.

Value

A list consisting of:

info a list of general information about the model.

estimate the NPL estimator.

Ey E(y), the expectation of y.

GEy the average of E(y) friends.

cov a list including (if cov == TRUE) parms the covariance matrix and another list
var.comp, which includes Sigma, as Σ, and Omega, as Ω, matrices used for
compute the covariance matrix.

details step-by-step output as returned by the optimizer.
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References

Houndetoungan, E. A. (2024). Count Data Models with Social Interactions under Rational Expec-
tations. Available at SSRN 3721250, doi:10.2139/ssrn.3721250.

See Also

sart, sar, simcdnet.

Examples

set.seed(123)
M <- 5 # Number of sub-groups
nvec <- round(runif(M, 100, 200))
n <- sum(nvec)

# Adjacency matrix
A <- list()
for (m in 1:M) {

nm <- nvec[m]
Am <- matrix(0, nm, nm)
max_d <- 30 #maximum number of friends
for (i in 1:nm) {
tmp <- sample((1:nm)[-i], sample(0:max_d, 1))
Am[i, tmp] <- 1

}
A[[m]] <- Am

}
Anorm <- norm.network(A) #Row-normalization

# X
X <- cbind(rnorm(n, 1, 3), rexp(n, 0.4))

# Two group:
group <- 1*(X[,1] > 0.95)

# Networks
# length(group) = 2 and unique(sort(group)) = c(0, 1)
# The networks must be defined as to capture:
# peer effects of `0` on `0`, peer effects of `1` on `0`
# peer effects of `0` on `1`, and peer effects of `1` on `1`
G <- list()
cums <- c(0, cumsum(nvec))
for (m in 1:M) {

tp <- group[(cums[m] + 1):(cums[m + 1])]
Am <- A[[m]]
G[[m]] <- norm.network(list(Am * ((1 - tp) %*% t(1 - tp)),

Am * ((1 - tp) %*% t(tp)),
Am * (tp %*% t(1 - tp)),
Am * (tp %*% t(tp))))

}

https://doi.org/10.2139/ssrn.3721250
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# Parameters
lambda <- c(0.2, 0.3, -0.15, 0.25)
Gamma <- c(4.5, 2.2, -0.9, 1.5, -1.2)
delta <- rep(c(2.6, 1.47, 0.85, 0.7, 0.5), 2)

# Data
data <- data.frame(X, peer.avg(Anorm, cbind(x1 = X[,1], x2 = X[,2])))
colnames(data) = c("x1", "x2", "gx1", "gx2")

ytmp <- simcdnet(formula = ~ x1 + x2 + gx1 + gx2, Glist = G, Rbar = rep(5, 2),
lambda = lambda, Gamma = Gamma, delta = delta, group = group,
data = data)

y <- ytmp$y
hist(y, breaks = max(y) + 1)
table(y)

# Estimation
est <- cdnet(formula = y ~ x1 + x2 + gx1 + gx2, Glist = G, Rbar = rep(5, 2), group = group,

optimizer = "fastlbfgs", data = data,
opt.ctr = list(maxit = 5e3, eps_f = 1e-11, eps_g = 1e-11))

summary(est)

homophili.data Converting data between directed network models and symmetric net-
work models.

Description

homophili.data converts the matrix of explanatory variables between directed network models
and symmetric network models.

Usage

homophili.data(data, nvec, to = c("lower", "upper", "symmetric"))

Arguments

data is the matrix or data.frame of the explanatory variables of the network forma-
tion model. This corresponds to the X matrix in homophily.fe or in homophily.re.

nvec is a vector of the number of individuals in the networks.
to indicates the direction of the conversion. For a matrix of explanatory variable

X (n*(n-1) rows), one can can select lower triangular entries (to = "lower")
or upper triangular entries (to = "upper). For a triangular X (n*(n-1)/2
rows), one can convert to a full matrix of n*(n-1) rows by using symmetry
(to = "symmetric").

Value

the transformed data.frame.
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homophily.fe Estimating network formation models with degree heterogeneity: the
fixed effect approach

Description

homophily.fe implements a Logit estimator for network formation model with homophily. The
model includes degree heterogeneity using fixed effects (see details).

Usage

homophily.fe(
network,
formula,
data,
symmetry = FALSE,
fe.way = 1,
init = NULL,
opt.ctr = list(maxit = 10000, eps_f = 1e-09, eps_g = 1e-09),
print = TRUE

)

Arguments

network matrix or list of sub-matrix of social interactions containing 0 and 1, where links
are represented by 1

formula an object of class formula: a symbolic description of the model. The formula
should be as for example ~ x1 + x2 where x1, x2 are explanatory variable of
links formation. If missing, the model is estimated with fixed effects only.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which homophily is called.

symmetry indicates whether the network model is symmetric (see details).

fe.way indicates whether it is a one-way or two-way fixed effect model. The expected
value is 1 or 2 (see details).

init (optional) either a list of starting values containing beta, an K-dimensional vec-
tor of the explanatory variables parameter, mu an n-dimensional vector, and nu
an n-dimensional vector, where K is the number of explanatory variables and n
is the number of individuals; or a vector of starting value for c(beta, mu, nu).

opt.ctr (optional) is a list of maxit, eps_f, and eps_g, which are control parameters
used by the solver optim_lbfgs, of the package RcppNumerical.

print Boolean indicating if the estimation progression should be printed.
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Details

Let pij be a probability for a link to go from the individual i to the individual j. This probability is
specified for two-way effect models (fe.way = 2) as

pij = F (x′ijβ + µj + νj)

where F is the cumulative of the standard logistic distribution. Unobserved degree heterogeneity
is captured by µi and νj . The latter are treated as fixed effects (see homophily.re for random
effect models). As shown by Yan et al. (2019), the estimator of the parameter β is biased. A bias
correction is then necessary and is not implemented in this version. However the estimator of µi

and νj are consistent.
For one-way fixed effect models (fe.way = 1), νj = µj . For symmetric models, the network is not
directed and the fixed effects need to be one way.

Value

A list consisting of:

model.info list of model information, such as the type of fixed effects, whether the model is
symmetric, number of observations, etc.

estimate maximizer of the log-likelihood.

loglike maximized log-likelihood.

optim returned value of the optimization solver, which contains details of the optimiza-
tion. The solver used is optim_lbfgs of the package RcppNumerical.

init returned list of starting value.

loglike(init) log-likelihood at the starting value.

References

Yan, T., Jiang, B., Fienberg, S. E., & Leng, C. (2019). Statistical inference in a directed net-
work model with covariates. Journal of the American Statistical Association, 114(526), 857-868,
doi:10.1080/01621459.2018.1448829.

See Also

homophily.re.

Examples

set.seed(1234)
M <- 2 # Number of sub-groups
nvec <- round(runif(M, 20, 50))
beta <- c(.1, -.1)
Glist <- list()
dX <- matrix(0, 0, 2)
mu <- list()
nu <- list()
Emunu <- runif(M, -1.5, 0) #expectation of mu + nu

https://doi.org/10.1080/01621459.2018.1448829
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smu2 <- 0.2
snu2 <- 0.2
for (m in 1:M) {

n <- nvec[m]
mum <- rnorm(n, 0.7*Emunu[m], smu2)
num <- rnorm(n, 0.3*Emunu[m], snu2)
X1 <- rnorm(n, 0, 1)
X2 <- rbinom(n, 1, 0.2)
Z1 <- matrix(0, n, n)
Z2 <- matrix(0, n, n)

for (i in 1:n) {
for (j in 1:n) {

Z1[i, j] <- abs(X1[i] - X1[j])
Z2[i, j] <- 1*(X2[i] == X2[j])

}
}

Gm <- 1*((Z1*beta[1] + Z2*beta[2] +
kronecker(mum, t(num), "+") + rlogis(n^2)) > 0)

diag(Gm) <- 0
diag(Z1) <- NA
diag(Z2) <- NA
Z1 <- Z1[!is.na(Z1)]
Z2 <- Z2[!is.na(Z2)]

dX <- rbind(dX, cbind(Z1, Z2))
Glist[[m]] <- Gm
mu[[m]] <- mum
nu[[m]] <- num

}

mu <- unlist(mu)
nu <- unlist(nu)

out <- homophily.fe(network = Glist, formula = ~ -1 + dX, fe.way = 2)
muhat <- out$estimate$mu
nuhat <- out$estimate$nu
plot(mu, muhat)
plot(nu, nuhat)

homophily.re Estimating network formation models with degree heterogeneity: the
Bayesian random effect approach

Description

homophily.re implements a Bayesian Probit estimator for network formation model with ho-
mophily. The model includes degree heterogeneity using random effects (see details).
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Usage

homophily.re(
network,
formula,
data,
symmetry = FALSE,
group.fe = FALSE,
re.way = 1,
init = list(),
iteration = 1000,
print = TRUE

)

Arguments

network matrix or list of sub-matrix of social interactions containing 0 and 1, where links
are represented by 1.

formula an object of class formula: a symbolic description of the model. The formula
should be as for example ~ x1 + x2 where x1, x2 are explanatory variable of
links formation.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which homophily is called.

symmetry indicates whether the network model is symmetric (see details).

group.fe indicates whether the model includes group fixed effects.

re.way indicates whether it is a one-way or two-way fixed effect model. The expected
value is 1 or 2 (see details).

init (optional) list of starting values containing beta, an K-dimensional vector of
the explanatory variables parameter, mu an n-dimensional vector, and nu an n-
dimensional vector, smu2 the variance of mu, and snu2 the variance of nu, where
K is the number of explanatory variables and n is the number of individuals.

iteration the number of iterations to be performed.

print boolean indicating if the estimation progression should be printed.

Details

Let pij be a probability for a link to go from the individual i to the individual j. This probability is
specified for two-way effect models (fe.way = 2) as

pij = F (x′ijβ + µj + νj)

where F is the cumulative of the standard normal distribution. Unobserved degree heterogeneity is
captured by µi and νj . The latter are treated as random effects (see homophily.fe for fixed effect
models).
For one-way random effect models (fe.way = 1), νj = µj . For symmetric models, the network is
not directed and the random effects need to be one way.



12 homophily.re

Value

A list consisting of:

model.info list of model information, such as the type of random effects, whether the model
is symmetric, number of observations, etc.

posterior list of simulations from the posterior distribution.

init returned list of starting values.

See Also

homophily.fe.

Examples

set.seed(1234)
library(MASS)
M <- 4 # Number of sub-groups
nvec <- round(runif(M, 100, 500))
beta <- c(.1, -.1)
Glist <- list()
dX <- matrix(0, 0, 2)
mu <- list()
nu <- list()
cst <- runif(M, -1.5, 0)
smu2 <- 0.2
snu2 <- 0.2
rho <- 0.8
Smunu <- matrix(c(smu2, rho*sqrt(smu2*snu2), rho*sqrt(smu2*snu2), snu2), 2)
for (m in 1:M) {

n <- nvec[m]
tmp <- mvrnorm(n, c(0, 0), Smunu)
mum <- tmp[,1] - mean(tmp[,1])
num <- tmp[,2] - mean(tmp[,2])
X1 <- rnorm(n, 0, 1)
X2 <- rbinom(n, 1, 0.2)
Z1 <- matrix(0, n, n)
Z2 <- matrix(0, n, n)

for (i in 1:n) {
for (j in 1:n) {

Z1[i, j] <- abs(X1[i] - X1[j])
Z2[i, j] <- 1*(X2[i] == X2[j])

}
}

Gm <- 1*((cst[m] + Z1*beta[1] + Z2*beta[2] +
kronecker(mum, t(num), "+") + rnorm(n^2)) > 0)

diag(Gm) <- 0
diag(Z1) <- NA
diag(Z2) <- NA
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Z1 <- Z1[!is.na(Z1)]
Z2 <- Z2[!is.na(Z2)]

dX <- rbind(dX, cbind(Z1, Z2))
Glist[[m]] <- Gm
mu[[m]] <- mum
nu[[m]] <- num

}

mu <- unlist(mu)
nu <- unlist(nu)

out <- homophily.re(network = Glist, formula = ~ dX, group.fe = TRUE,
re.way = 2, iteration = 1e3)

# plot simulations
plot(out$posterior$beta[,1], type = "l")
abline(h = cst[1], col = "red")
plot(out$posterior$beta[,2], type = "l")
abline(h = cst[2], col = "red")
plot(out$posterior$beta[,3], type = "l")
abline(h = cst[3], col = "red")
plot(out$posterior$beta[,4], type = "l")
abline(h = cst[4], col = "red")

plot(out$posterior$beta[,5], type = "l")
abline(h = beta[1], col = "red")
plot(out$posterior$beta[,6], type = "l")
abline(h = beta[2], col = "red")

plot(out$posterior$sigma2_mu, type = "l")
abline(h = smu2, col = "red")
plot(out$posterior$sigma2_nu, type = "l")
abline(h = snu2, col = "red")
plot(out$posterior$rho, type = "l")
abline(h = rho, col = "red")

i <- 10
plot(out$posterior$mu[,i], type = "l")
abline(h = mu[i], col = "red")
plot(out$posterior$nu[,i], type = "l")
abline(h = nu[i], col = "red")

norm.network Creating objects for network models

Description

vec.to.mat creates a list of square matrices from a given vector. The elements of the generated
matrices are taken from the vector and placed column-wise (ie. the first column is filled up before
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filling the second column) and from the first matrix of the list to the last matrix of the list. The
diagonal of the generated matrices are zeros. mat.to.vec creates a vector from a given list of
square matrices . The elements of the generated vector are taken from column-wise and from the
first matrix of the list to the last matrix of the list, while dropping the diagonal entry. norm.network
row-normalizes matrices in a given list.

Usage

norm.network(W)

vec.to.mat(u, N, normalise = FALSE, byrow = FALSE)

mat.to.vec(W, ceiled = FALSE, byrow = FALSE)

Arguments

W matrix or list of matrices to convert.

u numeric vector to convert.

N vector of sub-network sizes such that length(u) == sum(N*(N - 1)).

normalise Boolean takes TRUE if the returned matrices should be row-normalized and FALSE
otherwise.

byrow Boolean takes TRUE is entries in the matrices should be taken by row and FALSE
if they should be taken by column.

ceiled Boolean takes TRUE if the given matrices should be ceiled before conversion and
FALSE otherwise.

Value

a vector of size sum(N*(N - 1)) or list of length(N) square matrices. The sizes of the matrices are
N[1], N[2], ...

See Also

simnetwork, peer.avg.

Examples

# Generate a list of adjacency matrices
## sub-network size
N <- c(250, 370, 120)
## rate of friendship
p <- c(.2, .15, .18)
## network data
u <- unlist(lapply(1: 3, function(x) rbinom(N[x]*(N[x] - 1), 1, p[x])))
W <- vec.to.mat(u, N)

# Convert G into a list of row-normalized matrices
G <- norm.network(W)
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# recover u
v <- mat.to.vec(G, ceiled = TRUE)
all.equal(u, v)

peer.avg Computing peer averages

Description

peer.avg computes peer average value using network data (as a list) and observable characteristics.

Usage

peer.avg(Glist, V, export.as.list = FALSE)

Arguments

Glist the adjacency matrix or list sub-adjacency matrix.

V vector or matrix of observable characteristics.

export.as.list (optional) boolean to indicate if the output should be a list of matrices or a single
matrix.

Value

the matrix product diag(Glist[[1]], Glist[[2]], ...) %*% V, where diag() is the block diag-
onal operator.

See Also

simnetwork

Examples

# Generate a list of adjacency matrices
## sub-network size
N <- c(250, 370, 120)
## rate of friendship
p <- c(.2, .15, .18)
## network data
u <- unlist(lapply(1: 3, function(x) rbinom(N[x]*(N[x] - 1), 1, p[x])))
G <- vec.to.mat(u, N, normalise = TRUE)

# Generate a vector y
y <- rnorm(sum(N))

# Compute G%*%y
Gy <- peer.avg(Glist = G, V = y)
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print.simcdEy Printing the average expected outcomes for count data models with
social interactions

Description

Summary and print methods for the class simcdEy as returned by the function simcdEy.

Usage

## S3 method for class 'simcdEy'
print(x, ...)

## S3 method for class 'simcdEy'
summary(object, ...)

## S3 method for class 'summary.simcdEy'
print(x, ...)

Arguments

x an object of class summary.simcdEy, output of the function summary.simcdEy
or class simcdEy, output of the function simcdEy.

... further arguments passed to or from other methods.

object an object of class simcdEy, output of the function simcdEy.

Value

A list of the same objects in object.

remove.ids Removing IDs with NA from Adjacency Matrices Optimally

Description

remove.ids optimally removes identifiers with NA from adjacency matrices. Many combinations
of rows and columns can be deleted removing many rows and column

Usage

remove.ids(network, ncores = 1L)

Arguments

network is a list of adjacency matrices

ncores is the number of cores to be used to run the program in parallel
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Value

List of adjacency matrices without missing values and a list of vectors of retained indeces

Examples

A <- matrix(1:25, 5)
A[1, 1] <- NA
A[4, 2] <- NA
remove.ids(A)

B <- matrix(1:100, 10)
B[1, 1] <- NA
B[4, 2] <- NA
B[2, 4] <- NA
B[,8] <-NA
remove.ids(B)

sar Estimating linear-in-mean models with social interactions

Description

sar computes quasi-maximum likelihood estimators for linear-in-mean models with social interac-
tions (see Lee, 2004 and Lee et al., 2010).

Usage

sar(
formula,
Glist,
lambda0 = NULL,
fixed.effects = FALSE,
optimizer = "optim",
opt.ctr = list(),
print = TRUE,
cov = TRUE,
cinfo = TRUE,
data

)

Arguments

formula a class object formula: a symbolic description of the model. formula must
be as, for example, y ~ x1 + x2 + gx1 + gx2 where y is the endogenous vector
and x1, x2, gx1 and gx2 are control variables, which can include contextual
variables, i.e. averages among the peers. Peer averages can be computed using
the function peer.avg.
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Glist The network matrix. For networks consisting of multiple subnets, Glist can be
a list of subnets with the m-th element being an ns*ns adjacency matrix, where
ns is the number of nodes in the m-th subnet.

lambda0 an optional starting value of λ.

fixed.effects a Boolean indicating whether group heterogeneity must be included as fixed
effects.

optimizer is either nlm (referring to the function nlm) or optim (referring to the function
optim). Arguments for these functions such as, control and method can be set
via the argument opt.ctr.

opt.ctr list of arguments of nlm or optim (the one set in optimizer) such as control,
method, etc.

print a Boolean indicating if the estimate should be printed at each step.

cov a Boolean indicating if the covariance should be computed.

cinfo a Boolean indicating whether information is complete (cinfo = TRUE) or incom-
plete (cinfo = FALSE). In the case of incomplete information, the model is de-
fined under rational expectations.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which sar is called.

Details

For a complete information model, the outcome yi is defined as:

yi = λȳi + z′iΓ + εi,

where ȳi is the average of y among peers, zi is a vector of control variables, and εi ∼ N(0, σ2). In
the case of incomplete information models with rational expectations, yi is defined as:

yi = λE(ȳi) + z′iΓ + εi.

Value

A list consisting of:

info list of general information on the model.

estimate Maximum Likelihood (ML) estimator.

cov covariance matrix of the estimate.

details outputs as returned by the optimizer.

References

Lee, L. F. (2004). Asymptotic distributions of quasi-maximum likelihood estimators for spatial
autoregressive models. Econometrica, 72(6), 1899-1925, doi:10.1111/j.14680262.2004.00558.x.

Lee, L. F., Liu, X., & Lin, X. (2010). Specification and estimation of social interaction models with
network structures. The Econometrics Journal, 13(2), 145-176, doi:10.1111/j.1368423X.2010.00310.x

https://doi.org/10.1111/j.1468-0262.2004.00558.x
https://doi.org/10.1111/j.1368-423X.2010.00310.x
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See Also

sart, cdnet, simsar.

Examples

# Groups' size
set.seed(123)
M <- 5 # Number of sub-groups
nvec <- round(runif(M, 100, 1000))
n <- sum(nvec)

# Parameters
lambda <- 0.4
Gamma <- c(2, -1.9, 0.8, 1.5, -1.2)
sigma <- 1.5
theta <- c(lambda, Gamma, sigma)

# X
X <- cbind(rnorm(n, 1, 1), rexp(n, 0.4))

# Network
G <- list()

for (m in 1:M) {
nm <- nvec[m]
Gm <- matrix(0, nm, nm)
max_d <- 30
for (i in 1:nm) {
tmp <- sample((1:nm)[-i], sample(0:max_d, 1))
Gm[i, tmp] <- 1

}
rs <- rowSums(Gm); rs[rs == 0] <- 1
Gm <- Gm/rs
G[[m]] <- Gm

}

# data
data <- data.frame(X, peer.avg(G, cbind(x1 = X[,1], x2 = X[,2])))
colnames(data) <- c("x1", "x2", "gx1", "gx2")

ytmp <- simsar(formula = ~ x1 + x2 + gx1 + gx2, Glist = G,
theta = theta, data = data)

data$y <- ytmp$y

out <- sar(formula = y ~ x1 + x2 + + gx1 + gx2, Glist = G,
optimizer = "optim", data = data)

summary(out)
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sart Estimating Tobit models with social interactions

Description

sart estimates Tobit models with social interactions (Xu and Lee, 2015).

Usage

sart(
formula,
Glist,
starting = NULL,
Ey0 = NULL,
optimizer = "fastlbfgs",
npl.ctr = list(),
opt.ctr = list(),
cov = TRUE,
cinfo = TRUE,
data

)

Arguments

formula a class object formula: a symbolic description of the model. formula must
be as, for example, y ~ x1 + x2 + gx1 + gx2 where y is the endogenous vector
and x1, x2, gx1 and gx2 are control variables, which can include contextual
variables, i.e. averages among the peers. Peer averages can be computed using
the function peer.avg.

Glist The network matrix. For networks consisting of multiple subnets, Glist can be
a list of subnets with the m-th element being an ns*ns adjacency matrix, where
ns is the number of nodes in the m-th subnet.

starting (optional) a starting value for θ = (λ,Γ, σ) (see the model specification in de-
tails).

Ey0 (optional) a starting value for E(y).

optimizer is either fastlbfgs (L-BFGS optimization method of the package RcppNu-
merical), nlm (referring to the function nlm), or optim (referring to the function
optim). Arguments for these functions such as, control and method can be set
via the argument opt.ctr.

npl.ctr a list of controls for the NPL method (see details of the function cdnet).

opt.ctr a list of arguments to be passed in optim_lbfgs of the package RcppNumeri-
cal, nlm or optim (the solver set in optimizer), such as maxit, eps_f, eps_g,
control, method, etc.

cov a Boolean indicating if the covariance must be computed.
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cinfo a Boolean indicating whether information is complete (cinfo = TRUE) or incom-
plete (cinfo = FALSE). In the case of incomplete information, the model is de-
fined under rational expectations.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which sart is called.

Details

For a complete information model, the outcome yi is defined as:{
y∗i = λȳi + z′iΓ + εi,

yi = max(0, y∗i ),

where ȳi is the average of y among peers, zi is a vector of control variables, and εi ∼ N(0, σ2). In
the case of incomplete information modelswith rational expectations, yi is defined as:{

y∗i = λE(ȳi) + z′iΓ + εi,

yi = max(0, y∗i ).

Value

A list consisting of:

info a list of general information on the model.

estimate the Maximum Likelihood (ML) estimator.

Ey E(y), the expectation of y.

GEy the average of E(y) friends.

cov a list including (if cov == TRUE) covariance matrices.

details outputs as returned by the optimizer.

References

Xu, X., & Lee, L. F. (2015). Maximum likelihood estimation of a spatial autoregressive Tobit
model. Journal of Econometrics, 188(1), 264-280, doi:10.1016/j.jeconom.2015.05.004.

See Also

sar, cdnet, simsart.

Examples

# Groups' size
set.seed(123)
M <- 5 # Number of sub-groups
nvec <- round(runif(M, 100, 200))

https://doi.org/10.1016/j.jeconom.2015.05.004
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n <- sum(nvec)

# Parameters
lambda <- 0.4
Gamma <- c(2, -1.9, 0.8, 1.5, -1.2)
sigma <- 1.5
theta <- c(lambda, Gamma, sigma)

# X
X <- cbind(rnorm(n, 1, 1), rexp(n, 0.4))

# Network
G <- list()

for (m in 1:M) {
nm <- nvec[m]
Gm <- matrix(0, nm, nm)
max_d <- 30
for (i in 1:nm) {
tmp <- sample((1:nm)[-i], sample(0:max_d, 1))
Gm[i, tmp] <- 1

}
rs <- rowSums(Gm); rs[rs == 0] <- 1
Gm <- Gm/rs
G[[m]] <- Gm

}

# Data
data <- data.frame(X, peer.avg(G, cbind(x1 = X[,1], x2 = X[,2])))
colnames(data) <- c("x1", "x2", "gx1", "gx2")

## Complete information game
ytmp <- simsart(formula = ~ x1 + x2 + gx1 + gx2, Glist = G, theta = theta,

data = data, cinfo = TRUE)
data$yc <- ytmp$y

## Incomplete information game
ytmp <- simsart(formula = ~ x1 + x2 + gx1 + gx2, Glist = G, theta = theta,

data = data, cinfo = FALSE)
data$yi <- ytmp$y

# Complete information estimation for yc
outc1 <- sart(formula = yc ~ x1 + x2 + gx1 + gx2, optimizer = "nlm",

Glist = G, data = data, cinfo = TRUE)
summary(outc1)

# Complete information estimation for yi
outc1 <- sart(formula = yi ~ x1 + x2 + gx1 + gx2, optimizer = "nlm",

Glist = G, data = data, cinfo = TRUE)
summary(outc1)

# Incomplete information estimation for yc
outi1 <- sart(formula = yc ~ x1 + x2 + gx1 + gx2, optimizer = "nlm",
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Glist = G, data = data, cinfo = FALSE)
summary(outi1)

# Incomplete information estimation for yi
outi1 <- sart(formula = yi ~ x1 + x2 + gx1 + gx2, optimizer = "nlm",

Glist = G, data = data, cinfo = FALSE)
summary(outi1)

simcdEy Counterfactual analyses with count data models and social interac-
tions

Description

simcdpar computes the average expected outcomes for count data models with social interactions
and standard errors using the Delta method. This function can be used to examine the effects of
changes in the network or in the control variables.

Usage

simcdEy(object, Glist, data, group, tol = 1e-10, maxit = 500, S = 1000)

Arguments

object an object of class summary.cdnet, output of the function summary.cdnet or
class cdnet, output of the function cdnet.

Glist adjacency matrix. For networks consisting of multiple subnets, Glist can be a
list of subnets with the m-th element being an ns*ns adjacency matrix, where ns
is the number of nodes in the m-th subnet. For heterogenous peer effects (e.g.,
boy-boy, boy-girl friendship effects), the m-th element can be a list of many
ns*ns adjacency matrices corresponding to the different network specifications
(see Houndetoungan, 2024). For heterogeneous peer effects in the case of a
single large network, Glist must be a one-item list. This item must be a list of
many specifications of large networks.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which summary.cdnet is called.

group the vector indicating the individual groups (see function cdnet). If missing, the
former group saved in object will be used.

tol the tolerance value used in the Fixed Point Iteration Method to compute the
expectancy of y. The process stops if the `1-distance between two consecutive
E(y) is less than tol.

maxit the maximal number of iterations in the Fixed Point Iteration Method.

S number of simulations to be used to compute integral in the covariance by im-
portant sampling.
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Value

A list consisting of:

Ey E(y), the expectation of y.

GEy the average of E(y) friends.

aEy the sampling mean of E(y).

se.aEy the standard error of the sampling mean of E(y).

See Also

simcdnet

simcdnet Simulating count data models with social interactions under rational
expectations

Description

simcdnet simulate the count data model with social interactions under rational expectations devel-
oped by Houndetoungan (2024).

Usage

simcdnet(
formula,
group,
Glist,
parms,
lambda,
Gamma,
delta,
Rmax,
Rbar,
tol = 1e-10,
maxit = 500,
data

)

Arguments

formula a class object formula: a symbolic description of the model. formula must
be as, for example, y ~ x1 + x2 + gx1 + gx2 where y is the endogenous vector
and x1, x2, gx1 and gx2 are control variables, which can include contextual
variables, i.e. averages among the peers. Peer averages can be computed using
the function peer.avg.
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group the vector indicating the individual groups. The default assumes a common
group. For 2 groups; that is, length(unique(group)) = 2, (e.g., A and B), four
types of peer effects are defined: peer effects of A on A, of A on B, of B on A, and
of B on B.

Glist adjacency matrix. For networks consisting of multiple subnets, Glist can be a
list of subnets with the m-th element being an ns × ns-adjacency matrix, where
ns is the number of nodes in the m-th subnet. For heterogeneous peer effects
(length(unique(group)) = h > 1), the m-th element must be a list of h2 ns ×
ns-adjacency matrices corresponding to the different network specifications (see
Houndetoungan, 2024). For heterogeneous peer effects in the case of a single
large network, Glist must be a one-item list. This item must be a list of h2

network specifications. The order in which the networks in are specified are
important and must match sort(unique(group)) (see examples).

parms a vector defining the true value of θ = (λ′,Γ′, δ′)′ (see the model specification in
details). Each parameter λ, Γ, or δ can also be given separately to the arguments
lambda, Gamma, or delta.

lambda the true value of the vector λ.

Gamma the true value of the vector Γ.

delta the true value of the vector δ.

Rmax an integer indicating the theoretical upper bound of y. (see the model specifica-
tion in details).

Rbar an L-vector, where L is the number of groups. For large Rmax the cost func-
tion is assumed to be semi-parametric (i.e., nonparametric from 0 to R̄ and
quadratic beyond R̄). The l-th element of Rbar indicates R̄ for the l-th value of
sort(unique(group)) (see the model specification in details).

tol the tolerance value used in the Fixed Point Iteration Method to compute the
expectancy of y. The process stops if the `1-distance between two consecutive
E(y) is less than tol.

maxit the maximal number of iterations in the Fixed Point Iteration Method.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which simcdnet is called.

Details

The count variable yi take the value r with probability.

Pir = F (

S∑
s=1

λsȳ
e,s
i + z′iΓ− ah(i),r)− F (

S∑
s=1

λsȳ
e,s
i + z′iΓ− ah(i),r+1).

In this equation, zi is a vector of control variables; F is the distribution function of the standard
normal distribution; ȳe,si is the average of E(y) among peers using the s-th network definition;
ah(i),r is the r-th cut-point in the cost group h(i).

The following identification conditions have been introduced:
∑S

s=1 λs > 0, ah(i),0 = −∞,
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ah(i),1 = 0, and ah(i),r = ∞ for any r ≥ Rmax + 1. The last condition implies that Pir = 0
for any r ≥ Rmax + 1. For any r ≥ 1, the distance between two cut-points is ah(i),r+1 − ah(i),r =

δh(i),r+
∑S

s=1 λs As the number of cut-point can be large, a quadratic cost function is considered for
r ≥ R̄h(i), where R̄ = (R̄1, ..., R̄L). With the semi-parametric cost-function, ah(i),r+1 − ah(i),r =

δ̄h(i) +
∑S

s=1 λs.

The model parameters are: λ = (λ1, ..., λS)′, Γ, and δ = (δ′1, ..., δ
′
L)′, where δl = (δl,2, ..., δl,R̄l

, δ̄l)
′

for l = 1, ..., L. The number of single parameters in δl depends on Rmax and R̄l. The components
δl,2, ..., δl,R̄l

or/and δ̄l must be removed in certain cases.
If Rmax = R̄l ≥ 2, then δl = (δl,2, ..., δl,R̄l

)′.
If Rmax = R̄l = 1 (binary models), then δl must be empty.
If Rmax > R̄l = 1, then δl = δ̄l.

Value

A list consisting of:

yst y∗, the latent variable.

y the observed count variable.

Ey E(y), the expectation of y.

GEy the average of E(y) friends.

meff a list includinh average and individual marginal effects.

Rmax infinite sums in the marginal effects are approximated by sums up to Rmax.

iteration number of iterations performed by sub-network in the Fixed Point Iteration
Method.

References

Houndetoungan, E. A. (2024). Count Data Models with Social Interactions under Rational Expec-
tations. Available at SSRN 3721250, doi:10.2139/ssrn.3721250.

See Also

cdnet, simsart, simsar.

Examples

set.seed(123)
M <- 5 # Number of sub-groups
nvec <- round(runif(M, 100, 200))
n <- sum(nvec)

# Adjacency matrix
A <- list()
for (m in 1:M) {

nm <- nvec[m]
Am <- matrix(0, nm, nm)

https://doi.org/10.2139/ssrn.3721250
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max_d <- 30 #maximum number of friends
for (i in 1:nm) {

tmp <- sample((1:nm)[-i], sample(0:max_d, 1))
Am[i, tmp] <- 1

}
A[[m]] <- Am

}
Anorm <- norm.network(A) #Row-normalization

# X
X <- cbind(rnorm(n, 1, 3), rexp(n, 0.4))

# Two group:
group <- 1*(X[,1] > 0.95)

# Networks
# length(group) = 2 and unique(sort(group)) = c(0, 1)
# The networks must be defined as to capture:
# peer effects of `0` on `0`, peer effects of `1` on `0`
# peer effects of `0` on `1`, and peer effects of `1` on `1`
G <- list()
cums <- c(0, cumsum(nvec))
for (m in 1:M) {

tp <- group[(cums[m] + 1):(cums[m + 1])]
Am <- A[[m]]
G[[m]] <- norm.network(list(Am * ((1 - tp) %*% t(1 - tp)),

Am * ((1 - tp) %*% t(tp)),
Am * (tp %*% t(1 - tp)),
Am * (tp %*% t(tp))))

}

# Parameters
lambda <- c(0.2, 0.3, -0.15, 0.25)
Gamma <- c(4.5, 2.2, -0.9, 1.5, -1.2)
delta <- rep(c(2.6, 1.47, 0.85, 0.7, 0.5), 2)

# Data
data <- data.frame(X, peer.avg(Anorm, cbind(x1 = X[,1], x2 = X[,2])))
colnames(data) = c("x1", "x2", "gx1", "gx2")

ytmp <- simcdnet(formula = ~ x1 + x2 + gx1 + gx2, Glist = G, Rbar = rep(5, 2),
lambda = lambda, Gamma = Gamma, delta = delta, group = group,
data = data)

y <- ytmp$y
hist(y, breaks = max(y) + 1)
table(y)

simnetwork Simulating network data
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Description

simnetwork simulates adjacency matrices.

Usage

simnetwork(dnetwork, normalise = FALSE)

Arguments

dnetwork is a list of sub-network matrices, where the (i, j)-th position of the m-th matrix
is the probability that i be connected to j, with i and j individuals from the m-th
network.

normalise boolean takes TRUE if the returned matrices should be row-normalized and FALSE
otherwise.

Value

list of (row-normalized) adjacency matrices.

Examples

# Generate a list of adjacency matrices
## sub-network size
N <- c(250, 370, 120)
## distribution
dnetwork <- lapply(N, function(x) matrix(runif(x^2), x))
## network
G <- simnetwork(dnetwork)

simsar Simulating data from linear-in-mean models with social interactions

Description

simsar simulates continuous variables with social interactions (see Lee, 2004 and Lee et al., 2010).

Usage

simsar(formula, Glist, theta, cinfo = TRUE, data)

Arguments

formula a class object formula: a symbolic description of the model. formula must
be as, for example, y ~ x1 + x2 + gx1 + gx2 where y is the endogenous vector
and x1, x2, gx1 and gx2 are control variables, which can include contextual
variables, i.e. averages among the peers. Peer averages can be computed using
the function peer.avg.
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Glist The network matrix. For networks consisting of multiple subnets, Glist can be
a list of subnets with the m-th element being an ns*ns adjacency matrix, where
ns is the number of nodes in the m-th subnet.

theta a vector defining the true value of θ = (λ,Γ, σ) (see the model specification in
details).

cinfo a Boolean indicating whether information is complete (cinfo = TRUE) or incom-
plete (cinfo = FALSE). In the case of incomplete information, the model is de-
fined under rational expectations.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which simsar is called.

Details

For a complete information model, the outcome yi is defined as:

yi = λȳi + z′iΓ + εi,

where ȳi is the average of y among peers, zi is a vector of control variables, and εi ∼ N(0, σ2). In
the case of incomplete information models with rational expectations, yi is defined as:

yi = λE(ȳi) + z′iΓ + εi.

Value

A list consisting of:

y the observed count data.

Gy the average of y among friends.

References

Lee, L. F. (2004). Asymptotic distributions of quasi-maximum likelihood estimators for spatial
autoregressive models. Econometrica, 72(6), 1899-1925, doi:10.1111/j.14680262.2004.00558.x.

Lee, L. F., Liu, X., & Lin, X. (2010). Specification and estimation of social interaction models with
network structures. The Econometrics Journal, 13(2), 145-176, doi:10.1111/j.1368423X.2010.00310.x

See Also

sar, simsart, simcdnet.

Examples

# Groups' size
set.seed(123)
M <- 5 # Number of sub-groups
nvec <- round(runif(M, 100, 1000))
n <- sum(nvec)

https://doi.org/10.1111/j.1468-0262.2004.00558.x
https://doi.org/10.1111/j.1368-423X.2010.00310.x
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# Parameters
lambda <- 0.4
Gamma <- c(2, -1.9, 0.8, 1.5, -1.2)
sigma <- 1.5
theta <- c(lambda, Gamma, sigma)

# X
X <- cbind(rnorm(n, 1, 1), rexp(n, 0.4))

# Network
G <- list()

for (m in 1:M) {
nm <- nvec[m]
Gm <- matrix(0, nm, nm)
max_d <- 30
for (i in 1:nm) {
tmp <- sample((1:nm)[-i], sample(0:max_d, 1))
Gm[i, tmp] <- 1

}
rs <- rowSums(Gm); rs[rs == 0] <- 1
Gm <- Gm/rs
G[[m]] <- Gm

}

# data
data <- data.frame(X, peer.avg(G, cbind(x1 = X[,1], x2 = X[,2])))
colnames(data) <- c("x1", "x2", "gx1", "gx2")

ytmp <- simsar(formula = ~ x1 + x2 + gx1 + gx2, Glist = G,
theta = theta, data = data)

y <- ytmp$y

simsart Simulating data from Tobit models with social interactions

Description

simsart simulates censored data with social interactions (see Xu and Lee, 2015).

Usage

simsart(formula, Glist, theta, tol = 1e-15, maxit = 500, cinfo = TRUE, data)

Arguments

formula a class object formula: a symbolic description of the model. formula must
be as, for example, y ~ x1 + x2 + gx1 + gx2 where y is the endogenous vector
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and x1, x2, gx1 and gx2 are control variables, which can include contextual
variables, i.e. averages among the peers. Peer averages can be computed using
the function peer.avg.

Glist The network matrix. For networks consisting of multiple subnets, Glist can be
a list of subnets with the m-th element being an ns*ns adjacency matrix, where
ns is the number of nodes in the m-th subnet.

theta a vector defining the true value of θ = (λ,Γ, σ) (see the model specification in
details).

tol the tolerance value used in the fixed point iteration method to compute y. The
process stops if the `1-distance between two consecutive values of y is less than
tol.

maxit the maximal number of iterations in the fixed point iteration method.

cinfo a Boolean indicating whether information is complete (cinfo = TRUE) or incom-
plete (cinfo = FALSE). In the case of incomplete information, the model is de-
fined under rational expectations.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which simsart is called.

Details

For a complete information model, the outcome yi is defined as:{
y∗i = λȳi + z′iΓ + εi,

yi = max(0, y∗i ),

where ȳi is the average of y among peers, zi is a vector of control variables, and εi ∼ N(0, σ2). In
the case of incomplete information modelswith rational expectations, yi is defined as:{

y∗i = λE(ȳi) + z′iΓ + εi,

yi = max(0, y∗i ).

Value

A list consisting of:

yst y∗, the latent variable.

y the observed censored variable.

Ey E(y), the expectation of y.

Gy the average of y among friends.

GEy the average of E(y) friends.

meff a list includinh average and individual marginal effects.

iteration number of iterations performed by sub-network in the Fixed Point Iteration
Method.
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References

Xu, X., & Lee, L. F. (2015). Maximum likelihood estimation of a spatial autoregressive Tobit
model. Journal of Econometrics, 188(1), 264-280, doi:10.1016/j.jeconom.2015.05.004.

See Also

sart, simsar, simcdnet.

Examples

# Groups' size
set.seed(123)
M <- 5 # Number of sub-groups
nvec <- round(runif(M, 100, 200))
n <- sum(nvec)

# Parameters
lambda <- 0.4
Gamma <- c(2, -1.9, 0.8, 1.5, -1.2)
sigma <- 1.5
theta <- c(lambda, Gamma, sigma)

# X
X <- cbind(rnorm(n, 1, 1), rexp(n, 0.4))

# Network
G <- list()

for (m in 1:M) {
nm <- nvec[m]
Gm <- matrix(0, nm, nm)
max_d <- 30
for (i in 1:nm) {
tmp <- sample((1:nm)[-i], sample(0:max_d, 1))
Gm[i, tmp] <- 1

}
rs <- rowSums(Gm); rs[rs == 0] <- 1
Gm <- Gm/rs
G[[m]] <- Gm

}

# Data
data <- data.frame(X, peer.avg(G, cbind(x1 = X[,1], x2 = X[,2])))
colnames(data) <- c("x1", "x2", "gx1", "gx2")

## Complete information game
ytmp <- simsart(formula = ~ x1 + x2 + gx1 + gx2, Glist = G, theta = theta,

data = data, cinfo = TRUE)
data$yc <- ytmp$y

## Incomplete information game

https://doi.org/10.1016/j.jeconom.2015.05.004
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ytmp <- simsart(formula = ~ x1 + x2 + gx1 + gx2, Glist = G, theta = theta,
data = data, cinfo = FALSE)

data$yi <- ytmp$y

summary.cdnet Summary for the estimation of count data models with social interac-
tions under rational expectations

Description

Summary and print methods for the class cdnet as returned by the function cdnet.

Usage

## S3 method for class 'cdnet'
summary(object, Glist, data, S = 1000L, ...)

## S3 method for class 'summary.cdnet'
print(x, ...)

## S3 method for class 'cdnet'
print(x, ...)

Arguments

object an object of class cdnet, output of the function cdnet.
Glist adjacency matrix. For networks consisting of multiple subnets, Glist can be a

list of subnets with the m-th element being an ns*ns adjacency matrix, where ns
is the number of nodes in the m-th subnet. For heterogenous peer effects (e.g.,
boy-boy, boy-girl friendship effects), the m-th element can be a list of many
ns*ns adjacency matrices corresponding to the different network specifications
(see Houndetoungan, 2024). For heterogeneous peer effects in the case of a
single large network, Glist must be a one-item list. This item must be a list of
many specifications of large networks.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which summary.cdnet is called.

S number of simulations to be used to compute integral in the covariance by im-
portant sampling.

... further arguments passed to or from other methods.
x an object of class summary.cdnet, output of the function summary.cdnet or

class cdnet, output of the function cdnet.

Value

A list of the same objects in object.



34 summary.sart

summary.sar Summary for the estimation of linear-in-mean models with social in-
teractions

Description

Summary and print methods for the class sar as returned by the function sar.

Usage

## S3 method for class 'sar'
summary(object, ...)

## S3 method for class 'summary.sar'
print(x, ...)

## S3 method for class 'sar'
print(x, ...)

Arguments

object an object of class sar, output of the function sar.
... further arguments passed to or from other methods.
x an object of class summary.sar, output of the function summary.sar or class

sar, output of the function sar.

Value

A list of the same objects in object.

summary.sart Summary for the estimation of Tobit models with social interactions

Description

Summary and print methods for the class sart as returned by the function sart.

Usage

## S3 method for class 'sart'
summary(object, Glist, data, ...)

## S3 method for class 'summary.sart'
print(x, ...)

## S3 method for class 'sart'
print(x, ...)
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Arguments

object an object of class sart, output of the function sart.

Glist adjacency matrix or list sub-adjacency matrix. This is not necessary if the co-
variance method was computed in cdnet.

data dataframe containing the explanatory variables. This is not necessary if the co-
variance method was computed in cdnet.

... further arguments passed to or from other methods.

x an object of class summary.sart, output of the function summary.sart or class
sart, output of the function sart.

Value

A list of the same objects in object.
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